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† Background and Aims The olive (Olea europaea subsp. europaea) was domesticated in the Mediterranean area but
its wild relatives are distributed over three continents, from the Mediterranean basin to South Africa and south-
western Asia. Recent studies suggested that this crop originated in the Levant while a secondary diversification
occurred in most westward areas. A possible contribution of the Saharan subspecies (subsp. laperrinei) has been high-
lighted, but the data availablewere too limited to draw definite conclusions. Here, patterns of genetic differentiation in
the Mediterranean and Saharan olives are analysed to test for recent admixture between these taxa.
† Methods Nuclear microsatellite and plastid DNA (ptDNA) data were compiled from previous studies and com-
pleted for a sample of 470 cultivars, 390 wild Mediterranean trees and 270 Saharan olives. A network was recon-
structed for the ptDNA haplotypes, while a Bayesian clustering method was applied to identify the main gene
pools in the data set and then simulate and test for early generations of admixture between Mediterranean and
Saharan olives.
† Key Results Four lineages of ptDNA haplotypes are recognized: three from the Mediterranean basin and one from
the Sahara. Only one haplotype, primarily distributed in the Sahara, is shared between laperrinei and europaea. This
haplotype is detected once in ‘Dhokar’, a cultivar from the Maghreb. Nuclear microsatellites show geographic pat-
terns of genetic differentiation in the Mediterranean olive that reflect the primary origins of cultivars in the Levant,
and indicate a high genetic differentiation between europaea and laperrinei. No first-generation hybrid between
europaea and laperrinei is detected, but recent, reciprocal admixture between Mediterranean and Saharan subspecies
is found in a few accessions, including ‘Dhokar’.
† Conclusions This study reports for the first time admixture between Mediterranean and Saharan olives. Although its
contribution remains limited, Laperrine’s olive has been involved in the diversification of cultivated olives.

Key words: Admixture, domestication, Laperrine’s olive, Mediterranean basin, microsatellite, Olea europaea,
population genetic simulations, Sahara, secondary diversification, wild genetic resources.

INTRODUCTION

The origins of the Mediterranean cultivated olive (Olea euro-
paea subsp. europaea var. europaea) are hotly debated, but it
is usually accepted that its primary domestication started in the
Levant as attested to by archaeological, historical and molecular
evidence (Kaniewski et al., 2012; Zohary et al., 2012; Besnard
et al., 2013a). Multiple local selections of cultivars have also
been reported by genetic analyses (e.g. Besnard et al., 2001a;
Belaj et al., 2002; Baldoni et al., 2006; Breton et al., 2008),
and secondary diversification of the crop followed the oleiculture
diffusion over the whole Mediterranean basin (Terral. 1997;
Besnard et al., 2001a). The contribution of the western wild
olives in this diversification process remains, however, poorly
understood. Some authors claimed that recurrent, ongoing
crop–wild gene flow allowed maintenence of a high level of
gene diversity in the cultivated compartment of perennial
crops (Miller and Gross, 2011).

Hybrids between the Mediterranean olive (subsp. europaea)
and other diploid wild olive subspecies (i.e. from South Africa,

Iran and the Saharan Mountains) have been obtained under
controlled conditions (e.g. Besnard et al., 2001b, 2008;
Hannachi et al., 2009). This observation indicates that non-
Mediterranean wild taxa could have also been involved in olive
domestication or secondary diversification as hypothesized by
numerous botanists since the 19th century (Oliver, 1868;
Newberry, 1937; Chevalier, 1948; Turrill, 1951; Green, 2002).
This assumption is usually no longer considered due to a lack
of molecular evidence (e.g. Angiolillo et al., 1999; Besnard
et al., 2007c). Yet, in a recent study, one unnamed cultivar from
Morocco was shown to harbour a particular plastid DNA
(ptDNA) haplotype, namely L1.1 (Besnard et al., 2011). In a
brief report, this haplotype was further shown to be frequent in
the Laperrine’s olive tree (O. europaea subsp. laperrinei), a relic-
tual endangered taxon endemic to the Central Saharan mountains
(Besnardetal., 2012).This result stronglysupports thehypothesis
that crosses between O. europaea subsp. laperrinei and the
Mediterranean olive could have contributed to cultivar diversifi-
cation, but this hypothesis still needs to be properly tested with a
detailed study of geographic patterns of genetic diversity (from
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nuclearand plastid genomes) on both Mediterranean and Saharan
subspecies. In addition, such knowledge may have implications
for the management of olive genetic resources.

