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† Background Our understanding of the processes and dynamics of allopolyploid speciation, the long-term conse-
quences of ploidal change, and the genetic and chromosomal changes in new emerged allopolyploids has substan-
tially increased during the past few decades. Yet we remain uncertain about the time since lineage divergence
when two taxa are capable of spawning such entities. Indeed, the matter has seemed intractable. Knowledge of
the window of opportunity for allopolyploid production is very important because it provides temporal insight
into a key evolutionary process, and a temporal reference against which other modes of speciation may be measured.
† Scope This Viewpoint paper reviews and integrates published information on the crossability of herbaceous species
and the fertility of their hybrids in relation to species’ divergence times. Despite limitations in methodology and sam-
pling, the estimated times to hybrid sterility are somewhat congruent across disparate lineages. Whereas the waiting
time for hybrid sterility is roughly 4–5 million years, the waiting time for cross-incompatibility is roughly 8–10
million years, sometimes considerably more. Strict allopolyploids may be formed in the intervening time
window. The progenitors of several allopolyploids diverged between 4 and 6 million years before allopolyploid syn-
thesis, as expected. This is the first study to propose a general temporal framework for strict allopolyploidy. This
Viewpoint paper hopefully will stimulate interest in studying the tempo of speciation and the tempo of reproductive
isolation in general.
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INTRODUCTION

During the past decades, novel genetic and genomic approaches
have substantially advanced our understanding of the processes
and dynamics of polyploid speciation and of the long-term con-
sequences of ploidal change (Otto, 2007; Soltis, 2010; Soltis and
Soltis, 2012; Abbott et al., 2013). New approaches also have
fuelled our understanding of the genetic, epigenetic and chromo-
somal alterations that polyploid species experience very early in
their histories (Xu et al., 2009; Flagel and Wendel, 2010; Petit
et al., 2010; Ng et al., 2012; Buggs et al., 2012; Shi et al.,
2012); and new quantitative applications have shed light on di-
versification rates in diploids and polyploids (Mayrose et al.,
2010, 2011; Arrigo and Barker, 2012).

In contrast to our broad understanding of population and
phylogenetic dynamics, and of the lability of neopolyploid
genomes, we do not know when diploid taxa are sufficiently dif-
ferent to spawn allopolyploids with twovery distinctive genomes
(strict allopolyploids), i.e. when their diploid interspecific
hybrids would be sterile or nearly so. What is the waiting time
for strict allopolyploidy within a phylad? Are we talking about
a few thousand years after divergence from a common ancestor
or a few million years, or more? Even the most recent and very
comprehensive treatment of hybridization and speciation does
not address this question (Abbott et al., 2013). Knowledge of
the window of opportunity for allopolyploid production is very
important because it provides temporal insight into a key evolu-
tionary process, and a temporal reference against which other
modes of speciation may be measured. It also informs us of

when ancient species contacts could have spawned strict allopo-
lyploids and when they could not.

The level of divergence in the genomes of allopolyploids
falls along a continuum. Whereas strict allotetraploids are char-
acterized by disomic inheritance and bivalent formation, some
allopolyploids may have a mixture of the former, and tetrasomic
inheritance and quadrivalent formation. These have been
referred to as segmental allopolyploids (Stebbins, 1947).
Segmental allotetraploids are derived from diploid hybrids that
are partially fertile and whose chromosomes are partially hom-
ologous (Ramsey and Schemske, 2002). These hybrids would
form unreduced gametes at a higher rate than diploid members
of a species, but at a lower rate than hybrids with quite divergent
genomes. This paper focuses on strict allopolyploids.

