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A B S T R A C T

The success of tyrosine kinase inhibitors (TKIs) in select patients with non–small-cell lung cancer
(NSCLC) has transformed management of the disease, placing new emphasis on understanding
the molecular characteristics of tumor specimens. It is now recognized that genetic alterations in
the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) define two
unique subtypes of NSCLC that are highly responsive to genotype-directed TKIs. Despite this initial
sensitivity, however, the long-term effectiveness of such therapies is universally limited by the
development of resistance. Identifying the mechanisms underlying this resistance is an area of
intense, ongoing investigation. In this review, we provide an overview of recent experience in the
field, focusing on results from preclinical resistance models and studies of patient-derived,
TKI-resistant tumor specimens. Although diverse TKI resistance mechanisms have been identified
within EGFR-mutant and ALK-positive patients, we highlight common principles of resistance
shared between these groups. These include the development of secondary mutations in the
kinase target, gene amplification of the primary oncogene, and upregulation of bypass signaling
tracts. In EGFR-mutant and ALK-positive patients alike, acquired resistance may also be a dynamic
and multifactorial process that may necessitate the use of treatment combinations. We believe
that insights into the mechanisms of TKI resistance in patients with EGFR mutations or ALK
rearrangements may inform the development of novel treatment strategies in NSCLC, which may
also be generalizable to other kinase-driven malignancies.

J Clin Oncol 31:3987-3996. © 2013 by American Society of Clinical Oncology

INTRODUCTION

Advances in molecular biology have highlighted the
genomic complexity of cancer cells. Within this di-
verse genetic landscape, however, certain cancers are
dependent on single oncogenic pathways for sur-
vival. This state of “oncogene addiction” commonly
involves aberrant kinase activation, providing a
therapeutic basis for agents directed against the cor-
responding dysregulated kinases.1 The success of the
tyrosine kinase inhibitor (TKI) imatinib in chronic
myeloid leukemia (CML) originally validated this
treatment paradigm.2 Subsequently, this approach
has been translated to other oncogene-driven malig-
nancies, including gastrointestinal stromal tumors
(GIST), BRAF-mutant melanoma, and epidermal
growth factor receptor (EGFR) –mutant non–small-
cell lung cancer (NSCLC).3-7 Although selective ki-
nase inhibitors produce high objective response
rates (ORRs) in these molecularly defined popula-
tions, the long-term impact of such therapies are
limited to variable degrees by the development of re-
sistance.8-10

NSCLC provides an instructive conceptual
framework for examining kinase-directed therapies
and the mechanisms that ultimately limit their effec-
tiveness. In the last decade, NSCLC management
has evolved toward stratification of patients based
on genetic alterations within “driver” oncogenes,
such as EGFR and anaplastic lymphoma kinase
(ALK). Somatic mutations in EGFR are identified in
10% to 30% of patients with NSCLC.6,7,11 Common
EGFR alterations include the L858R point mutation
and exon 19 deletions.12 These mutations result in
enhanced EGFR signaling and confer sensitivity to
the EGFR TKIs gefitinib and erlotinib.6,7,11 In first-
line treatment, EGFR inhibitors produce ORRs
nearing 75% in patients with typical EGFR muta-
tions.12 Randomized trials have also demon-
strated improved progression-free survival (PFS)
for EGFR-mutant patients receiving TKIs com-
pared with chemotherapy.13-15

Like EGFR mutations, ALK rearrangements
define a unique molecular subset of NSCLC. Most
ALK rearrangements arise from chromosomal in-
versions that generate novel ALK fusion transcripts,
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commonly involving echinoderm microtubule-associated protein-
like 4 (EML4) as the 5� fusion partner (EML4-ALK).16,17 Identified in
4% to 6% of patients with NSCLC,16,18-20 ALK rearrangements are
associated with unique clinicopathologic features and sensitivity to the
ALK TKI crizotinib.20 Initial clinical studies of crizotinib demon-
strated ORRs of 60% and a median PFS of 8 to 10 months.21-23 Given
its high response rate, the US Food and Drug Administration (FDA)
granted accelerated approval of crizotinib in 2011.

Despite the success of genotype-directed therapies in EGFR-
mutant and ALK-positive patients, resistance inevitably develops. In-
deed, the median PFS after treatment with EGFR or ALK inhibitors in
target populations is generally less than 1 year.13-15,21-23 Thereafter,
standard management usually consists of cytotoxic chemotherapy. It
is therefore critical to develop new insights into the mechanisms of
TKI resistance to develop more effective treatment strategies.

