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Quantifying community assembly processes and
identifying features that impose them
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Spatial turnover in the composition of biological communities is governed by (ecological) Drift,
Selection and Dispersal. Commonly applied statistical tools cannot quantitatively estimate these
processes, nor identify abiotic features that impose these processes. For interrogation of
subsurface microbial communities distributed across two geologically distinct formations of the
unconfined aquifer underlying the Hanford Site in southeastern Washington State, we developed an
analytical framework that advances ecological understanding in two primary ways. First, we
quantitatively estimate influences of Drift, Selection and Dispersal. Second, ecological patterns are
used to characterize measured and unmeasured abiotic variables that impose Selection or that
result in low levels of Dispersal. We find that (i) Drift alone consistently governs B25% of spatial
turnover in community composition; (ii) in deeper, finer-grained sediments, Selection is strong
(governing B60% of turnover), being imposed by an unmeasured but spatially structured
environmental variable; (iii) in shallower, coarser-grained sediments, Selection is weaker (governing
B30% of turnover), being imposed by vertically and horizontally structured hydrological factors;
(iv) low levels of Dispersal can govern nearly 30% of turnover and be caused primarily by spatial
isolation resulting from limited exchange between finer and coarser-grain sediments; and (v) highly
permeable sediments are associated with high levels of Dispersal that homogenize community
composition and govern over 20% of turnover. We further show that our framework provides
inferences that cannot be achieved using preexisting approaches, and suggest that their broad
application will facilitate a unified understanding of microbial communities.
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Introduction

‘Actual ecological communities are undoubtedly
governed by both niche-assembly and dispersal-
assembly rules, along with ecological drift, but the
important question is: what is their relative quanti-
tative importance?’ (Hubbell, 2001)

Across microbial community ecology, there are
many examples of niche-based processes strongly
influencing community composition (for example,
Gilbert et al., 2012), whereas other studies support
neutral or stochastic community assembly (for
example, Ofiteru et al., 2010). Clearly, knowledge
gained from these and many conceptually similar

studies is vital for understanding each interrogated
system. Less clear is how to build from this body of
work to achieve a more unified understanding of
processes that govern the composition of microbial
communities.

We suggest one path forward is to work towards
realizing Hubbell’s (2001) vision, as summarized
above, such that relative process influences can be
quantified and compared across microbial systems.
To do so, we work within Vellend’s (2010) con-
ceptual framework, which is focused on the influ-
ences of Selection, Dispersal, Drift and Speciation.
Selection is the result of biotic and abiotic pressures
causing variation in reproductive success across
individuals and species; Dispersal governs the
degree to which individuals move among commu-
nities; Drift results from population sizes fluctuating
due to chance events; and Speciation can cause
differences in species richness among sets
of communities that do not exchange individuals
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through dispersal. On the other hand, Speciation
should have little influence within a set of commu-
nities where individuals disperse among local
communities, known as a ‘metacommunity’
(Leibold et al., 2004). Turnover in community
composition within a metacommunity is therefore
governed by a combination of Selection, Dispersal
and Drift.

Within a metacommunity, the magnitude of Dis-
persal can range from very limited to very high
levels of exchange between communities. Low levels
of Dispersal constrain the exchange of organisms
among local communities, which can lead to spatial
turnover in composition; we refer to this scenario as
‘Dispersal Limitation.’ Dispersal Limitation alone,
however, is not enough to cause spatial turnover in
composition. Limited exchange of organisms among
local communities allows the composition of ecolo-
gical communities to diverge through stochastic
changes in local population sizes. That is, Dispersal
Limitation allows Drift to cause much greater spatial
turnover in community composition than when
Drift acts alone (Hubbell, 2001). On the other hand,
high levels of Dispersal can homogenize community
composition, thereby causing little turnover in
composition (Mouquet and Loreau, 2003; Leibold
et al., 2004); we refer to this scenario as ‘Homo-
genizing Dispersal.’ We note that our concept of
Homogenizing Dispersal is similar to ‘mass effects’
and ‘source-sink dynamics’, but we avoid these
terms as they invoke additional assumptions and
processes (see Leibold et al., 2004); Homogenizing
Dispersal simply indicates that dispersal is high
enough to cause low turnover by overwhelming
other processes.

Quantitatively estimating the influences of Selec-
tion, Dispersal Limitation acting in concert with
Drift, Drift acting alone and Homogenizing Dispersal
is fundamental to our understanding of ecological
systems. Such estimates have not, however, been
achieved. Instead, recent studies have made pro-
gress towards characterizing gradients in the influ-
ence of Selection (Chase, 2010; Kraft et al., 2011)
and testing ecological neutral theory (Ofiteru et al.,
2010; Ricklefs and Renner, 2012). These studies
provide important insights, but continued progress
requires that we characterize how multiple pro-
cesses simultaneously govern ecological systems
(Gravel et al., 2006; Adler et al., 2007; Vellend,
2010; Stegen and Hurlbert, 2011).

