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Since proteins carry out their functions through interactions with other molecules, accurately identifying the protein-ligand binding
site plays an important role in protein functional annotation and rational drug discovery. In the past two decades, a lot of algorithms
were present to predict the protein-ligand binding site. In this paper, we introduce statistical depth function to define negative
samples and propose an SVM-based method which integrates sequence and structural information to predict binding site. The
results show that the present method performs better than the existent ones. The accuracy, sensitivity, and specificity on training
set are 77.55%, 56.15%, and 87.96%, respectively; on the independent test set, the accuracy, sensitivity, and specificity are 80.36%,

53.53%, and 92.38%, respectively.

1. Introduction

With the development of the technology to solve the protein
structures, the rate of deposition of protein structure in the
PDB [1] grows very fast. Unfortunately, there are still a lot of
resolved proteins with unknown function. For the proteins
always carry out their functions through interactions with
other molecules, such as other proteins, peptides, nucleotides,
compounds, and so forth, identifying the residues involved
in these interactions is an important step towards character-
izing protein function. The protein functional sites consist
of various types of binding site including protein-ligand
binding site, protein-protein binding site, and protein-DNA
binding site. Since the ligands (here we refer to small organic
compounds as ligands) constitute most of the drugs approved
by FDA [2], the prediction of protein-ligand binding site also
plays an important role in rational drug discovery. Therefore,
we focus on the protein-ligand binding site in this study.

In the past 15 years, many methods were developed to pre-
dict protein-ligand binding sites. There are mainly two type of
methods, geometry- and energy-based methods. The energy-
based methods identify the binding site using model of

energetics [3-6], such as PocketFinder [5] and Q-SiteFinder
[6]. Most of the algorithms are based on geometry, for the
binding sites always locate on the concave surface, which likes
a pocket or a cleft. Actually, many methods were proposed to
detect the pocket on protein surface using geometric criteria,
and the pocket with largest volume is often returned as
prediction of binding surface. POCKET [7] and Ligsite [8]
map the entire protein structure to 3D grid and cluster the
grids with special event, like protein-solvent-protein event
or surface-solvent-surface event. Surfnet [9] places empty
spheres which separate any two atoms of protein, and cluster
these spheres to describe the pocket. PASS [10] uses sphere
probes to fill the cavities layer by layer and detect the
pocket. CASTp [11] applies the alpha shape theory [12] from
computational geometry to detect and measure the pockets.
The approaches mentioned above often use pure geometric
criteria without additional information like conservation or
physic-chemical information. Ligsitecsc [13], ConSurf [14],
and ConCavity [15] made a big progress after combining the
evolutionary conservation to pocket detections.

Besides methods based on geometry or energy,
researchers also developed algorithms based on machine
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learning model for functional sites prediction. Zhang et al.
[16] predict catalytic site using SVM based on sequence infor-
mation. Ansari and Raghava [17] identify the NAD interact-
ing residues in proteins using SVM. Cheng et al. [18] also use
SVMs to predict RNA-binding sites of proteins. Ofran and
Rost [19] use neural networks to identify the protein-protein
interaction sites. In contrast to the geometry- or energy-
based algorithm, the prediction made by machine learning
always employed only sequence information and a few
structural information like content of secondary structure.
Our study in this paper has two motivations. First,
although existent geometry-based methods provided consid-
erable accurate prediction of binding site, improvement could
be made by integrating other information, such as evolution-
ary conservation. Many pure geometry-based methods only
return the largest pocket, which is not always true for ligand-
binding pocket. Ligsitecsc and ConSurf rerank the pockets
by conservation and perform better than previous methods,
which rank the pockets by volume. It implies that additional
information should be took into account to bind site predic-
tion. On the other hand, machine learning based approaches
only focus on sequence information. Here we want to build a
method based on comprehensive features which are available
and useful for identifying binding site. Not only sequence
information but also structural information will be combined
together. Second, it is inherently difficult to define negative
samples no matter which method employed. It is easy to
define positive samples from the interactions of protein-
ligand complexes which are experimentally approved. Not all
interactions are known, so it is hard to say which residue
cannot bind ligands. In this paper, we introduce statistical
depth function (details in Section 2) to define the negative
samples. The idea is from intuition that binding residues are
always locate on concave protein surface and the residues on
convex surface are unlikely (not impossible) to bind ligands.
In this paper we present a novel method base on SVM
model integrating both sequence and structural information
to predict protein-ligand binding site. To test and validate
our method, a benchmark dataset including 373 complexes is
built from PDBbind [20]. The validation on the independent
test set shows that the accuracy of our method is about
80.36%. For the top 3 pockets provided by Ligsitecsc and
CASTp, we rerank them according to our prediction. Then
topl success rate is improved from 41.6% to 75.3% (for
Ligsitecsc) and from 61.0% to 77.9% (for CASTp), respectively.