DEFINITIONS OF RESISTANCE

Resistance to targeted therapies is generally classified as either primary
(ie, intrinsic) or secondary (ie, acquired). Primary resistance describes
a de novo lack of treatment response, whereas acquired resistance
denotes disease progression after an initial response. Like CML and
GIST,24,25 criteria for acquired resistance were recently proposed for
EGFR-mutant NSCLC (Table 1).26 Although similar criteria have not
been established for ALK-positive NSCLC, our definition will largely
mirror that of EGFR for this review.

PRIMARY RESISTANCE

EGFR

Although ORRs to EGFR TKIs are high among EGFR-mutant
patients, some patients exhibit intrinsic resistance. The mechanistic
basis for these observations is largely unknown. Primary resistance
may be due in part to differential TKI sensitivities across various EGFR
mutations. “Classic” EGFR mutations, namely exon 19 deletions and
L858R, are associated with marked sensitivity to TKIs.27 Conversely,
exon 20 insertions or duplications (�4% of EGFR mutations) seem to
be resistant to EGFR inhibitors despite in vitro evidence suggesting
that these alterations result in aberrant kinase activation.28-30

Intrinsic resistance to EGFR inhibitors may also be due to sec-
ondary genetic alterations that co-occur with sensitizing EGFR muta-
tions. For instance, a T790M mutation within EGFR has been
occasionally identified as a minor clone within treatment-naive tumor
specimens containing classic EGFR mutations.31-33 Similarly, MET
amplification has been reported in EGFR-mutant tumors before TKI
exposure.33-35 As is discussed later, MET amplification and T790M are
common mechanisms of acquired resistance. When present de novo,
it has been suggested that these genetic alterations may also promote
intrinsic resistance if present at sufficiently high allelic frequencies.
Alternatively, selective pressure from TKIs may permit cells contain-
ing T790M or MET amplification to emerge as dominant clones early
during therapy.

ALK

A small number of ALK-positive patients experience disease pro-
gression immediately after starting crizotinib. Recent preclinical data
suggest that differences in specific ALK fusion gene products may
partially account for heterogeneous treatment responses.36 A number
of different 5� ALK fusion partners have been identified.37 Addition-
ally, multiple different EML4-ALK variants exist, all of which preserve
the ALK kinase domain but differ with respect to the EML4 break-
point. In one cell line model, differences in crizotinib sensitivity were
observed between different EML4-ALK fusion variants and ALK fu-
sion partners.36 Despite these in vitro observations, subgroup analysis
from a phase I trial of crizotinib showed no correlation between
EML4-ALK variant type and response.21

Another explanation for primary resistance to crizotinib may be
false-positive genotyping. ALK rearrangements may be detected by
various techniques, but only ALK fluorescence in situ hybridization
(FISH) testing is currently approved by the FDA.38 This assay is tech-
nically challenging because EML4 and ALK both map to chromosome
2 and are normally separated by only �12 megabases.16,38 False-
positive results may occur as a result of sectioning artifact, poor nu-
cleus morphology, aberrant probe hybridization, or misinterpretation
at pathologic review.39 It is therefore possible that rare cases of “pri-
mary resistance” to crizotinib may be due to technical factors rather
than intrinsic biology. Lastly, ALK FISH may identify true-positive
ALK translocations, but these may not generate functional rearrange-
ments in all patients.

Heterogeneity of TKI Response

ALK and EGFR TKIs can produce wide spectrums of response,
even among those with identical genetic alterations. One intriguing
explanation for this heterogeneity involves differences within the cel-
lular apoptotic machinery. In particular, recent data have suggested
that the pro-apoptotic protein BIM is a biomarker and mediator of
TKI-induced apoptosis in several oncogene-driven malignancies.40-46

In EGFR-mutant cell lines, BIM is upregulated in response to EGFR
TKIs, and BIM levels correlate with the degree of apoptotic
response.42-45 Likewise, inhibition of BIM expression promotes in-
trinsic resistance to EGFR TKIs. Consistent with these preclinical
findings, low pretreatment BIM RNA levels from EGFR-mutant pa-
tients were associated with decreased tumor shrinkage and a shorter
PFS after treatment with EGFR TKIs.45 The reasons for these differ-
ences in baseline BIM levels remain unclear. One recent report sug-
gests that a genetic polymorphism in BIM results in alternative splicing

Table 1. Criteria for Acquired Resistance to EGFR Tyrosine Kinase Inhibitors

1. Patient has received prior therapy with an EGFR TKI (monotherapy).
2. Tumor genotyping confirms the presence of a typical EGFR mutation

that is associated with sensitivity to EGFR TKIs. Examples include exon
19 deletions, L858R, and G719X.