The duration over which strict allopolyploids may be gener-
ated is based in part on the time it takes for diploid species to
become so divergent that anomalous chromosomal pairing in
their F1 hybrids yields an elevated level of unreduced gametes.
In some species combinations, unreduced gamete production
approaches 30 % vs. the average of 0.5 % for non-hybrids
(Ramsey and Schemske, 1998). However, the rate in hybrids
may be considerably lower, as in Gilia (Grant, 2002), Alstro-
meria (Ramanna et al., 2003) and Solanum (Bani-Aameur
et al., 1992), where values typically are ,10 %. Different paren-
tages of a given interspecific hybrid may yield substantially dif-
ferent unreduced gamete productions. Meiotic errors that
produce 2n gametes may occur at the first meiotic division,
resulting in first division restitution or in second division restitu-
tion (Ramsey and Schemske, 1998).
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Once hybrids produce only univalents or nearly so, the
window of opportunity for strict allopolyploid production
will remain open until lineages are no longer cross-compatible
or until pre-pollination barriers preclude hybridization. The
waiting time for hybrid sterility recently has been addressed in
flowering plants, as estimated from data on hybrid fertility in re-
lation to taxon divergence times (Levin, 2012). Based on an array
of herbaceous lineages, it appears that roughly 4–5 million years
(My) passes before first-generation hybrids become sterile or
nearly so. The bases for sterility, chromosomal pairing anomal-
ies or genetic incompatibility seem not to have a different tem-
poral signal.

Given that it takes roughly 4–5 My of divergence for hybrid
sterility to arise in herbaceous genera, we may ask about the
time necessary for the cross-compatibility of lineages to be ser-
iously compromised. The greater the time between the loss of fer-
tility and the loss of cross-compatibility, the broader will be the
window for the genesis of strict allopolyploids. During that
period, local or regional environmental change and/or long-
distance dispersal may allow once isolated species to hybridize
and spawn polyploids. The difference between the onset of sub-
stantive hybrid sterility and the onset of cross-incompatibility
represents the maximum window of opportunity for strict allopo-
lyploidy.

Based on a comprehensive literature review, I will show here
that pollen–pistil incompatibility is likely to take much longer
to evolve than hybrid sterility, and that the opportunity for the
production of strict allopolyploids may extend for millions of
years. Indeed if hybrid sterility was longer in the making than
cross-incompatibility, allopolyploids would not be formed. I
will obtain estimates of the time to cross-incompatibility from
approximate divergence times of taxa in relation to their ability
to interbreed. When divergence times in the literature are pre-
sented between two values, I will use the mid-point of the
range. Cross-compatibility refers to the production of hybrid
seeds. Taxa are considered to be cross-compatible even if
crosses are productive in one direction, but not in the other.
Thewaiting time for hybrid sterility has been estimated previous-
ly from approximate divergence times of taxa in relation to their
hybrid’s fertility (Levin, 2012). Only species with the same
ploidal level are included in the study.

The genesis and union of unreduced gametes in F1 hybrids is
the most prominent avenue to allopolyploidy (Ramsey and
Schemske, 1998; Levin, 2002), and the only one considered
herein. In addition to the abundance of data on hybrid sterility
and unreduced gamete production in both natural and artificial
hybrids, and the association of sterile hybrids with allopoly-
ploids in nature, we know that the production of unreduced
gametes from sterile hybrids depends on the genotype of the
diploid parents, and that allopolyploid production from sterile
hybrids varies with parentage within a taxon combination and
from one taxon combination to another, even in the same
genus (Ramsey and Schemske, 1998). Studies on Gilia (Grant,
1965, 2002), Solanum (Bani-Aameur et al., 1992) and Alstro-
meria (Ramanna et al., 2003) are notable in these respects.

Another avenue to allopolyploid (in this case allotetraploid)
formation involves allotriploids (AAB). The products of unre-
duced gamete formation in a diploid and interspecific hybridiza-
tion, these entities in turn must cross (using an unreduced
gamete) with a member of species B. This process rarely

appears in the recent literature and ostensibly is infrequent in
nature (Ramsey and Schemske, 1998). Finally, an allotetraploid
could be produced through the fusion of unreduced gametes from
two diploid species, thereby by-passing the need to produce
diploid interspecific hybrids. This ‘bilateral sexual polyploidiza-
tion’ is rarely mentioned in the recent literature beyond manipu-
lations with cultivars (e.g. Lilium; Khan et al., 2010).