2. Material and Methods

2.1. Dataset. 'The PDBbind [20] database provides a collec-
tion of experimentally measured binding affinity data exclu-
sively for the biomolecular complexes available in the PDB.
We select the “refined set” in PDBbind, which is compiled to
provide a high quality set of protein-small ligand complexes.
There are 1741 entries in the “refined set” of PDBbind.
After removing the redundancy complexes with more than
30% sequence similarity, 373 nonredundant complexes are
remained as our dataset.

We divided these 373 entries into two datasets randomly,
one is training set and the other is test set. The training
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set consists of 296 complexes, and the test set contains
77 complexes. The training set is divided into five subsets
(each one has about 60 proteins) randomly for 5-fold cross-
validation. The PDB ids of the training set and test set are
shown in Support Information STable 1, available online at
http://dx.doi.org/10.1155/2013/409658.

2.2. Statistical Depth Functions. We employ the statistical
depth function to measure the depth of the residue on
the protein surface. The statistical depth function gives the
residues in the pocket deeper depth values; and for the
residues on convex protein surface, it gives them lower depth
values. Statistical depth functions assign a point its degree of
centrality with respect to a dataset. They are “order statistics”
in higher dimension space (>2). In statistics, statistical depth
functions have become increasingly pursued as a useful
tool in nonparametric inference for multivariate data. The
statistical depth functions have been used to measure the
residue depth and analyze the protein structure. There are
several statistical depth functions to measure the degree of
centrality of a point. In this study, we use half-space depth
function to measure the depth of the residues because the
concept and the definition of the half-space depth are simple
and easy to implement.

Half-Space Depth. Tukey [21] introduced the half-space depth
to order the high dimensional data. The half depth (HD) of a
point x in R? with respect to a probability measure P on R
is defined as the minimum probability mass carried by any
closed half space containing x; that is,

HD (x, P) = inf {P (H): H is a closed half space, x € H},

x € R%.

@

For a probability measure P, the half-space depth of any
point in R? with respect to P can be defined. For a dataset,
such as all the atoms in a protein, we can use the empirical dis-
tribution to estimate the probability P(H). We consider every
point in dataset is equiprobable; then P(H) = Y’ P(x), x in H,
where P(x) = 1/n,n is the number of the points in dataset.
For simplifying, we define P(x) = 1; then P(H) represents
the number of the points in H. In addition, we define H by an
open half space. Thus, the depth of the points at the boundary
of dataset is zero and the point which has the maximal
depth value is the center of the dataset. Figure 1 shows some
examples in 1 and 2 dimensions. Figure 2 shows the depth
function is applied to measure the depth of protein atoms.

Depth and Relative Accessible Surface Area (RSA). According
to the definition of half-space depth above, the depth values of
buried residues are always greater than zero. And the residues
with small depth values locate on the convex of the protein.
It is notable that not all the residues with depth values greater
than zero are buried, that is, the depth values of the points b, c,
d, and e in Figure 1(d). These residues locate in the “pockets”
on the protein surface and their RSAs are greater than 0, too.
On the other hand, the residues the depth values of which are
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FIGURE 1: An illustration of the concept of half-space depth for 1- and 2-dimensional datasets.

FIGURE 2: An illustration of the half-space depth function. The
protein surface (PDBID: 10 gs) is colored by the statistical depth
value of the residues. The color is gradually change from blue to red
according to the depth values of the residues. The deepest residues
are red, and the convex residues are blue. All the figures of the
protein surface are created by Pymol.

zero and RSAs of which are greater than zero will locate on the
protein surface and will not locate in “pockets” on the protein
surface. In addition, using both depth and RSA, the residues

in the pockets can be found easily, too. Thus, the residues on
the protein surface can be divided into two types according to
the RSA and depth value. The first class includes the residues
whose RSAs are greater than 0 and depths close to 0, which
means these residues locate on the convex of the protein. And
the second class includes the residues whose RSAs and depths
are both greater than 0, which means the residues in this class
locate in pockets on the protein surface.

2.3. Sample Selection. Firstly, we introduce some concepts to
define the samples. We remove the buried residues and only
consider the residues on the protein surface. The residue is
considered as being on the surface if its RSA is greater than
10%. For a given residue on the surface, its neighbors are the
residues on the surface with distance to the given residue
<10 angstroms. We call a residue on the protein surface and
its neighbors together a patch. As a result, each residue on
protein surface has a patch. A sample just refers to a residue
on protein surface or its corresponding patch. In this study,
we have three types of samples: positive samples, negative
samples, and the others (we call this kind of samples as not
positive and not negative samples, NP & NN for short).