Previous work attempts to characterize the simul-
taneous influences of ecological processes by parti-
tioning variation in community composition into a
fraction explained by environmental variables and a
fraction explained by spatial variables (Tuomisto
et al., 2003; Cottenie, 2005; Legendre et al., 2009).
However, this technique cannot be used to infer the
influences of Selection, Dispersal or Drift (Legendre
et al., 2009; Gilbert and Bennett, 2010; Jacobson and
Peres-Neto, 2010; Smith and Lundholm, 2010;
Anderson et al., 2011; Stegen and Hurlbert, 2011).

One limitation of standard analyses that relate
ecological community composition to environmental
and/or spatial variables is that one must decide a
priori which variables are potentially associated
with Selection and which potentially result in
Dispersal Limitation. For example, we may assume
that environmental changes associated with increas-
ing subsurface depth impose Selection on microbial
communities. However, there may be unknown
hydrological barriers that strongly influence compo-
sition by spatially isolating communities. The
framework developed here distinguishes between
such scenarios by reversing the standard direction of
inference. Instead of making a priori decisions, we
use ecological patterns to identify which environ-
mental and spatial aspects of our study system
impose Selection and which impose Dispersal
Limitation.

Our framework relies in part on null models (that
is, randomizations) (for example, Chase et al., 2011;
Stegen et al., 2012) to identify features that impose
Selection or Dispersal Limitation and to quantita-
tively estimate the influences of Selection, Dispersal
Limitation acting alongside Drift, Drift acting alone
and Homogenizing Dispersal. Our framework char-
acterizes the spatial structure of both measured and
unmeasured environmental variables that impose
Selection. In turn, abiotic features that impose
Selection can be rigorously distinguished from those
that impose Dispersal Limitation. This is true even if
key features have not been measured in the field and
even if measured environmental variables are
related to unknown dispersal barriers, as in the
example above.

We apply our analytical framework to subsurface
sediments collected from both the Hanford and
Ringold geological formations within an unconfined
aquifer in southeastern Washington State. These two
formations have distinct physical structure, miner-
alogical composition and geological history
(Figure 1; Bjornstad et al., 2009). By comparing
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Figure 1 Sampling sites within the Hanford Integrated Field-
Scale Research Challenge field site, located B250 m from the
Columbia River in the Hanford Site 300 area. Gray circles show
two-dimensional distribution of sampling locations; the max-
imum horizontal distance between any two communities is
B53 m. The two geological formations (Hanford and Ringold)
are shown with horizontal and vertical dashes, respectively. Our
formation-specific analyses examine communities across the
specific vertical ranges shown, whereas the ‘full-system’ analyses
include additional communities in the middle section of the
Hanford.
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inferences across formations and spatial scales, we
link ecological processes to geological processes that
govern the structure of physical environments.

Materials and methods

We study a bacterial metacommunity associated
with subsurface sediments within the unconfined
aquifer B250 m from the Columbia River in the 300
Area of the Hanford Site in Richland, WA (Figure 1).
Our system is characterized by two geological
formations; the saturated zone of the coarse-grained
Hanford formation ranges from approximately 10 m
to 17 m below ground surface and below is the
Ringold with finer-grained sediments (Bjornstad
et al., 2009). DNA was extracted from sediments as
in Lin et al. (2012a), and the V1–V2 region of the
16S rRNA gene was PCR amplified with primers
27F and 338R before pyrosequencing as in Lin et al.
(2012b), and processed using QIIME (Caporaso
et al., 2010) whereby sequences were clustered as
operational taxonomic units (OTUs) defined by
97% sequence similarity (see Supplementary
Material). All statistical analyses were carried out
in R (R-Core-Team, 2012). Environmental data
included a sample’s elevation, horizontal distance
from the Columbia River, the elevation of the top of
the Ringold formation at its geographic location
(Bjornstad et al., 2009) and its percent mud (see
Supplementary Material).

Analytical framework development

Turnover in phylogenetic community composition.
To infer ecological processes, our analytical frame-
work relies, in part, on phylogenetic turnover,
which is the evolutionary distance separating OTUs
found in one community from OTUs found in a
second community (Graham and Fine, 2008; Stegen
et al., 2012). Using phylogenetic turnover to infer
ecological processes requires ‘phylogenetic signal’
in OTUs’ optimal habitat conditions (Kraft et al.,
2007; Cavender-Bares et al., 2009; Fine and Kembel,
2011), whereby habitat preferences of closely related
taxa are more similar to each other than to the
habitat preferences of distant relatives (Losos, 2008).
We tested for phylogenetic signal to determine
whether we could use phylogenetic turnover to
make ecological inferences in our system, and to
determine the most appropriate metric of phyloge-
netic turnover.