THE PERSISTENCE OF
CROSS-INCOMPATIBILITY

The long persistence of cross-compatibility is most evident in the
numerous, successful crosses between genera. In the grass
family, crosses are possible between Hordeum and Triticum
(Fedak, 1980), which diverged roughly 13 million years ago
(Mya; Gaut, 2002), and between Hordeum and Secale (Forster
and Dale 1983), which split roughly 25 Mya (Gaut, 2002).
Crosses between Sorghum and Saccharum, which shared a
common ancestor about 20 Mya (Zeng et al., 2012), also have
been successful (Hodnett et al., 2010). Hybrids may be obtained
from Festuca and Lolium (Whittington and Hill, 1961), whose
lineages split about 13 Mya (Zeng et al., 2012). In contrast to
the aforementioned generic pairs, Zea and Sorghum are cross-
incompatible, although they diverged only approx. 9 Mya
(Gaut, 2002). In many crossing combinations between widely di-
vergent parents, seed set is lowand/orembryos need special treat-
ment in order to develop normally.

The ability of some older lineages to cross is no guarantee that
younger ones will be able to do the same. Having just referred to
Zea, consider the genus Silene. Crosses between Lychnis and
four Silene species are successful (Kruckeberg, 1962; Crang
and Dean, 1971), even though the genera diverged roughly
10–15 Mya (Frajman et al., 2009; Sloan et al., 2009). Hybrids
are also obtained between S. douglasii and S. hookeri
(Kruckeberg, 1961), and between S. virginica and the latter
(Kruckeberg, 1955), which split approx. 10–16 Mya (Sloan
et al., 2009). Conversely, crosses between S. noctiflora and
other members of the section Elisanthe fail (Prentice, 1978).
Divergence time between this species and other members of
the section is roughly 7 Mya (Frajman et al., 2009). Species
with more recent divergence times (3–4 Mya) readily interbreed
(e.g. S. douglasii and S. virginica, and S. douglasii and
S. latifolia; Kruckeberg, 1963; Frajman et al., 2009; Sloan
et al., 2009).

When do lineages lose the ability to interbreed? The data on
mustards and grasses presented earlier suggest that it may be
well over 10 My. However, it need not be that long. Collinsia
species may become cross-incompatible 5–7 My after diver-
gence (Garber, 1975; Baldwin et al., 2011). In Silene, cross-
incompatibility may arise in ,7 My (Prentice, 1978; Frajman
et al., 2009). In Lupinus, crossing barriers may arise within
6–10 My of lineage splitting (Williams et al., 1980;
Drummond, 2008). There is no reason why different genera
or different lineages within genera should be synchronous in
this respect.

All species pairs with estimated divergence times of 4.5–6
Mya that I could find are cross-compatible. These pairs include
Aquilegia flabellata and Aquilegia viridiflora, and Aquilegia
ecalcarata and Aquilegia sibirica (Taylor, 1967; Bastida et al.,
2010), Circaea lutetiana and Circaea alpina, and Circaea
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cordata and Circaea erubescens (Boufford, 1990; Xie et al.,
2009), and Arabidopsis thaliana and diploid Arabidopsis
arenosa (Koch et al., 2000; Bomblies and Weigel, 2010), and
the former and Arabidopsis lyrata (Nasrallah et al., 2000;
Kuittinen and Aguade, 2000).

THE BASIS FOR CROSS-INCOMPATIBILITY

In some lineages, the self-incompatibility (or S-) locus and
modifiers of S-gene activity are prime players in cross-
incompatibility, and divergence at these loci contributes to in-
compatibility. The role of the S-locus in cross-incompatibility
is very well documented in the Solanaceae (Bernacchi and
Tanksley, 1997; McClure et al., 2000; Li and Chetelat, 2010;
Bedinger et al., 2011). The S-locus also has been implicated
in cross-incompatibility within Prunus (Šurbanovski et al.,
2007), Brassica (Hiscock and Dickinson, 1993), Papaver
(Paape et al., 2011) and in several other genera.