According to Rubio de Casas et al. (2006), the genetic differ-
entiation between subspecies europaea and laperrinei is highly
significant [FST ¼ 17.2 %; assessed with amplified fragment
length polymorphisms (AFLPs)] as expected for allopatric
taxa. Early generations of hybrids between two genetically dif-
ferentiated taxa can be detected theoretically with genetic popu-
lation analyses (e.g. admixture detection; Beaumont et al.,
2001). Such a method has already been successfully used in
olive to detect hybrids between europaea and cuspidata in the in-
vasive Australian range (Besnard et al., 2007b, 2013b), and for
detecting admixture between Mediterranean gene pools
(Baldoni et al., 2006; Breton et al., 2006; Belaj et al., 2007).
This approach was recently applied to document the secondary
domestication history of the apple (Cornille et al., 2012) and
almond trees (Delplancke et al., 2013).

In the present study, we describe patterns of genetic differen-
tiation in the Mediterranean and Saharan olives, and we tested for
admixture between these taxa. Nuclear microsatellites and
plastid haplotypes from different studies were compiled and
the genetic characterization of wild populations was completed.
The maternal haplotype of all individuals was first used to detect
possible seed–propagule exchanges between taxa. A Bayesian
clustering method was applied for the detection of main gene
pools, and simulations were used forassessing the powerof ourap-
proach to detect admixture. Based on our results, the human-
meditated diffusion of the oleiculture over the Mediterranean
basin and the contribution of O. europaea subsp. laperrinei to
the cultivated olive diversification are discussed.

MATERIALS AND METHODS

Plant material

In the present study, we analysed plastid and nuclear genetic data
sets generated on 1130 olive accessions (see below). This sample
encompasses Mediterranean cultivars and wild olives from the
Mediterranean basin and the Saharan mountains. Mediterranean
accessions were a priori classified according to three pre-defined
zones (Supplementary Data Tables S1 and S2): East (from Croatia
to the Levant, including Egypt), Central (from Italy to France and
Libya to Algeria) and West (Iberian Peninsula and Morocco).

Olive cultivars (Olea europaea subsp. europaea var. europaea). All
cultivated accessions considered in this study were first charac-
terized with nuclear microsatellite loci [or simple sequence
repeats (SSRs)] by Besnard et al. (2007b), Khadari et al.
(2008) and Haouane et al. (2011). When accessions were distin-
guished based on only one or two SSR alleles, the distinction was
doubtful and could be attributed to mutations (Lopes et al., 2004;
Baali-Cherif and Besnard, 2005; Khadari et al., 2008). To avoid
considering variants of the same accession in the data analyses but
also to avoid including families of very closely related individuals
that can bias Bayesian clustering analyses (Rodrı́guez-Ramillo
and Wang, 2012), we decided to keep (at random) only one tree
for such closely related accessions (i.e. distinguished by one or
two alleles per ten loci). A total of 470 accessions were analysed.
Four hundred and thirty-five cultivated accessions were from the
Olive World Germplasm Bank of Marrakech (OWGB-M).

Additionally, 15 cultivated accessions were from the World
Olive Germplasm Bank of Cordoba (WOGB-C) and 20 were
sampled in the field (Supplementary Data Table S1). All these
accessions have also been characterized with a plastid genomic
profiling method (Besnard et al., 2013a).

Oleasters populations. Wild populations from the Mediterranean
Basin (O. europaea subsp. europaea var. sylvestris) have been re-
cently sampled for the study of ptDNA variation toward the
Mediterranean basin (Besnard et al., 2013a). In the present study,
a sub-set of 390 trees from 45 locations was considered for nuclear
microsatellite characterization (Supplementary Data Table S2).

Laperrine’s olive populations. Populations of O. europaea subsp.
laperrinei (Batt. & Trab.) Cif. have been previously sampled in
the Ahaggar (Hoggar and Tassili n’Ajjer, South Algeria) and the
Aı̈r (Tamgak, Bagezane and Egalah, North Niger). Most indivi-
duals were characterized with nuclear SSR loci (seven of them
shared with the present study) in order to identify genotypes and
analyse the population dynamics (Baali-Cherif and Besnard,
2005; Besnard et al., 2007a). Here, 270 distinct genotypes were
considered: 48 from the Bagezane-Egalah, 44 from the Tamgak,
45 from the Tassili n’Ajjer and 133 from the Hoggar.