We found significant phylogenetic signal, but only
across relatively short phylogenetic distances
(Figure 2), consistent with previous work
(Andersson et al., 2010; Diniz-Filho et al., 2010;
Hardy et al., 2012; Stegen et al., 2012). It is therefore
most appropriate to quantify phylogenetic turnover
among closest relatives (Stegen et al., 2012). For this
reason, we use the between-community version of

the (abundance-weighted) b-mean-nearest taxon
distance (bMNTD) (Fine and Kembel, 2011; Webb
et al., 2011). bMNTD quantifies the phylogenetic
distance between each OTU in one community (k)
and its closest relative in a second community (m):

bMNTD¼ 0:5
Xnk

ik ¼1

fik min Dik jm

� �
þ
Xnm

im ¼1

fimmin Dimjk

� �" #
;

where fik is the relative abundance of OTU i in
community k, nk is the number of OTUs in k and
min ðDik jmÞ is the minimum phylogenetic distance
between OTU i in community k and all OTUs j in
community m. bMNTD was calculated using R
function ‘comdistnt’ (abundance.weighted¼TRUE;
package ‘picante’).

bMNTD can be less than, greater than or equal to
the degree of turnover expected when Selection
does not influence turnover in community composi-
tion. Lower than expected bMNTD should result
from environmental conditions constraining com-
munity composition by imposing Selection on
OTUs. Greater than expected bMNTD should be
due to divergent environmental conditions causing
each community to be composed of an ecologically
distinct set of OTUs.

These expectations assume at least a minor degree
of organismal exchange among local communities
through deep evolutionary time so that individual
communities do not evolve evolutionarily distinct
assemblages in situ. This assumption is likely
upheld in our system, which is within a single
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Figure 2 Phylogenetic Mantel correlogram showing significant
phylogenetic signal across short phylogenetic distances. Solid
and open symbols denote significant and nonsignificant correla-
tions, respectively, relating between-OTU niche differences to
between-OTU phylogenetic distances across a given phylogenetic
distance. An optimal elevation and an optimal percent mud were
estimated for each species; these values were taken to be estimates
of OTU environmental niches across both abiotic axes. Signifi-
cantly positive correlations indicate that ecological niche dis-
tance between OTUs increases with their phylogenetic distance,
but only across the phylogenetic distance class being evaluated
(that is, there is phylogenetic signal in OTU environmental
niches).
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unconfined aquifer (maximum of 54 m separating
any two communities) through which groundwater
continuously flows and into which the Columbia
River annually intrudes (Peterson et al., 2008; Lin
et al., 2012b). The degree to which bMNTD deviates
from a null model expectation therefore measures
the degree to which community composition is
limited by Selection on OTU ecological niches.

To quantify the degree to which bMNTD deviates
from a null model expectation, we used a randomi-
zation that shuffled species names and abundances
across the tips of the phylogeny (see Supplementary
Material for phylogeny inference methods). After
shuffling, bMNTD was recalculated to provide a null
value, and repeating the randomization 999 times
provided a null distribution. The difference between
observed bMNTD and the mean of the null distribu-
tion was measured in units of s.d. (of the null
distribution) and is referred to as the b-nearest taxon
index (bNTI). bNTI values o� 2 or 4þ 2 indicate
significantly less than or greater than expected
phylogenetic turnover, respectively (see also
Stegen et al., 2012).

Turnover in OTU composition. Most metrics of
turnover in OTU composition provide no informa-
tion on whether the observed degree of turnover
deviates from that expected if community assembly
was governed primarily by Drift. One exception is
Raup–Crick (Chase et al., 2011). Raup–Crick does
not account for OTU relative abundances, however,
which carry information useful for understanding
ecological processes (Anderson et al., 2011). Here
we extend Raup–Crick to consider OTU relative
abundances by modifying the procedure of Chase
et al. (2011). In short, local communities were
assembled probabilistically, where the probability
of observing an individual of a given OTU was
related to the number of communities occupied by
the OTU and the OTU’s relative abundance across
all sampled communities. Observed OTU richness
and number of individuals were maintained for each
community (see Supplementary Material). For a
given pair of communities, each was probabilistically
assembled 999 times. For each iteration Bray–Curtis
dissimilarity was used to quantify compositional
turnover, thereby generating a null distribution of
Bray–Curtis values. Similar to Chase et al. (2011),
we standardize the deviation between empirically
observed Bray–Curtis and the null distribution to
vary between � 1 and þ 1, and refer to the resulting
metric as RCbray.

We interpret RCbray values 4þ 0.95 or o� 0.95 as
significant departures from the degree of turnover
expected when Drift acts alone (Chase et al., 2011).
In turn, |RCbray|40.95 indicates that turnover in
community composition is governed primarily by
Selection, Dispersal Limitation acting in concert
with Drift or Homogenizing Dispersal; RCbray values
between � 0.95 and þ 0.95 are consistent with Drift
acting alone (Chase et al., 2011).