It is also important to recognize that other loci may also reduce
the crossability of species (Liedl et al., 1996; McClure et al.,
2000; Hancock et al., 2003). For example, the Tcb1 gene and
the genetically linked Ga-1 gene confer the pollen–pistil
barrier between maize and teosinte (Kermicle and Evans,
2005; Kermicle, 2006). These genes are also involved in the
inability of flint and dent strain pollen to fertilize popcorn
strains, although reciprocal crosses are effective (Kernicle and
Evans, 2005; Dresselhaus et al., 2011). In Leptosiphon, variation
in the rejection of heterospecific pollen is unrelated to the
S-genotype (Goodwillie and Ness, 2013).

Where the S-locus is important in cross-incompatibility, the
slow rate of barrier building may be a consequence of the slow
rate of S-gene divergence. Substantial sequence divergence is
required for the genesis of new S-allele specificity. In other
words, mutation rates are low. Castric et al. (2008) have shown
that sequence divergence among S-alleles tends to be very
high, while that within S-alleles is generally low. S-alleles
differ in as many as 40 % of the amino acid sites (Schierup
et al., 2001). Identical or nearly identical S-gene sequences are
shared among congeneric species, as in Physalis (Lu, 2001),
Prunus (Šurbanovski et al., 2007; Sutherland et al. 2008) and
Lycium (Savage and Miller 2006). Even different genera may
share S-alleles (e.g. Brassica and Arabidopsis; Edh et al., 2009).

Thus far, cross-incompatibility has been considered in terms
of pollen–pistil incompatibility. However, seed abortion may
also contribute to reduced seed production in some species com-
binations. Abortion may result from abnormal development of
either the embryo or the endosperm. Both are sensitive to
genetic incompatibilities (Levin, 2000, 2003a; Tiffin et al.,
2001). Hybrid incompatibility in seeds is especially well under-
stood from physiological/developmental and genetic perspec-
tives in Solanum (Lester and Kang, 1998; Moyle and Graham,
2005; Moyle and Nakazato, 2010), where both pollen–style in-
compatibility and seed abortion contribute to the reproductive
isolation of species (Bedinger et al., 2011). Multiple quantitative
trait loci (QTLs) contribute to hybrid seed lethality in Solanum
and in Arabidopsis (Burkart-Waco et al., 2012). Three QTLs
contribute to seed inviability in crosses between Brassica and
Raphanus (Tonosaki et al., 2013). A recent survey of reproduct-
ive isolation in angiosperms showed that reduced production of

hybrid seeds was a much stronger barrier than the failure of
hybrid seeds to germinate (Lowry et al., 2008).

THE ALLOPOLYPLOID WINDOW

Given that that roughly 4–5 My passes before first-generation
hybrids become sterile or nearly so (Levin, 2012), the informa-
tion presented above indicates that crossability is apt to decline
much later than hybrid fertility, which leaves a window for
strict allopolyploid formation. This window extends from
a few to several million years. The most compelling argument
for a million year plus window is obtained within genera.
For example, in Collinsia, hybrid sterility arose about 4 My
after lineage splitting compared with 5–7 My for cross-
incompatibility (Garber, 1975; Baldwin et al., 2011). In Silene,
hybrid sterility emerged 3–7 Mya compared with 7–12 Mya
for cross-incompatibility (Kruckeberg, 1962, 1963; Frajman
et al., 2009). The conclusion that sterility emerges before cross-
incompatibility differs from that of Moyle et al. (2004), who
found no difference in the evolutionary rates of these barriers
in Silene, when using genetic distance as a surrogate for time.