For each residue on the surface, if the distance between
any nonhydrogen atom of the residue and any atom of the
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FIGURE 3: The framework of samples selection.

ligand is less than 7 angstroms, this residue is kept as a positive
sample candidate; otherwise, the residue is kept as a negative
sample candidate. For any positive sample candidate, if more
than 30% neighbors of this residue are the positive sample
candidates, the sample is considered as a positive sample;
otherwise, it is considered as a NP & NN sample.

The negative samples are not easy to define like posi-
tive samples. The proteins of complexes might bind some
ligands somewhere and we cannot distinguish the potential
functional binding residues from the others. We consider the
fact that the residues which locate on the protein surface and
not in a “pocket” or “cavity” are hard to bind a ligand. So
the residues on the convex protein surface are regarded as
negative samples in our study. Here we use statistical depth
function (which is defined above) to distinguish whether the
residue is or is not on the convex surface. Firstly, we remove
the residues with half-space depth greater than 5 from the
negative sample candidates. The negative sample candidate
is defined as negative sample if the average depth value of
its neighbors is less than 8 and the number of its neighbors
is greater than 5. Figure 3 shows the framework to select the
samples.

Here, the standard of negative samples is a little strict.
There are two reasons. One is that we want to make sure our
negative samples would not bind to a ligand. The other reason
is that the definition can balance the positive samples and
negative samples to avoid the training bias. After the samples
selection, the radio of positive samples to negative samples is
about 1:2 in the training set and 1: 3 in the test set.

2.4. Feature Design. There are totally 330 features for each
sample. These features include two-aspect information of
protein: global information and local information. We
explain every feature as follows.

Global Information. The global information of the sample
includes the length of the protein sequence, the distance to P

terminal, the distance to N terminal, the residue components,
and the global secondary structure content. The secondary
structures of proteins are calculated by DSSP [22]. We use a
four-dimensional binary vector to represent the length and
the two distances, which are discredited in four intervals [0,
60), [60,120), [120, 240), and >240. A 20-dimensional vector
and a 3-dimensional vector are used for residue components
and secondary structure content, respectively. So we have
4 % 3 + 20 + 3 = 35 features of global information.

Local Information. The local information of the sample comes
from two aspects: sequence information and structure infor-
mation. A sliding window is used for the residue to describe
the properties of the neighbors on the protein sequence. Each
position in the sliding window includes 30 features. The first
20 features are from position (PSSM-specific scoring matrix)
and the 2Ith is conservation score. The 22th-24th are the
3-dimensional binary vector for the secondary structure of
the residue. Then the 25th-29th are positive charge, negative
charge, PI value, polarity, and hydrophobicity. The last one
is an indicator. If the data do not exist (the side is out of
window), all the features are zero and the last feature is
assigned 1. We use a window with length 9; thus we have
30 * 9 = 270 features about sequence information for the
central residue in the sliding window.

The structure information of the sample comes from the
patch of this sample. The patch includes the central residue
and its neighbors. Because the number of neighbors is not
equal, it is impossible to describe every neighbor as the
features. As a simplification, we use the minimum, maximum,
and the average of the patch properties, which include posi-
tive charge, negative charge, PI vale, polarity, hydrophobicity,
hydrogen bond tendency, the conservation score, and the
secondary structure content. Besides the hydrogen bond
tendency, which we use four features to describe (minimum,
maximum, average, and the value of the central residue), the
secondary structure content needs 3 features to describe and
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FIGURE 4: Framework of the proposed prediction system.

other properties also have three values (minimum, maximum
and average of the patch); the total features of local structure
information are 4 + 6 * 3 + 3 = 25.

Totally, we have 35 + 270 + 25 = 330 features for each
sample.

The charges, polarity, and hydrophobicity of amino acid
are extracted from AAlndex [23] database. Sarkhel and Desir-
aju [24] calculated the frequency distribution of hydrogen
bonds for amino acids which act as donors or acceptors
between proteins and ligands. We use these frequencies as
hydrogen bond tendency. The conservation score of the
residue is calculated using Shannon Entropy from PSI-blast
[25] profile.

2.5. Perform the Training and Prediction. Aswe mentioned in
dataset subsection, we divide the dataset into training set and
test set. Every feature is normalized to [0, 1]. Using Libsvm
[26] package and selecting RBF (Radial Basis Function) as the
kernel function of SVM, we select 30 proteins from training
set to train the SVM parameters using a grid method. Then
we train the SVM with the best parameters on training set
and predict the functional surfaces on test set. On the training
set, we do 5-fold cross-validation to train our model. Figure
4 shows the framework of the proposed prediction system.

3. Results and Discussions

3.1. Binding Sites Predictions. Using Libsvm package and
selecting RBF as the kernel function of SVM, we train
SVM model based on the sequence and structural features
mentioned above. Totally, we get 15385 positive samples and
31663 negative samples based on the training set (the ratio
between positive samples and negative samples is about 1: 2).
Similarly, we get 3510 positive samples and 12201 negative
samples based on the test set (the ratio is about 1: 3).