OR
Patient achieves either a documented partial or complete response OR

prolonged stable disease (� 6 months) based on RECIST or
WHO criteria.

3. Disease progression occurs despite uninterrupted exposure to an EGFR
TKI within 30 days.

4. Patient has not received additional systemic therapy since
discontinuation of EGFR TKIs.

Adapted from Jackman et al.26

Abbreviations: EGFR, epidermal growth factor receptor; TKI, tyrosine kinase
inhibitor.
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and altered BIM function, which may contribute to intrinsic resistance
in some patients.47

ACQUIRED RESISTANCE

Mechanisms of acquired resistance in oncogene-driven malignan-
cies are broadly divided into two categories. The first involves
development of additional genetic alterations in the primary onco-
gene, which facilitates continued downstream signaling. This com-
monly arises through secondary mutations in the kinase target or
through gene amplification of the kinase itself (Table 2).8,62-64

Alternatively, resistance can develop independent of genetic
changes in the target. This occurs through activation of down-
stream signaling pathways, changes in tumor histology, or altera-
tions in drug metabolism.8,27,62,65,66

Secondary Mutations

Experience with imatinib resistance in CML has informed ap-
proaches to acquired resistance in other malignancies. Secondary mu-
tations in the ABL kinase domain are common causes of TKI
resistance in CML.67,68 Among the more than 50 secondary mutations
identified to date, the most common involves a threonine-to-
isoleucine substitution at position 315 (T315I) of ABL, the so-called
gatekeeper residue.8 This mutation reduces imatinib binding but pre-
serves ABL kinase activity.67 In EGFR-mutant NSCLC, the earliest
reports of TKI resistance identified an analogous secondary mutation
in exon 20 of EGFR, leading to a threonine-to-methionine substitu-
tion within the gatekeeper residue at position 790 (T790M).48,49 Sec-
ondary T790M mutations have since been found in approximately

50% of TKI-resistant, EGFR-mutant patients, establishing this altera-
tion as the dominant resistance mechanism in the clinic.50,51

Although other gatekeeper mutations sterically impede TKI
binding, T790M causes resistance predominantly through changes in
adenosine triphosphate (ATP) affinity.69 EGFR-mutant tumors are
generally sensitive to competitive inhibitors because such mutations
reduce the receptor’s affinity for ATP. The addition of T790M, how-
ever, restores the ATP affinity of the kinase back to wild-type levels,
re-establishing ATP as the favored substrate rather than the TKI.
When coexpressed with classic EGFR sensitizing mutations, T790M
confers resistance in vitro and in transgenic mice.48,49,70 Furthermore,
biochemical studies demonstrate that such dual mutations result in
enhanced kinase activity and oncogenicity.71,72 Despite these findings,
preclinical and retrospective clinical studies suggest that T790M may
actually confer a growth disadvantage relative to TKI-sensitive paren-
tal cells.73,74

T790M mutations have also been rarely detected within
treatment-naive specimens.31-33 In most patients, however, it is un-
clear whether these mutations arise de novo during therapy or
whether EGFR-directed therapies select for preexisting clones. In ad-
dition to T790M, three additional secondary EGFR mutations have
been associated with TKI resistance: D761Y, T854A, and L747S (Fig
1).42,52,53 The structural basis for how these mutations confer resis-
tance is unknown. Collectively, non-T790M secondary mutations are
relatively uncommon and, in vitro, confer less pronounced resistance.