We suggest that Dispersal Limitation acting alone
should not lead to a significant RCbray value. For
example, consider one homogenous community that
is split into two communities with no dispersal
between them. For compositional differences to
emerge, OTU-specific birth and death rates must
differ between the communities such that OTU
population sizes differ between the communities. In
this case, it is unclear how Dispersal Limitation
alone could cause between-community differences
in OTU birth and death rates. Drift, however, results
from stochastic differences in birth and death rates.
If one allows for Drift to occur alongside Dispersal
Limitation, pairwise difference in community com-
position should grow through time and eventually
lead to RCbray4þ 0.95.

On the other hand, Homogenizing Dispersal may
cause less than expected turnover in OTU composi-
tion. The expected degree of turnover results from
stochastic assembly of local communities by draw-
ing individuals from the regional pool of OTUs (see
above). When dispersal between a pair of commu-
nities is very high, however, local community
assembly is not governed by the composition of
the regional pool. For example, take a community
that continuously sends large numbers of indivi-
duals to a second community. If Selection is
relatively weak, the composition of the second
community will be determined by the composition
of the first community, instead of being determined
by the regional pool. Such a scenario should lead to
less turnover than when both communities are
assembled from the regional pool; that is,
RCbrayo� 0.95.

Estimating influences of ecological processes. We
aim to quantitatively estimate the degree to which
spatial turnover in community composition is
influenced by Selection, Drift acting alone, Dispersal
Limitation acting in concert with Drift and Homo-
genizing Dispersal. To do so, we take advantage
of (i) assuming some dispersal among communities
across evolutionary time, non-random phylogenetic
turnover arises from Selection (Hardy, 2008) and
(ii) non-random turnover in OTU composition
can result from Selection or Dispersal Limitation
(Chase et al., 2011), or as discussed above,
from Homogenizing Dispersal. We note that
our framework assumes that all sources of error
have a roughly equivalent influence over the
quantitative estimates of each process, whereby
our estimates should be reasonably close to the true
values.

To estimate process influences, we follow a two-
step procedure (Figure 3). First, we quantified bNTI
for all pairwise community comparisons. As dis-
cussed above, a value of |bNTI|42 indicates that
observed turnover between a pair of communities is
governed primarily by Selection. In turn, the
influence of Selection across a set of local commu-
nities was estimated as the fraction of pairwise
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community comparisons with |bNTI|42. As a
corollary, pairwise comparisons with |bNTI|o2
should be governed by Drift acting alone, Dispersal
Limitation acting alongside Drift or Homogenizing
Dispersal.

The second step in our procedure quantified
RCbray for pairwise community comparisons that
were not governed by Selection (that is, those with
|bNTI|o2). Within this set, Dispersal Limitation
coupled with Drift should lead to greater than
expected turnover (RCbray4þ 0.95), whereas Homo-
genizing Dispersal should lead to less than expected
turnover (RCbrayo� 0.95). As such, we divided the
number of pairwise comparisons with |bNTI|o2
and RCbray4þ 0.95 by the total number of all
pairwise comparisons. The resulting fraction esti-
mates the influence of Dispersal Limitation acting in
concert with Drift. The fraction of all pairwise
comparisons with |bNTI|o2 and RCbrayo� 0.95
was taken as an estimate for the influence of
Homogenizing Dispersal. The fraction of all pair-
wise comparisons with |bNTI|o2 and
|RCbray|o0.95 estimates the influence of Drift
acting alone.

Combining spatial eigenvectors and measured abiotic
variables with model selection. In addition to
estimating influences of ecological processes, we

aim to characterize system features that impose
Selection and Dispersal Limitation. To this end, we
described spatial and environmental relationships
among local communities by combining spatial
eigenvector analysis with measured abiotic vari-
ables. Spatial eigenvectors describe spatial relation-
ships among communities across a range of spatial
scales; the first eigenvector breaks sampling loca-
tions into broadly distributed clusters, and subse-
quent eigenvectors characterize spatial relationships
at increasingly fine scales (Borcard and Legendre,
2002; Borcard et al., 2011; Heino et al., 2011).

For spatial eigenvector analyses, we used the R
function ‘pcnm’ within package ‘vegan’. The ‘pcnm’
function takes a spatial distance matrix as input.
For analyses within the Ringold and Hanford
formations, we used geographical locations (East-
ings and Northings, Supplementary Table S1) of
each well to build the distance matrix, thereby
describing spatial relationships in two dimensions.
For analyses across both formations (the ‘full
system’), we described spatial distances in three
dimensions due to increased vertical distances
among communities. These three-dimensional
Euclidean distances were used to define spatial
eigenvectors. Note that spatial eigenvector analysis
is robust in one, two or three dimensions (Borcard
and Legendre, 2002).