The notion that strict allopolyploid production occurs within
a window of a few to several million years also is supported by
the interval between species divergence and the genesis of
their allopolyploids. For example, the progenitors of the tetra-
ploid Nicotiana tabacum diverged about 4.5 Mya, whereas the
latter evolved only 0.2 Mya (Clarkson et al., 2005). The antece-
dents of the tetraploid Viola guadalupensis evolved about 13
Mya, while the diploids arose roughly 8 Mya. The lineages of
Brassica oleracea and B. rapa diverged roughly 3.7 Mya,
whereas their allotetraploid derivative, B. napus, arose ,10 000
years ago (Cheung et al., 2009). Arabidopsis thaliana and
A. arenosa diverged about 6 Mya (Koch et al., 2000), while
their allotetraploid, A. suecica, evolved ,300 000 years ago
(Jakobsson et al., 2006). The B and C genomes of the Oryza offi-
cinalis complex split about 4 Mya, but BC tetraploids formed only
between 0.3 and 0.6 Mya (Wang et al., 2009). The carriers of the A
and D genomes in Gossypium diverged about 6.7 Mya, whereas
allopolyploid cotton formed roughly 1.5 Mya (Senchina et al.,
2003).

The level of genetic divergence typically is greater for
progenitors of strict allopolyploids than for progenitors of
diploid hybrid species (Buggs et al., 2009; Paun et al., 2009).
Accordingly, we would expect parental divergence times to be
shorter in the latter. The products of diploid hybrid speciation
in Helianthus provide support for this notion. The parental
Helianthus annuus and H. petiolaris diverged roughly 1.6 Mya
(Timme et al., 2007; Strasburg and Rieseberg, 2008); and their
hybrid derivatives (Helianthus anomalus, H. deserticola and
H. paradoxus) were formed between 60 000 and 200 000 years
ago (Rieseberg et al., 2003). Accordingly, the parental species
were about 1.5 My old when the hybrid lineages were formed
vs. the 4–6 My spread for the progenitors of the aforementioned
allopolyploids.

Recently, there has been a vigorous debate as to whether there
is a strong connection between genetic/chromosomal divergence
and the occurrence of polyploidy (Buggs et al., 2011). I do not
argue that such a connection does or does not exist, but rather
that there is probably a relationship between the level of diver-
gence and the type of polyploid that is formed. Very little
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divergence would yield an autopolyploid, modest divergence a
segmental allopolyploid, and substantial divergence a strict allo-
polyploid.

Given the presence of a window for allopolyploid formation,
we may ask whether such formation is likely to be soon after
hybrid sterility ‘evolved’ or very much later. The former is
the logical choice because cross-compatibility would be the
highest immediately after the fertility demise, and would subse-
quently decline due to stochastic changes at the loci affecting
crossing relationships. This progression is suggested by the re-
duction in crossability with increasing species divergence
times in Silene (Kruckeberg, 1962, 1963; Frajman et al., 2009)
and in Collinsia (Garber, 1975; Baldwin et al., 2011), and by
the inverse relationship between species crossability and
genetic distance (e.g. Nolina, Jewell et al., 2012; sexually decep-
tive orchids, Scopece et al., 2007, 2008). Allopolyploids are also
more likely to be formed early in the window because hybrids
would become less vigorous as their parental taxa aged due to
their gradual stochastic accumulation of many Dobzhansky–
Muller incompatibilities with small effects (Orr and Turelli,
2001; Coyne and Orr, 2004).

If species were sympatric during the rather wide window for
allopolyploid production, the ‘same’ polyploids could evolve re-
peatedly at multiple points in time and space, and become extinct
many times as well. Neither the A nor the B genome would be
constant in time, so each recapitulation of the AABB species
may be somewhat different. Indeed, alternative AABB lines
may go forward on independent evolutionary trajectories. If syn-
chronous in time, different ‘transfigured’ allopolyploids may be
able to interbreed with each other.