Secondary mutations in the ALK kinase domain have been iden-
tified in approximately 30% of ALK-positive patients with crizotinib

Table 2. Major Mechanisms of Acquired Resistance Identified in
Clinical Specimens

Mechanism
Estimated

Frequency (%) References

EGFR TKI resistance
Genetic alterations in EGFR

T790M mutations 50 48-51
D761Y, T854A, and L747S mutations � 5 42, 52, 53
EGFR amplification 8 50

Bypass signaling tracts
MET amplification 5-22 35, 50, 51
HER2 amplification 12 54
PIK3CA mutations 5 50
BRAF mutations 1 55
CRKL amplification 9 56
HGF overexpression 1 of 2 cases 57

Phenotypic alterations
Transformation to small-cell lung cancer 3-14 50, 51

ALK TKI resistance
Genetic alterations in ALK

ALK secondary mutations (eg, L1196M) 22-36 58-61
ALK gene amplification 7-18 60, 61

Bypass signaling tracts
EGFR activation 44 60
KIT gene amplification 15 60

Abbreviations: EGFR, epidermal growth factor receptor; TKI, tyrosine kinase
inhibitor; HER2, human epidermal growth factor receptor 2; HGF, hepatocyte
growth factor; ALK, anaplastic lymphoma kinase.
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Fig 1. Comparison of the number and distribution of secondary resistance
mutations in the tyrosine kinase domains of the epidermal growth factor receptor
(EGFR) and anaplastic lymphoma kinase (ALK). In EGFR-positive patients with
acquired tyrosine kinase inhibitor (TKI) resistance, four different second-site
mutations in EGFR have been identified in clinical specimens. The gatekeeper
mutation T790M (bold) is the most common, present in approximately 50% of
patients at the time of resistance. The remaining EGFR secondary mutations are
present at low frequencies. In contrast, seven different secondary mutations
have been identified in ALK-positive patients at the time of TKI resistance,
including the L1196M gatekeeper mutation (bold). Despite this wider distribution
of secondary mutations within the ALK tyrosine kinase domain, such mutations
are found in only approximately 30% of patients.
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resistance.58-61,75 The earliest description involved an ALK-positive
patient who developed disease progression after receiving crizotinib
for 5 months.58 Analysis of pleural fluid from this patient revealed two
nonoverlapping mutations, L1196M and C1156Y, within the ALK
kinase domain. Each independently conferred crizotinib resistance in
vitro. The L1196M substitution is notable because it involves the ALK
gatekeeper residue, analogous to T790M in EGFR. The L1196M mu-
tation, which replaces a leucine moiety with a bulkier methionine
residue, likely causes resistance by steric interference with crizo-
tinib binding.

Since the initial case report of crizotinib resistance, additional
second-site ALK mutations have been identified in patient-derived
NSCLC specimens (1151Tins, L1152R, G1202R, S1206Y, and
G1269A).59-61 Mutations in a majority of these residues were also
found in accelerated in vitro mutagenesis screening.76 A separate
ALK secondary mutation, F1174L, has also been reported in a
crizotinib-resistant inflammatory myofibroblastic tumor.77 Inter-
estingly, the F1174 residue is among the most commonly mutated
sites in neuroblastoma.78

ALK secondary mutations in NSCLC are distributed through-
out the kinase domain, including the solvent front (G1202R,
S1206Y), gatekeeper residue (L1196M), ATP-binding pocket
(G1269A), and N-terminal to the �C-helix (1151Tins, L1152R,
and C1156Y).58-61,75 In vitro, ALK secondary mutations confer
differential sensitivities to crizotinib and second-generation ALK
TKIs.60 For example, the ALK S1206Y mutation confers lower
degrees of crizotinib resistance compared with G1202R, L1196M,
and 1151Tins mutations. It remains unclear, however, whether
variations in ALK secondary mutations translate into different
clinical responses to next-generation ALK inhibitors.

It is noteworthy that ALK-positive patients, like those with CML,
develop multiple secondary mutations at the time of TKI resistance.
This is in contrast to EGFR-mutant patients, in whom T790M is
essentially the sole secondary mutation observed clinically. Although
in vitro mutagenesis experiments identified several additional EGFR
resistance mutations, T790M was the only mutation consistently
identified in all screens.79 One potential explanation for this finding is
that the EGFR-mutant kinase, which already possesses one alteration,
may be unable to accommodate diverse drug-resistant, secondary
mutations without compromising kinase function.61 Still another
consideration is that gefitinib and erlotinib bind to the active confor-
mation of EGFR, whereas crizotinib and imatinib bind to the inactive
conformations of ALK and BCR-ABL, respectively.27 This may limit
the spectrum of secondary EGFR mutations to those that influence
drug binding in the ATP pocket.