Genetic characterization

Ten nuclear SSR loci were used to characterize all individuals:
PA(ATT)2 (Saumitou-Laprade et al., 2000), ssrOeUA-DCA01,
ssrOeUA-DCA05, ssrOeUA-DCA08, ssrOeUA-DCA09,
ssrOeUA-DCA14, ssrOeUA-DCA15, ssrOeUA-DCA18 (Sefc
et al., 2000), GAPU71A (Carriero et al., 2002) and EMO03
(de la Rosa et al., 2002). We completed the molecular analyses
for all accessions (in particular for wild accessions) using the
methods previously described (Baali-Cherif and Besnard,
2005; Haouane et al., 2011). The congruence between initial
data sets was checked by comparing 35 genotypes (both wild
and cultivated accessions; data not shown) that were independ-
ently characterized with the same set of markers in two different
laboratories. We also showed that the unnamed cultivar from
Morocco that harbours the ptDNA haplotype L1.1 (reported by
Besnard et al., 2011) displays exactly the same nuclear SSR
profile as ‘Dhokar’ (Tunisia; OWGB Marrakech) and can thus
be considered as the same accession.

Laperrine’s olive samples were analysed with ptDNA markers
as described by Besnard et al. (2011). These data and available
plastid profiles for 1797 Mediterranean olive trees (Besnard
et al., 2013a) – including all Mediterranean accessions here ana-
lysed with nuclear SSRs – were compiled for further analyses.

Data analyses

Genetic diversity parameters were first estimated for each
group (i.e. cultivars, oleasters and Laperrine’s olive). In order
to account for different sample sizes (minimum 270 individuals),
allelic richness (RS) was estimated for all nuclear SSR loci and
ptDNA haplotypes using FSTAT v.2.9.4 (Goudet 1995). The
total genetic diversity (HT; Nei, 1987) was also estimated for
each locus. A Wilcoxon singed-ranks test (one sided) was used
to evaluate the significance of the difference of allelic richness
and gene diversity at nuclear loci between cultivars, oleasters
and Laperrine’s olives.
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Haplotype networks on the whole plastid data set or at a clade
level (lineages E1 and L1) were reconstructed with the reduced-
median method implemented in NETWORK V.4.112 (Bandelt
et al., 1999). For the allele coding, we followed exactly the
same procedure as previously described by Besnard et al.,
(2013a). A ptDNA haplotype was defined by the combination
of alleles from the 45 polymorphic loci.

The inter- and intrasubspecies structure of the genetic diver-
sity was then investigated. Pairwise FST between the three taxa
were computed based on nuclear SSRs using FSTAT. The signifi-
cance of pairwise differentiation was assessed using standard
Bonferroni corrections. The number of genetically homogeneous
clusters (K) in the whole data set and for each pair of taxa (i.e. cul-
tivars/oleasters, cultivars/Laperrine’s olive, oleasters/Laperrine’s
olive) was then determined using a model-based clustering
method implemented in STRUCTURE v.2.3.4 (Pritchard et al.,
2000). Bayesian analysis was run under the admixture model for
1 000 000 generations after a burn-in period of 200 000, assuming
a correlation among allele frequencies. Analyses were run for K
between one and ten clusters with ten iterations for each K
value. The most likely number of clusters was determined using
the ad-hoc measure DK (Evanno et al., 2005) with the R
program (R Development Core Team, 2010), whereas the similar-
ity index between ten replicates for the same K clusters (H′) was
calculated with CLUMPP v1.1.2 (Greedy algorithm; Jakobsson
and Rosenberg, 2007). Foreach K value that was retained, each ac-
cession was assigned to their respective clusters with a posterior
membership coefficient ( p).