Sympatry does not ensure polyploidy even if chromosomally
disparate species are cross-compatible, because pre-pollination
barriers (e.g. divergent habitat preference, flowering time, and
floral architecture and attractants) typically appear much
earlier (after lineage divergence) and develop at a much faster
rate than hybrid sterility (Levin, 2012). A considerable time dif-
ferential between the emergence of pre- and post-pollination bar-
riers is well illustrated in many Hawaiian genera, wherein
substantial adaptive radiation during the past 3–4 My has not
been accompanied by strong post-pollination barriers (Baldwin
and Sanderson, 1998; Price and Wagner, 2004; Keeley and
Funk, 2011). Pre-pollination barriers probably are the direct
targets of diversifying natural selection (Levin, 2003b; Givnish,
2010), whereas post-pollination barriers probably arise very
slowly through the gradual stochastic accumulation of genic and
chromosomal differences (Levin, 2012).The ecological, temporal
and pollination strategies of long separated allopatric taxa may be
conserved by habitat selection, pleiotropy and the lack of genetic
variation (Wiens, 2004). Accordingly, the level of pre-pollination
isolation is not expected to increase progressively over time,
because the niches of related lineages do not diverge progressively
over time (Prinzing et al., 2001; Wiens and Graham, 2005;
Couvreur et al., 2011; Peterson, 2011). Given that other
pre-zygotic barriers may evolve before cross-incompatibility,
the window of opportunity for strict allopolyploid produc-
tion between specific taxon pairs may close well before cross-
incompatibility emerges. The time required for substantial
pre-pollination isolation may be orders of magnitude less than
the time required for the emergence of genomic and cross-

incompatibility (Schluter, 2000; Seehausen, 2002; Mendelson,
2003; Fitzpatrick, 2004; Malone and Fontenot, 2008).

The reinforcement of pollen–pistil incompatibility by natural
selection against hybrid production (or gametic wastage) also
would reduce the opportunity for allopolyploid production
among sympatric species prior to the time dictated by the stochas-
tic elaboration of cross-incompatibility. Such reinforcement has
occurred in natural populations of Costus (Kay and Schemske,
2008; Yost and Kay, 2009). The potential for strengthening cross-
ing barriers is evident in the substantial responses to artificial se-
lection for such in Zea (Paterniani, 1969) and Phlox (Fritz, 1997).

Whereas there is a temporal window during which strict allopo-
lyploids may evolve, no such window exists for autopolyploids.
New independent diploid lineages may produce autoploid deriva-
tives from early in their history until they become extinct. This
may amount to tens of millions of years, which is much longer
than the opportunity window for strict allopolyploidy. Diploids
simplyneed toproduce unreducedgametes; timesince their incep-
tion is not an issue. The production of sterile or semi-sterile
hybrids, and the retention of interspecific cross-compatibility are
not requirements for autopolyploidy.

Segmental allopolyploids fall between auto- and allopoly-
ploids in their genetic and chromosomal behaviour. These en-
tities contain genomes that are less divergent than those of
strict allopolyploids. Since the magnitude of genomic diver-
gence is a function of time (Coyne and Orr, 2004 ), we may
surmise that the progenitors of segmental allopolyploids were
younger at the time of hybridization than were the progenitors
of strict allopolyploids. The waiting time for segmental allopoly-
ploidy may vary from a few hundred thousand years to a million
years or more depending on the rate of genetic and chromosomal
change, and thus may differ substantially among lineages. Such
polyploids may be formed until their progenitors are so divergent
that their derivatives would be deemed strict allopolyploids.
Accordingly, the same two lineages which generated strict allo-
polyploids at one point in time may have generated segmental
versions at earlier points in their histories. I do not suggest that
one form of allopolyploid is more likely to form and to persist
longer than another.

Thus far, the focus has been on an approximate timetable for
allopolyploidy in herbs. This timetable may vary in relation to
plant habit and life history. In trees, partial fertility and cross-
compatibility tend to persist for a much longer time, so the
window for allopolyploidy in trees is likely to be much later
than that for herbs. It is not clear whether the window will be
wider. The North American/Asian Liriodendron tulipifera and
L. chinense are between 10 and 16 My old, and form partially
fertile hybrids (Parks and Wendel, 1990). In Liquidambar,
some species combinations that diverged roughly 10 Mya are
quite cross-fertile, but yield sterile hybrids (Hoey and Parks,
1991). The North American/European Platanus occidentalis
and P. orientalis separated about 50 Mya (Feng et al., 2005),
yet their hybrid is partially fertile (Panetsos et al., 1994).
Fertile hybrids are obtained between the North American dis-
juncts Acer rubrum and Acer saccharinum, which separated
about 4 Mya (Santamour, 1965; Renner et al., 2008).