Target Gene Amplification

Target gene amplification is another cause of acquired resistance
that was first identified in CML.50,61,67,69,80 Gene amplification may
shift the intracellular balance between kinase and TKI in favor of the
kinase. Gene amplification may also augment the effects of secondary
resistance mutations if both are present simultaneously. For example,
in a report of 37 EGFR-mutant patients with resistance to TKIs, EGFR
amplification was identified in three patients (8%).50 Interestingly, all
three patients had simultaneous T790M mutations. Consistent with
preclinical models, two of these patients seemed to have selective
amplification of the T790M-containing allele.50,81

ALK fusion gene amplification has also been identified as a cause
of crizotinib resistance.60,61,80 This was initially suggested by cell line
models in which amplification of wild-type EML4-ALK was sufficient
to confer crizotinib resistance.80 Subsequent studies have confirmed
ALK fusion gene amplification in resistant clinical specimens.60,61 In
one report, high-level amplification was identified in one (7%) of 15
specimens,60 whereas a separate study showed ALK copy number gain
in two (18%) of 11 patients.61 One of these patients also had a second-
ary ALK G1269A mutation.

Bypass Signaling

TKI resistance can also develop through reactivation of down-
stream signaling pathways via bypass tracts (Fig 2). One well-
described example in EGFR-mutant NSCLC is through MET
amplification.35,82 Initially identified in 22% of EGFR TKI-
resistant specimens, MET amplification confers resistance through
ERBB3-mediated activation of downstream PI3K/AKT signaling,
effectively bypassing the inhibited EGFR.35 Activation of MET
through its ligand, hepatocyte growth factor, may also promote
resistance.57,83 In more recent studies of EGFR TKI resistance,
MET amplification has been identified in only 5% of specimens,
perhaps reflecting differences in testing methodology and thresh-
olds compared with those of earlier reports.50,51 Interestingly,
MET-amplified subclones have been identified at low frequencies
in untreated specimens.34 In a majority of these cases, the domi-
nant mechanism of resistance at the time of disease progression
was MET amplification, suggesting that these preexisting cells
emerged as dominant clones as a result of selective pressure.

EGFR MET ERBB3 HER2 

PI3K 

AKT 

mTOR 

Ras 

Raf 

MEK 

ERK 

Cell proliferation and survival 

HGF 

1 

2 3 
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7 

Fig 2. Mechanisms of acquired resistance to epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitors identified in EGFR-positive patient specimens.
Activation of EGFR results in downstream signaling through the PI3K/AKT and
RAS/RAF/MEK/ERK pathways, leading to cell proliferation and survival. The
highlighted yellow boxes designate points along these pathways and others that
have been associated with resistance to EGFR TKIs: (1) EGFR gene amplification,
(2) secondary mutations in EGFR (eg, T790M), (3) MET amplification, (4)
hepatocyte growth factor (HGF) –mediated MET activation, (5) HER2 amplifica-
tion, (6) PIK3CA mutations, and (7) BRAF mutations.
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Several additional bypass tracts have been implicated in EGFR
TKI resistance.50,54-56 Recently, HER2 amplification was identified in
three (12%) of 26 EGFR-mutant patients with acquired resistance to
TKIs.54 When amplified, HER2 is believed to function in parallel to the
inhibited EGFR to reactivate common downstream signaling path-
ways. Recently, genetic alterations in effectors downstream from
EGFR have also been identified as potential mediators of resis-
tance.50,55,84 For example, PIK3CA mutations have been identified in
5% of EGFR-mutant patients with acquired resistance.50 Preclinical
studies suggest that these mutations confer resistance by activating
downstream AKT.84 Recent studies have also focused on RAS/MAPK
signaling as a source of EGFR TKI resistance because KRAS mutations
have long been associated with primary resistance to EGFR inhibi-
tors.85 Despite their role in primary resistance, no KRAS mutations
have been detected in EGFR-mutant patients with acquired resis-
tance.49,50,55 However, point mutations in BRAF, another member of
the MAPK pathway, have been described.55