Figure 3 Flowchart summarizing procedure for estimating influences of ecological processes, broken into two major steps discussed
in the section ‘Estimating influences of ecological processes.’ First, the observed degree of phylogenetic turnover for each pairwise
community comparison was quantified (bMNTDobs). A randomization was then used to generate a null distribution of phylogenetic
turnover (bMNTDnull). The value of bNTI characterizes the magnitude of deviation between bMNTDobs and bMNTDnull. The fraction of
pairwise comparisons with significant bNTI values (|bNTI|42) is the estimated influence of Selection. As part of the second major step
in our procedure, pairwise comparisons with nonsignificant bNTI values were further evaluated by comparing observed Bray–Curtis
(BCobs) to Bray–Curtis expected under the randomization (BCnull). The value of Bray–Curtis-based Raup–Crick (RCbray) characterizes the
magnitude of deviation between BCobs and BCnull; a value of |RCbray|40.95 was considered significant. The number of pairwise
comparisons with RCbray4þ 0.95, the number with RCbrayo�0.95 and the number with |RCbray|o0.95 were each divided by the total
number of all pairwise comparisons; the resulting fractions estimate the influence of Dispersal Limitation combined with Drift,
Homogenizing Dispersal and Drift acting alone, respectively.
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Spatial eigenvectors only describe spatial relation-
ships among sampling locations. As such, some
eigenvectors may describe the spatial scales at
which dispersal operates, whereas others may be
related to the spatial structure of environmental
variables (Legendre et al., 2009). In addition to
spatial relationships we measured four abiotic
variables. However, these measured variables may
also simply describe spatial relationships among
communities. For example, horizontal distance from
the Columbia River may reflect spatial relationships
or may reflect different environmental conditions
related to spatially structured river water intrusion
(Lin et al., 2012b; Stegen et al., 2012). In addition,
measured abiotic variables may co-vary with each
other and/or with spatial eigenvectors.

To combine all variables and minimize co-varia-
tion, we combined measured abiotic variables with
spatial eigenvectors using principal components
analysis (PCA). The resulting PCA axes
(Supplementary Tables S2–S4) were used as inde-
pendent variables in a model-selection procedure
with either bNTI or RCbray as the dependent variable.
Note that three separate sets of PCA axes were
characterized: one for the Hanford formation, one for
the Ringold formation and one for the full system
(Hanford and Ringold formations combined). Labels
associated with Hanford formation PCA axes have
no relationship to, for example, labels of Ringold
formation axes.

To identify features of the system that impose
Selection or Dispersal Limitation, we fit statistical
models to bNTI and RCbray using distance-based
redundancy analysis (Legendre and Anderson,
1999) (R function ‘capscale’ within package ‘vegan’)
combined with a model-selection procedure.
Distance-based redundancy analysis takes positive,
pairwise community distances as input such that
bNTI and RCbray were each normalized to vary
between 0 and 1 before model selection; for each,
the absolute magnitude of the minimum (negative)
value was added to all values (making all X0), and
the resulting values were then divided by their
maximum (making all X0 and p1). We used
forward model selection (Blanchet et al., 2008)
where independent variable significance (a¼ 0.05)
was evaluated stepwise and the order of variable
evaluation was based on improvement in the
model’s adjusted R2. Model selection proceeded
until the next independent variable was nonsignifi-
cant as determined by 1000 permutations (R func-
tion ‘ordiR2step’ within package ‘vegan’). Separate
model-selection procedures were carried out for the
Hanford, the Ringold and the full system, and bNTI
and RCbray were evaluated separately.

The magnitude of bNTI is governed by the
influence of Selection relative to the influences of
Dispersal Limitation and Drift. Any PCA axes that
explain a significant fraction of variation in bNTI
should therefore reflect one or more environmental
variables that impose Selection. This is true even if a

significant PCA axis is unrelated to measured
abiotic variables.

If a given PCA axis is significant for bNTI but
measured abiotic variables do not load onto it, we
consider this PCA axis to be an unmeasured,
spatially structured environmental variable that
imposes Selection. If measured abiotic variables
load heavily onto a significant PCA axis, we
consider the axis to be a measured environmental
variable that imposes Selection. Furthermore, all
PCA axes nonsignificant for bNTI were considered
to primarily characterize spatial relationships
among communities. This is true even if measured
abiotic variables load heavily; measuring a given
abiotic variable does not indicate that the variable
imposes Selection.

Before RCbray model selection, we used the bNTI
model-selection results to characterize each PCA
axis as an unmeasured environmental variable, a
measured environmental variable or a spatial vari-
able. Following RCbray model selection, these vari-
able designations were used (in conjunction with
PCA loadings) to interpret the factors imposing
Selection or Dispersal Limitation. For example, if a
given variable (that is, PCA axis) was not related to
bNTI, it was concluded that this variable character-
ized spatial relationships among local communities.
If this same variable was significantly related to
RCbray values, it was identified as characterizing
features of the system that impose Dispersal Limita-
tion. To determine if any measured features impose
Dispersal Limitation, the PCA loadings on the
selected variable were examined.