The longer waiting time for sterility and cross-incompatibility
in trees is expected, because the generation time in trees is much
longer than that in herbs. Notably, the rate of molecular evolution
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in herbaceous plants is roughly 2.5 times faster than that in
woody plants based on a global phylogenetic analysis of angios-
perms (Smith and Donoghue, 2008). Annuals have faster substi-
tution rates than perennials (Yue et al., 2010).

Life history also might be a factor affecting the onset of hybrid
sterility and cross-incompatibility. Self-fertilizing colonizing
species, especially those with short population lives and very
small effective sizes, are more prone to the stochastic genetic
and chromosomal changes which promote post-pollination iso-
lation than are outbreeding species that experience fewer bottle-
necks per unit time. For example, genetic drift is the likely cause
of chromosomally based hybrid sterility among conspecific
populations of Draba nivalis (Grundt et al., 2006; Skrede
et al., 2008). These populations are thought to have arisen
within the past 1 million years.

We cannot dismiss the possibility that crossing barriers might
have arisen prior to other post-pollination barriers in some in-
compatible taxon combinations. Partial cross-incompatibility
may evolve in a relatively short time when populations are sub-
jected to multiple genetic bottlenecks, substantial inbreeding
and repeated episodes of intense directional selection, as
occurs during domestication (Gross and Olsen, 2010). Rapid
emergence of crossing barriers is manifest during the domestica-
tion of annual Phlox drummondii during the past 200 years
(Levin, 1976). Cultivars most derived from their wild progenitor
are the least cross-compatible with the latter. Along somewhat
similar lines, crossing barriers have evolved among maize culti-
vars, and between maize and its progenitor (teosinte), which
diverged about 9000 years ago. The growth of maize pollen is
restricted on the silks of teosinte owing to the Tcb-1 locus and
the genetically linked Ga-1 locus (Kermicle, 2006).

Partial incompatibility also may arise coincident with bottle-
necking, inbreeding and selection in natural populations. The
passage through an extreme bottleneck (perhaps ,5 indivi-
duals) with a concomitant decline in S-locus diversity and emer-
gence of self-fertility may be responsible for the evolution of
partial cross-incompatibility between Capsella rubella and
Capsella grandiflora (Hurka and Neuffer, 1997), which diverged
about 30 000–50 000 years ago (Guo et al., 2009). The cross-
incompatibility within the Aegean Nigella arvensis complex
also may emerge from the stochastic processes that ostensibly
shaped some phenotypic and genetic variation (Strid, 1970;
Comes et al., 2008).

If crossing barriers arose prior to hybrid sterility, then viable,
fertile hybrids would lie beyond a crossing barrier. To assess
whether fertile hybrids indeed might reside there, we may con-
sider somatic cell (parasexual) hybrids produced from the
fusion of the protoplasts of congeneric species or those in differ-
ent genera. Most fusion products involving rather divergent taxa
are weak, and have abnormal development and/or unstable
chromosome complements in which the chromosomes of
one species or the other are eliminated during development
(Sherraf et al., 1994; Begum et al., 1995; Spangenberg et al.,
1995; Wang et al., 2003). These plants typically have much
reduced fertility or are sterile (e.g. intergeneric somatic cell
hybrids in the Brassicaeae; Prakash et al., 2009).

A few caveats about when strict allopolyploids may evolve are
in order. The dates used to estimate the demise of hybrid fertility
and cross-compatibility are not the product of a precise, uniform
methodology; so they must be considered quite approximate.