Bypass tracts also contribute to resistance in ALK-positive
NSCLC. Preclinical studies identified EGFR coactivation as one po-
tential mechanism of crizotinib resistance.59,60,86 In these models,
EGFR activation did not occur through mutation. Instead, increases in
EGFR ligands EGF86 and amphiregulin59 were observed. Recently, a
collection of crizotinib-resistant, ALK-positive tumor specimens were
examined for evidence of EGFR activation.60 Four (44%) of nine
specimens demonstrated increased EGFR phosphorylation compared
with precrizotinib samples, suggesting that EGFR upregulation may
serve as a clinically relevant bypass track. A separate study also de-
scribed one ALK-positive patient treated with crizotinib who was later
found to have an EGFR mutation and a negative ALK FISH test in a
repeat biopsy specimen.61 In this latter report, KRAS mutations were
also identified in two ALK-positive patients after disease progression
occurred during treatment with crizotinib, although one patient har-
bored this mutation pretreatment. Lastly, KIT gene amplification has
been identified in two (15%) of 13 crizotinib-resistant specimens,
suggesting that this signaling pathway may also be co-opted to medi-
ate resistance.60

Phenotypic Alterations

Several groups have reported changes in tumor histology on
development of resistance to EGFR TKIs. The most dramatic exam-
ples include transformation from NSCLC to small-cell lung cancer
(SCLC) in a subset of patients.87,88 In one study of 37 EGFR-mutant
patients with acquired resistance, repeat biopsies identified SCLC in
five patients (14%), all of whom had adenocarcinoma at baseline.50

Interestingly, the original EGFR mutations were present in all SCLC
specimens. Samples were negative for T790M and MET amplification,
although one patient developed a new PIK3CA mutation. In a separate
cohort of 106 EGFR-mutant patients, SCLC or high-grade neuroen-
docrine carcinoma were found in three TKI-resistant patients.51 The
mechanistic basis for these observations remains unclear. Similar his-
tologic changes have not been identified in ALK-positive patients.60

Another histologic change observed in EGFR TKI-resistant spec-
imens is an epithelial to mesenchymal transition (EMT).50,89,90 EMT is
characterized by loss of epithelial markers (eg, E-cadherin) and gain of
mesenchymal features, including surface expression of vimentin.91

EMT is associated with enhanced motility, invasiveness, and in vitro
EGFR TKI resistance.92-94 Clinically, EMT has been recognized in a

subset of EGFR TKI-resistant specimens.50 The biology underlying
this change and its impact on resistance remains unknown.

Other Mechanisms of Resistance

A subset of EGFR-mutant and ALK-positive patients have un-
known mechanisms of TKI resistance. In preclinical models, EGFR
TKI resistance has also been associated with insulin growth factor
receptor signaling,95-97 nuclear factor �B activation,98 and loss of
PTEN.99 Among ALK-positive patients, loss of the ALK fusion onco-
gene has also been raised as a potential mechanism of resistance.61

Additionally, resistance may be influenced by pharmacokinetic con-
siderations. Gefitinib, erlotinib, and crizotinib are oral medications,
which may be affected by absorption, patient compliance, drug–drug
interactions, and metabolism. In CML, for example, plasma trough
concentrations of imatinib have been correlated with response to
therapy.100-102 Similarly, patient adherence rates to imatinib have been
identified as independent predictors of response.103

Polyclonal Resistance

Occasionally, multiple different resistance mechanisms are
found within the same biopsy specimen.50,51,60,61,82 Moreover, differ-
ent resistance mechanisms may be found in separate tumor deposits
within the same patient. For example, Yu et al104 recently identified an
EGFR-mutant patient with T790M in one resistant sample and HER2
amplification in a separate specimen, underscoring the potential for
clonal divergence across metastatic sites. Patients may have additional
tumor heterogeneity in the form of TKI-sensitive cells admixed with
resistant cells. Furthermore, the overall composition of such tumor
populations may evolve with changes in therapy. For instance, EGFR-
mutant and ALK-positive patients can experience a disease “flare” on
TKI discontinuation, presumably because of accelerated growth of
TKI-sensitive clones once selective pressure from the drug is re-
moved.105,106 The dynamic nature of resistance underscores the value
of repeat biopsies at each new phase of treatment to advance our
understanding of resistance and guide clinical decision making. Nev-
ertheless, care must be taken to balance biopsy-related risks and en-
sure adequate informed consent.107,108 This also emphasizes the need
to develop noninvasive tools for monitoring resistance, such as muta-
tional analysis of plasma DNA or circulating tumor cells.109,110

TREATMENT APPROACHES

Knowledge of the mechanisms underlying TKI resistance may inform
new treatment strategies. We therefore conclude with an overview of
treatment approaches for patients with TKI resistance. A more com-
prehensive discussion is beyond the scope of this review.