The power of model-based clustering analyses to detect admixed
individuals issued from intersubspecies hybridization or successive
backcrosses was assessed by simulations based on the ten nuclear
microsatellite loci used in our study. Two objectives were tackled:
first, we assessed the level of assignment that allows a confident de-
tection of admixture between Mediterranean and Saharan gene
pools. We tested on pairs of simulated panmictic populations (that
thus can be considered as non-admixed) the level of assignment
to two genetic clusters: subspecies europaea (E) and laperrinei
(L). In these simulated data sets, we thus estimated the level of as-
signment to thewrong subspecies that occurs by chance. In practice,
panmictic populations of 1000 genotypes were generated for the
Laperrine’s olives (L) and oleasters (E) with the software
HYBRIDLAB (Nielsen et al., 2006). Alleles were randomly
sampled in each taxon assuming neutrality, linkage equilibrium
and random mating. Allele frequencies in our simulated matrices
were constrained to be similar to our observations. The procedure
was replicated ten times, and simulated genotypes were used to
carry out admixture analyses with STRUCTURE as described
above (considering K ¼ 2 clusters). The level of partial admixture
between Mediterranean and Saharan olive was then investigated
for each data set. The distribution of the posterior membership co-
efficient ( p) values was plotted. The maximum value for a wrong
assignment that may happen by chance was determined. For the
second objective, we estimated the numberof generations of back-
crosses that occurred for accessions that were confidently detected
as advanced generation of hybrids (see below). We randomly
selected genotypes of 50 individuals of Laperrine’s olive (from
Tassili n’Ajjer and Hoggar), 50 oleasters (from the west-central
Mediterranean gene pool) and 50 olive varieties from the central
Mediterranean gene pool. Aiming to exclude recent hybrids, these
genotypes were selected among individuals assigned to the

Laperrine’s olive or oleaster populations with p . 0.99 and to
olive varieties with p . 0.95 (see below). We then generated 100
genotypes of each F1 and successive backcrossed genotypes (from
BC1toBC5)withHYBRIDLABasdescribedabove.Theprocedure
was replicated ten times and the simulated genotypes were used to
carry out admixture analyses with STRUCTURE as described
above. The level of partial admixture between Mediterranean and
Saharan olive was then investigated and directly compared with
the observed value on admixed individuals from our data set.

RESULTS

Comparison of genetic diversity parameters between
Mediterranean and Saharan olives

No significant difference is observed between cultivars and the
Laperrine’s olive for the allelic richness and genetic diversity
(Wilcoxon signed-ranks tests, P¼ 0.441 and 0.759, respectively;
Table 1). In contrast, we observe a marginally significantly higher
allelic richness in oleaster samples than in the Laperrine’s olive
(Wilcoxon signed-ranks test, P¼ 0.059), and a significantly
higher genetic diversity in oleasters than in the Laperrine’s olive
(Wilcoxon signed-ranks test, P¼ 0.046), but these results could
just reflect samplings on different geographic scales for these two
taxa. Oleasters also show significantly higher allelic richness and
genetic diversity than Mediterranean cultivars (Wilcoxon
signed-ranks test, P,0.01 for RS and HT; Table 1). A similar
trend is observed on ptDNA haplotypes (but not statistically test-
able; Table 1).

Distinction of maternal lineages in Saharan and
Mediterranean olives

A total of 67 ptDNA haplotypes (Supplementary Data Table
S3) are detected; 48 are found in the Mediterranean olive and
20 in the Laperrine’s olive. The phylogenetic analysis reveals
four clusters of closely related ptDNA haplotypes, or ptDNA
lineages, on the whole data set (Fig. 1A). Lineages E1, E2 and

TABLE 1. Total number of alleles (Na) observed on the whole
data, allelic richness (RS; computed for 270 individuals) and
genetic diversity (HT) computed on ten nuclear SSR loci and

ptDNA haplotypes for each taxon

Cultivars Oleasters
Laperrine′s

olive

Locus Na RS HT RS HT RS HT

Nuclear SSR
ssrOeUA-DCA1 39 17.6 0.62 28.9 0.77 32.0 0.94
ssrOeUA-DCA5 27 13.1 0.52 17.8 0.88 24.0 0.89
ssrOeUA-DCA8 29 19.2 0.83 24.7 0.93 14.0 0.85
ssrOeUA-DCA9 28 22.7 0.88 25.4 0.92 14.0 0.71
ssrOeUA-DCA14 47 14.3 0.70 34.6 0.91 18.0 0.80
ssrOeUA-DCA15 10 5.6 0.64 7.7 0.75 3.0 0.37
ssrOeUA-DCA18 31 17.8 0.84 23.9 0.90 19.0 0.82
PA(ATT)2 11 5.0 0.74 8.6 0.77 5.0 0.16
GAPU71A 30 12.5 0.47 23.3 0.74 7.0 0.65
EMO03 25 13.0 0.81 16.5 0.89 17.0 0.82
Mean 27.7 14.1 0.71 21.1 0.85 15.3 0.70