The accuracy, precision, sensitivity, specificity, and MCC
are used to validate the performance of our method. Then

these five indices of training set and the test set are shown
in Table 1. We do 5-fold cross-validation to avoid overfitting
problem. And the accuracy of the train set is shown similar
to the accuracy of the test set. It can also be observed in the
case of precision, sensitivity, specificity, and MCC.

CASTp returns the exact binding residues and the
residues forming the pocket mouth. We can compare the
binding prediction between our method and CASTp directly,
which is shown in Table 1. Our method clearly outperforms
CASTp.

Unfortunately different approaches always return the
predictions in different ways. For example, Ligsitecsc only
returns the geometry center coordinates of the pocket. To
compare our method with other algorithms, we have to
evaluate them using the same standards. Therefore, we define
the residues close enough to the pocket center as the binding
site/binding residues returned by Ligsitecsc. The distance
threshold to pocket center ranges from 1A to 75 A, because
the binding residues will not increase after the threshold
greater than 75 A. We can also obtain the ROC curve of
the Ligsitecsc (Figure 5) by this way. Since the SVM model
returns a real value range from 0 to 1, the ROC curve of
our method is also shown in Figure 5. From the comparison
of ROC curves, our method performs much better than
Ligsitecsc. The AUC value of our method is 0.71 greater than
0.63 which is the AUC vale of Ligsitecsc.

3.2. Rerank the Pockets. Although our method can identify
the binding sites more accurately than CASTp and Ligsitecsc,
we cannot provide a pocket-level comparison. Unlike CASTp
and Ligsitecsc, we do not detect pocket. However, we can
also apply our model in the postprocess of geometry-based
models to improve the rank of the pockets. The motivation is
that using conservation score not pocket volume has made a
big progress in the search of pocket.

We focus on the top 3 pockets obtained from CASTp
and Ligsitecsc. For Ligsitecsc, it only gives three pockets per
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TaBLE 1: The values of five indices on the training set and test set for well-trained SVM.
Dataset Accuracy Precision Sensitivity Specificity MCC
Train set 77.55% 69.38% 56.15% 87.96% 49.68%
Test set (our method) 80.36% 75.88% 53.53% 92.38% 50.85%
Test set (CASTp) 56.49% 20.81% 41.67% 60.21% 2.0%
TABLE 2: Top n success rates for test set.
Methods Top 1 Top 2 Top 3
Ligsitecsc 40.3% (31/77) 71.4% (55/77) 83.1% (64/77)
Ligsite + our method 75.3% (58/77) 81.8% (63/77) 83.1% (64/77)
CAStp 60.0% (47/77) 88.3% (68/77) 92.2% (71/77)
CAStp + our method 77.9% (60/77) 90.9% (70/77) 92.2% (71/77)
1.0 the four methods are the same according to the definition,
but the top 1 success rates are totally different. The methods
combined with our model gain a much improvement from
0.8 — the CASTp or Ligsitecsc. It implies our method included the
complementary information for CASTp and Ligsitecsc. And
the model can be applied in other geometry-based pocket
0.6 H detection methods.
o
Ay
F .
04 _ 4. Conclusion
In this paper, we introduce statistical depth function to define
the negative sample of the protein-ligand binding site. The
0.2 . . .
further analysis shows negative sample defined by this way
is reasonable and helpful for the model training (shown in
0.0 4 Support Information Sections 2-4). Then we propose an
00 02 04 06 08 Lo SVM model including sequence and structural information;
FPR the results show the method significantly outperforms the
existing methods based on pure geometry or only combining
—— Our method . . .
Liosi evolutionary conservation. Our method can also provide the
—— Ligsitecsc

FIGURE 5: The ROC curves of our method and Ligsitecsc. The blue
line is ROC curve of Ligsitecsc, and the red line is of our method.

protein and ranks them using the conservation score. The top
1 pocket in Ligsitecsc means the most conservative pocket
in three of them. The CASTp provides more pockets than
Ligsitecsc, but the pockets are not ranked and many of them
are too small to bind ligand. We rank them using volume and
select the three largest ones as the top 3 pockets returned
by CASTp. The pocket from prediction is considered as a
functional or binding pocket when the distance between the
pocket geometry center and any atom of ligands is less than
8 A. We define the top n (n = 1,2,3) success rates as the
number of functional pockets in top n divided by the number
of proteins. On our test set, we have 77 proteins and 231
prediction pockets in total.

Our method is combined to pocket detection algorithm
by a simple way. For each pocket from prediction, we only
count the residues which are predicted as binding sites by our
SVM model. Then this number is used to rank the pocket.
The result is shown in Table 2. Top 3 success rates among

complementary information for geometry-based methods
such as CASTp and Ligsitecsc in the postprocess.
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