TKI Continuation Beyond Progression

In routine practice, oncologists typically discontinue a given
therapy at the time of disease progression. It remains unclear,
however, whether similar approaches should apply to TKIs in
EGFR-mutant and ALK-positive patients, because resistance may
be heterogeneous and TKI discontinuation may precipitate a dis-
ease flare.105,106 In cases of isolated progression (eg, CNS), local
therapies followed by continuation of the relevant targeted therapy
may be a viable approach in select patients.111-114 In EGFR-mutant
patients for whom a switch to cytotoxic chemotherapy is ultimately

Resistance to Tyrosine Kinase Inhibitors in Lung Cancer
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deemed necessary, however, it remains unclear whether EGFR
TKIs should be continued with standard chemotherapy. Several
prospective clinical trials evaluating this question are currently
ongoing (NCT01544179, NCT01310036).

Alternative Dosing

Another strategy is to use alternative doses or schedules of TKIs.
In CML and GIST, for example, imatinib dose escalation has been
effective in some patients experiencing disease progression at standard
imatinib doses.24,115,116 In EGFR-mutant NSCLC, different dosing
strategies may also be relevant because the FDA-approved dose of
erlotinib was determined in unselected patients. Recent evolutionary
mathematical modeling studies have proposed that alternative EGFR
TKI doses and schedules may produce comparable results while de-
laying development of resistance.73,117

Next-Generation TKIs

Initial strategies to combat acquired resistance have centered on
using next-generation TKIs. This approach has met with success in
other oncogene-driven malignancies. In CML, four next-generation
TKIs (dasatinib, nilotinib, bosutinib, and ponatinib) have shown ac-
tivity in imatinib-resistant disease.118-123 One agent, ponatinib, is of
particular note because it seems to overcome the gatekeeper T315I
mutation.123 Unfortunately, similar strategies have been less success-
ful in EGFR-mutant NSCLC. Second-generation EGFR TKIs, such as
neratinib, dacomitinib, and afatinib, differ from gefitinib and erlotinib
in that they form irreversible covalent bonds with EGFR.124 These
agents also possess activity against other ERBB family members (eg,
HER2). In preclinical models, irreversible EGFR TKIs demonstrated
promising activity against T790M.125,126 Unfortunately, clinical trials
of these agents in patients with acquired resistance have been largely
disappointing, likely as a result of dose limitations from toxicity caused
by inhibiting wild-type EGFR.127,128

Recently, third-generation EGFR inhibitors, such as WZ4002
and CO-1686, have been developed. In preclinical studies, these com-
pounds are active against cell lines and murine models harboring
T790M mutations.129,130 Moreover, WZ4002 and CO-1686 both
seem to spare wild-type EGFR in vitro and in vivo. It is therefore

hoped that these mutant-selective inhibitors will be able to overcome
T790M-mediated resistance while producing less toxicity in the clinic.

Next-generation TKIs are also being investigated in ALK-positive
patients. Indeed, five agents are currently in clinical testing131-135 (Ta-
ble 3). In preliminary reporting, two of these compounds (LDK378
and AP26113) were associated with high ORRs in phase I trials of
ALK-positive patients with crizotinib resistance.131,132 Both agents
also demonstrated activity against brain metastases. This raises the
possibility that next-generation ALK inhibitors may control disease in
the CNS, which is among the most common sites of relapse among
patients undergoing treatment with crizotinib. The mechanisms of
crizotinib resistance for responders versus nonresponders to second-
generation ALK TKIs have not been reported. Nevertheless, these
encouraging early results suggest that use of more potent and/or
structurally distinct ALK TKIs may be a promising strategy.

Combinatorial Strategies

The diversity of resistance mechanisms in NSCLC provides a
rationale for combinatorial approaches. Such strategies commonly
aim to inhibit the primary oncogene in addition to compensatory
signaling pathways. One such approach in EGFR-mutant NSCLC has
been to use dual MET and EGFR TKIs in those patients with MET
amplification.35,136 Similar combination strategies may have a role in
ALK-positive NSCLC. As detailed earlier, KIT gene amplification and
EGFR activation are possible mediators of crizotinib resistance. Given
the availability of KIT and EGFR inhibitors already in clinical practice,
KIT and EGFR may be effective targets for combination therapy.
Indeed, crizotinib in combination with KIT inhibitors60 or EGFR
inhibitors59,60,86 demonstrated activity in cell lines with upregulation
of each respective kinase.