Comparison of inferences with those from preexisting
approaches. We compared insights derived from
our analytical framework with those derived from a
preexisting approach (similar to, for example,
Legendre et al., 2009; Heino et al., 2011). To achieve
a direct comparison with our approach, we used the
same PCA axes with the same model-selection
procedure described above, but with Bray–Curtis
dissimilarity as the dependent variable.

Results and Discussion

Quantitative process estimates
Here we provide the first quantitative parsing of
ecological processes that influence community
assembly (Figure 4a). Across formations and spatial
scales, we find that B33–57% of turnover in
community composition is primarily due to Selec-
tion, B13–28% of turnover is primarily due to
Dispersal Limitation acting in concert with Drift,
B0–21% of turnover is primarily due to Homo-
genizing Dispersal and B22–29% of turnover is
primarily due to Drift acting alone (see Figure 4a for
specifics). Preexisting approaches provide no pro-
cess estimates (Figure 4b).
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Our quantitative results are consistent with
qualitative conclusions from previous work showing
that Selection often has some detectable influence
over microbial communities (Andersson et al., 2010;
Ofiteru et al., 2010; Stegen et al., 2012). However, we
also find that Dispersal Limitation acting in concert
with Drift can have a substantial influence over
community composition, in contrast to the classic
paradigm that ‘all microbes are everywhere’ (see de
Wit and Bouvier, 2006; Martiny et al., 2006). This
result adds to a growing literature showing an
important influence of Dispersal Limitation in
microbial systems (for example, Dumbrell et al.,
2010; Martiny et al., 2011).

At the other end of the dispersal continuum,
Homogenizing Dispersal has a strong influence on
community structure in the Hanford formation, but
effectively no influence in the Ringold. These
contrasting influences of Homogenizing Dispersal
make conceptual sense, given the hydrological
characteristics of the two formations; in the
highly permeable Hanford formation, between-
community Dispersal appears to be so high that
community composition is often determined pri-
marily by immigration; Dispersal is sufficiently low
in the Ringold formation, such that community
composition is not strongly influenced by
immigration.

Figure 4 Summary of key insights and results for the three systems analyzed: Hanford (blue) and Ringold (red) formations and
across the full system (green dashed box). For comparison, panels provide inferences based on (a) the framework developed here and
(b) a preexisting framework. Pie charts give the percent of turnover in community composition governed primarily by Selection acting
alone (white fill), Dispersal Limitation acting in concert with Drift (black fill), Drift acting alone (gray fill) and Homogenizing
Dispersal (line fill).
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We expected to observe a decreased influence of
Drift acting alone when considering both formations
simultaneously; the larger spatial extent of the
system as a whole may increase Dispersal Limita-
tion, and the greater range in environmental condi-
tions may increase the influence of Selection.
In contrast to this expectation, Drift alone consis-
tently accounted for B25% of turnover in commu-
nity composition (Figure 4a). It is difficult to
compare this result to prior work; to the best of
our knowledge, the influence of Drift has never
been quantitatively estimated, although Drift is
known to have some detectable influence over
community assembly in microbial (for example,
Ofiteru et al., 2010) and macroorganism (for example,
Chase, 2010) systems.

Factors that impose Selection
In addition to quantifying ecological processes, it
has long been a goal in ecology to characterize
factors that impose Selection (for example,
Whittaker, 1967). Previous work, however, has been
plagued by the impossibility of measuring all
influential environmental variables (Anderson
et al., 2011). We overcame this obstacle by running
model selection on bNTI, which showed that
unmeasured and measured environmental variables
impose Selection and that the identity of influential
variables changes across formations and spatial
scales (Table 1).

In the Ringold formation, bNTI model selection
identified one significant PCA axis (PCA7). No
measured abiotic variables loaded onto PCA7

(Supplementary Table S2). PCA7 is therefore an
unmeasured, spatially structured environmental
variable that imposes Selection. The spatial struc-
ture of this unmeasured variable is shown in
Figure 5. Importantly, model selection for Bray–
Curtis identified no significant PCA axes. Relying on
preexisting approaches would have therefore pro-
vided essentially no information on ecological
processes even though the system is heavily gov-
erned by Selection (Figure 4).