One concern is that the error terms in phylogenetic estimates of
divergence times may be considerable (Ho and Phillips, 2009;
Schwartz and Mueller, 2010). Secondly, the genes used in esti-
mating divergence time vary across studies, and may deviate
from molecular rate constancy across lineages (Gaut et al.,
2011). Then there is the matter of sample size. Only a few mo-
lecular phylogenies contain species about which the hybrid fer-
tility and/or species crossability are known, so the database is a
bit shallow. Finally, the populations used to establish hybrid fer-
tility and taxon crossability may not be representative of the taxa
as awhole (Levin, 1978, 2000; Grant, 1981; Scopece et al, 2010).

CONCLUSIONS

This is the first study to propose a general temporal framework
for strict allopolyploidy. Moreover, it is the first study to assess
the approximate times required to reach two major milestones of
allopatric speciation. Despite limitations in methodology and
sampling, the estimated times to hybrid sterility, and to a lesser
extent cross-incompatibility, are somewhat congruent across
disparate lineages. This lends credibility to the correlational ap-
proach. Moreover, the parental divergence times of several allopo-
lyploids are rather similaracrossphylads.This levelof congruence
is somewhat surprising, given that hybrid sterility and cross-
incompatibility are products of stochastic processes. It is also
surprising because the degree of local sympatry among congeners
during the polyploid window must have varied widely among
phylads, as must have the degree of pre-pollination isolation.

The temporal difference between the onset of substantive
hybrid sterility and the onset of cross-incompatibility represents
the maximum potential window of opportunity for strict allopo-
lyploidy. Given the frequent evolution of pre-pollination barriers
between lineages, it would not be surprising that strict allopoly-
ploids form well before cross-incompatibility is strongly devel-
oped. The genesis of several allopolyploids roughly 4–8 My
after the divergence of their antecedents (as noted above) is
consistent with this view.

Whereas the approximate time to hybrid sterility and cross-
incompatibility for given lineages no doubt will be revised as
more data accrue, as will the mean time across lineages, the
larger message will endure. There is a window of opportunity
for strict allopolyploidy, and it will not be soon after species
split from a common ancestor. The waiting time for hybrid ster-
ility is probably millions of years, and the time for cross-
incompatibility is likely to be a few to many millions of years
longer. If not by cross-incompatibility, the window of opportun-
ity will close with the emergence of pre-pollination barriers.
Given that the chromosomal and genic divergences yielding
hybrid sterility and cross-incompatibility are products of sto-
chastic processes, there is no reason to assume that the times to
hybrid sterility and cross-incompatibility will be very similar
across taxon pairs.

This review has addressed crossing and fertility relationships of
lineages in time. The bases for fertility decline are somewhat
understood, especially where chromosomal change is a prime
contributor (Levin, 2012). In contrast, our knowledge of the
genetic control of cross-incompatibility is still in its infancy, and
many questions remain. To what extent is the S-locus involved
in cross-incompatibility, and what changes at this locus confer
cross-incompatibility? Are losses of self-incompatibility within
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species associated with altered interspecific compatibilities?
How do severe population contractions and inbreeding influence
cross-compatibility?How doesa shift awayfroma hermaphroditic
reproductive system impact species’ crossability? Are the genetic
changes associated with the reinforcement of cross-incompati-
bility the same as those associated with a gradual increase in cross-
incompatibility? Is there any relationship between the expression
of pollen–pistil incompatibility and the genetic mechanism
underlying it? Answers to these questions will allow us to make
informed predictions about the decline of cross-compatibility
over time and in relation to the demographic and mating history
of taxa, and thus allow us to appreciate more fully the dynamics
of speciation and the timetable for allopolyploidy.

Finally, the window of opportunity for strict allopolyploidy is
best understood when information on post-pollination isolation
and divergence times is available for the same clusters of congen-
eric species. There is a substantial literature on species’ cross-
ability and the fertility of their hybrids, and an expanding
literature on species divergence times, but almost invariably
they do not involve the same species. A marriage between trad-
itional biosystematics and molecular phylogenetics will yield
insights well beyond those obtainable from phylogenetics alone.
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