Combination strategies may also be considered when resistance
arises through secondary mutations in the primary oncogene. In
transgenic mouse models harboring EGFR T790M mutations, con-
current administration of the irreversible EGFR TKI afatinib and the
EGFR monoclonal antibody cetuximab resulted in dramatic tumor
shrinkage.137 In a phase I/II trial of this combination, responses were
observed in 40% of patients with EGFR TKI resistance.138 Common

Table 3. Ongoing Trials of Next-Generation ALK Inhibitors or ALK Inhibitor Combinations

Compound(s) Company
NCT

Identifier Description Reference

AP26113 Ariad 01449461 Phase I/II study of AP26113 in crizotinib-naïve and crizotinib-resistant, ALK-positive patients. 132
ASP3026 Astellas 01401504 Phase I trial of ASP3026 in patients with solid tumors. 133
CH5424802 Chugai 01588028 Phase I/II study of CH5424802 in crizotinib-naïve and crizotinib-resistant, ALK-positive

patients.
135

LDK378 Novartis 01283516 Phase I trial of LDK378 in crizotinib-naïve and crizotinib-resistant, ALK-positive patients. 131
01685138 Phase II trial of LDK378 in crizotinib-naïve, ALK-positive patients.
01685060 Phase II trial of LDK378 in ALK-positive patients previously treated with crizotinib and

chemotherapy.
X-396 Xcovery 01625234 Phase I study of X-396 in patients with solid tumors, including ALK-positive patients treated

with crizotinib or other second-generation ALK TKIs.
NA

Crizotinib � STA-9090 Pfizer/Synta 01579994 Phase I/II trial of combination crizotinib and STA-9090 (HSP90 inhibitor) in crizotinib-naïve,
ALK-positive patients.

NA

Crizotinib � AT13387 Pfizer/Astex 01712217 Phase I/II trial of AT13387 (HSP90 inhibitor) alone or in combination with crizotinib in
ALK-positive patients.

NA

Abbreviations: ALK, anaplastic lymphoma kinase; HSP90, Heat Shock Protein 90; NA, not applicable; NCT, National Clinical Trial.

Gainor and Shaw

3992 © 2013 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY



adverse events were rash and diarrhea. The mechanisms underlying
disease activity from this combination remain unclear.

Additional combinations are currently being investigated. Given
the association between BIM levels and apoptotic response to TKIs,
proposed strategies include combinations of EGFR TKIs and modu-
lators of apoptosis.42-45 Still another approach to combat resistance in
NSCLC is to target the molecular chaperone heat shock protein 90
(HSP90) because certain oncogenic kinases rely on this protein for
proper folding. HSP90 inhibitors have demonstrated efficacy in
EGFR-mutant cell lines and murine models harboring secondary mu-
tations, including T790M.139 Clinical studies using HSP90 inhibitors
in patients with EGFR TKI resistance are ongoing, but responses have
been reported.140 Preclinical and early clinical findings suggest
that HSP90 inhibitors may also have activity in ALK-positive
patients.60,80,140-143 HSP90 inhibitors may therefore be attractive op-
tions for use alone or in combination with TKIs in the management
of resistance.

In summary, although kinase-directed therapies have reshaped
treatment approaches in oncogene-driven NSCLC, these therapies
have been universally limited by the development of resistance. It is
therefore vital to develop new paradigms for understanding the mech-
anisms driving TKI resistance. EGFR-mutant and ALK-rearranged
lung cancers offer instructive conceptual frameworks. Both highlight
common principles of resistance, such as the development of second-
ary mutations in the target kinase, target gene amplification, and
activation of bypass tracts. However, experiences in both malignancies
also demonstrate the complexity, heterogeneity, and dynamic nature
of resistance, suggesting that resistance will need to be approached on

a truly “personalized” basis. Although future directions include devel-
opment of noninvasive genotyping tools, the dynamic nature of resis-
tance highlights the current importance of serial biopsies at the time of
disease progression. Such reassessments of the changing molecular
profiles of tumors may influence the development of novel therapeu-
tic strategies and inform rational trial design.
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