In the shallower Hanford formation, bNTI model
selection identified PCA1 and PCA3 as significant
axes. The strongest loadings on PCA1 and PCA3
were distance-from-the-river and subsurface eleva-
tion, respectively (Supplementary Table S3). The
hydrology of the Hanford formation is strongly
influenced by elevation fluctuations of the Columbia
River, and the strong loadings of distance-from-
the-river and subsurface elevation on PCA1 and
PCA3 suggest an important influence of river
elevation fluctuations. In particular, the spring
runoff-associated river-elevation increase causes
water-table rise and intrusion of river water into
the subsurface at our site (Peterson et al., 2008; Lin
et al., 2012b). Microbial communities near the top of
the aquifer may therefore experience saturated or
unsaturated hydrological conditions depending on
the time of year, and communities further from the
river likely experience decreased and less-frequent
river intrusion (Lin et al., 2012b). In turn, we
hypothesize that in the Hanford formation, Selec-
tion causes turnover in community composition due
to (i) vertically structured differences in the tem-
poral dynamics of saturation states and (ii) horizon-
tally structured differences in river intrusion. We
note that a preexisting approach also selected PCA1Table 1 Summary of model selection results across formations

using bNTI and RCbray

Formation Turnover
metric

Environmental
variables

Spatial variables

Ringold bNTI 7 NA
Ringold RCbray None None
Ringold BCobs None None
Hanford bNTI 1, 3 NA
Hanford RCbray 1, 3 7
Hanford BCobs 1, 3 None
Full bNTI 1, 19, 32 NA
Full RCbray 1, 32 2, 4, 5, 6, 14, 16, 18, 20,

27, 26, 33
Full BCobs 1, 2, 4, 32, 34 5, 6, 12, 14, 16, 20, 26

Abbreviations: bNTI, b-nearest taxon index; BCobs, observed Bray–
Curtis; NA, not applicable; RCbray, Bray–Curtis-based Raup–Crick.
We identified spatially structured, influential environmental
variables as those PCA axes significant for bNTI. PCA axes significant
for bNTI are never considered spatial variables (hence, ‘NA’). For
RCbray, significant PCA axes are identified as environmental or spatial
based on the results of bNTI model selection. Numerical values
indicate PCA axis numbers and map to PCA loadings in
Supplementary Tables S2–S4. Note that PCA axis numbers are
formation-specific and that each axis is a combination of measured
abiotic variables and spatial eigenvectors. For comparison, results
from a preexisting approach using empirically BCobs are provided,
where PCA axes are characterized as environmental or spatial based
only on PCA loadings of measured abiotic variables (see
Supplementary Tables S2–S4).
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Figure 5 Spatial variation in PCA axis 7 within the Ringold
formation. PCA7 was identified as an influential, yet unmeasured,
environmental variable using model selection for bNTI. The
spatial configuration of PCA7 suggests that a key environmental
variable changes unimodally along an axis running northwest to
southeast. Axis (absolute) magnitude increases with circle
diameter, with negative and positive values represented as open
and closed circles, respectively.
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and PCA3 as significant variables, but given the
strong spatial structure of these variables, such
approaches cannot evaluate whether they impose
Selection or Dispersal Limitation.

From analysis of the two formations together (‘full
system’), model selection identified three PCA axes
associated with bNTI. Examining the loadings of
measured abiotic variables on these PCA axes
(Supplementary Table S4) suggests that Selection
is imposed by factors associated with elevation,
such as the percent mud within sediments
(Table 1, Supplementary Table S4) and (potentially)
between-formation differences in mineralogical
composition, age, cementation and vertical layering.
In particular, the Ringold is far older (B 8.5–3.4
million years old) than the Hanford formation
(B0.015 million years old) with greater cementation
and vertical layering (Bjornstad et al., 2009). In
addition, measured abiotic variables did not load
onto one selected PCA axis, PCA19, suggesting that
this axis represents an unmeasured environmental
variable that imposes Selection across the full
system.

Coupling quantitative process estimates with the
bNTI model selection contributes to a system-level
conceptual model that contrasts sharply with that
derived using a preexisting approach (Figure 4). Our
framework suggests that (i) low-energy deposition of
fine-grained sediments (as in the Ringold (Bjornstad
et al., 2009)) leads to very strong Selection (govern-
ing B60% of turnover) imposed by an unmeasured,
spatially structured environmental variable (Table 1,
Supplementary Table S2, Figure 5); (ii) high-energy
deposition of coarse-grained sediments (as in the
Hanford (Bjornstad et al., 2009)) partially homo-
genizes abiotic conditions leading to weaker Selec-
tion (governing B30% of turnover) imposed by
spatially structured, hydrology-related environmen-
tal factors (Table 1, Supplementary Table S3); and
(iii) differences in the physical energy of geological
depositional processes can result in between-forma-
tion environmental differences that cause turnover
due to Selection (governing B40% of turnover)
(Table 1, Supplementary Table S4). In the case of our
particular system, the primary between-habitat
environmental differences are related to sediment
composition and the degree of vertical layering
(Bjornstad et al., 2009); Ringold and Hanford
sediments are B90% and B4% mud, respectively
(Supplementary Table S1), and the Ringold has more
vertical layering (Bjornstad et al., 2009).

Factors imposing Dispersal Limitation
Fundamental to our understanding of ecological
communities is knowledge of the factors that impose
Dispersal Limitation. In non-microbial systems,
Dispersal Limitation is common, but further infer-
ences are usually limited to the spatial scales across
which Dispersal Limitation operates (for example,
Legendre et al., 2009). In contrast, we couple

model selection for RCbray with bNTI-based
characterization of PCA axes to enable characteriza-
tion of abiotic features that impose Dispersal
Limitation. Key to our approach is that variation in
RCbray can be driven by variation in the strength of
Selection or by variation in the magnitude of
Dispersal (Chase et al., 2011). PCA axes retained in
RCbray model selection that were not retained in
bNTI model selection therefore represent among-
community spatial relationships across which dis-
persal varies (that is, across which Dispersal
Limitation is imposed). Inferences drawn from this
approach contribute critical elements to our con-
ceptual model (Figure 4a).

At the ‘full-system’ scale, model selection for
RCbray suggests that Dispersal Limitation is imposed,
in part, by vertical separation among communities
(Table 1, Supplementary Table S4). This is consis-
tent with previous hydrological characterization,
suggesting that the fine-grained composition of the
Ringold restricts vertical exchange of water between
the Ringold and upper Hanford formations
(Bjornstad et al., 2009). The disparate geological
history of the two formations is therefore indirectly
responsible for strong Dispersal Limitation and
Selection at the ‘full-system’ scale. Model-selection
results further suggest that Dispersal Limitation is
also related to horizontal distance from the Colum-
bia River (Table 1, Supplementary Table S4);
decreased and less-frequent river intrusion into
communities further from the river (Lin et al.,
2012b) may therefore cause additional isolation.
There also appears to be a number of important
unmeasured factors (Table 1, Supplementary Table
S4), suggesting that spatially complex hydrological
flow paths may strongly influence patterns of
organismal exchange among local communities
across the ‘full system.’

Within the Hanford formation, RCbray model
selection identified one PCA axis that was not
related to bNTI and onto which no measured
abiotic variables loaded (Table 1, Supplementary
Table S3). This suggests that an unmeasured feature
of the Hanford formation imposes Dispersal Limita-
tion. From the available data, it is impossible to
know the identity of this unmeasured feature, but
as for the ‘full system,’ we hypothesize that
spatially structured hydrological flow paths influ-
ence the degree to which local communities
exchange organisms.

Conclusions

Inferences drawn across our analytical framework
provide a unique conceptual model (Figure 4a)
linking quantitative estimates of Selection, Dispersal
Limitation and Drift to the measured and
unmeasured abiotic factors that impose these pro-
cesses. Our analyses provide a fundamentally
deeper understanding of ecological communities
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and provide inferences that are qualitatively distinct
from those derived through traditional analyses
(Figure 4).

For a direct comparison with our analyses, we
employed an approach similar to that used in
previous work. This approach identified PCA axes
that are significantly related to Bray–Curtis, but
provides no means to determine the processes
imposed by significant variables. Previous studies
that use approaches similar to this ‘preexisting
approach’ appear to assign processes to significant
variables (for example, Tuomisto et al., 2003;
Cottenie, 2005; Legendre et al., 2009; Heino et al.,
2011). Doing so requires one to decide a priori
which variables are associated with which ecologi-
cal process. Identifying the features of a system that
impose Selection and those that impose Dispersal
Limitation is an empirical question, however, that
requires an answer informed by ecological patterns
of a given system. Further, preexisting approaches
cannot estimate the relative influences of ecological
processes or identify unmeasured environmental
variables. All these limitations would remain if
other preexisting approaches were used, such as
using redundancy analysis on raw community
composition data (for example, Legendre et al.,
2009).

Although we suggest that our framework provides
novel insights, it is important to recognize that there
are limitations and, as with any new approach, these
limitations can be vetted through additional use and
simulation-based studies. One limitation, for exam-
ple, is that the current framework does not parse out
sub-classes of Selection, such as competition and
trophic interactions. In addition, the framework
could be sensitive to factors such as phylogenetic
uncertainty and alpha diversity underestimation.
These particular factors are partially controlled by
confirming phylogenetic signal upfront and using
null models that hold observed alpha diversity
constant, respectively. Simulation studies are none-
theless needed for a full evaluation.

More generally, the knowledge we seek builds
from a revolution in ecological thought that has
largely taken place across the last decade. Although
often rebuked and rejected (for example, Ricklefs
and Renner, 2012), Hubbell’s (2001) neutral theory
encouraged broader recognition of Drift and Dis-
persal. As a consequence, it is now broadly
recognized that Selection works alongside Drift
and Dispersal (Cottenie, 2005; Gravel et al., 2006;
Adler et al., 2007; Legendre et al., 2009; Dumbrell
et al., 2010; Chase and Myers, 2011). This is the
conceptual foundation from which we work and out
of which a unification of community ecology can
emerge (Vellend, 2010).
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