ptDNA 51 12.1 0.34 31.7 0.90 18.0 0.79
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E3 have been previously reported in the Mediterranean basin
(Besnard et al., 2013a). Lineage L1 is sister to E1, from which
it was previously not separated (Besnard et al., 2007c). A
minimum of seven cpSSR mutation steps are detected between
E1 and L1 haplotypes (Supplementary Data Table S3), attesting
for a clear divergence of these two lineages. In the wild pool,
three ptDNA lineages (namely E1, E2 and E3) are observed ex-
clusively in oleasters, while the fourth lineage (L1) is only
revealed in the Saharan populations. All cultivars, except one,
show a Mediterranean haplotype. A Saharan haplotype (L1.1)
is detected in ‘Dhokar’ (Fig. 1; Supplementary Data Table S2).

Identification of genetic clusters in Saharan and
Mediterranean olives

The genetic differentiation based on nuclear SSRs between cul-
tivars, oleasters and the Laperrine’s olives is highly significant

(Table 2) and particularly high between the Mediterranean and
Saharan olives (e.g. FST ¼ 18.9 % between the Laperrine’s olive
and oleasters). The Bayesian clustering with STRUCTURE con-
firms these results, with a clear distinction of the Saharan and
Mediterranean taxa (Figs 2 and 3).

The K value selected following the criterion defined by
Evanno et al. (2005) is 2 (Fig. 2), but here we also show results
for three and four clusters because they reflect sub-structures in
the Mediterranean olive data set that are supported in separate
analyses of Mediterranean accessions (see Supplementary
Data Figs S1 and S2). At K ¼ 2, the two clusters correspond to
subspecies laperrinei and europaea (named L and E, respective-
ly), and all individuals are assigned to their respective subspecies
with a mean membership coefficient ( p) .0.7. Assignments to
clusters E and L is, however, not always categorical ( p , 0.9
for ‘Taroudant no 6’ and a few accessions from the Tassili
n’Ajjer). At K ¼ 3, two clusters of oleasters (namely E-I and
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FI G. 1. Plastid DNA haplotype networks reconstructed with the reduced-median method implemented in NETWORK (Bandelt et al., 1999). Haplotypes are repre-
sented by yellow or green circles, while the missing, intermediate nodes are indicated bysmall red dots.The length of branches is proportional to the numberof mutation
steps. (A) Network based on the whole data set. The Mediterranean lineages E1, E2 and E3 and the Saharan lineage L1 are indicated. (B) Haplotype network for the
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type. Haplotypes E1.1, E1.2 and E1.3 are the most frequent haplotypes in cultivars (Besnard et al., 2013a). Haplotype L1.1 (in green) is shared between Saharan and
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E-II) are distinguished (see also Supplementary Data Figs S1 and
S2). Oleasters from the western and central Mediterranean are
mainly assigned to cluster E-I, while cultivars and the remaining
oleasters (from Croatia to the Levant) are mainly assigned to
cluster E-II. Note that 463 (98.5 %) and 390 (83 %) cultivated
olive accessions are assigned to cluster E-II with p.0.5 and
0.8, respectively. At K ¼ 4, most of the western and central
Mediterranean cultivars are distinguished from eastern
Mediterranean accessions (both oleasters and cultivars; see
also Supplementary Data Figs S1 and S2). A general trend for
the assignment of genotypes from a given Mediterranean zone

to a genetic cluster (e.g. EII-b for eastern accessions or E-I for
western oleasters; see also Fig. 3) is thus observed. A separate
analysis of all Mediterranean accessions also supports a soft dis-
tinction of cultivated and wild gene pools according to their geo-
graphical origin (Supplementary Data Fig. S1).

Nuclear evidence for a few admixture events between
Mediterranean and Saharan olives

Based on the analysis of the whole data set, no obvious admix-
ture between cultivars and the Laperrine’s olive is revealed (see
above), but the complex genetic structure in wild and cultivated
Mediterranean olives could mask subtle relationships between
these taxa and the Laperrine’s olive (as recently shown in
apple; Cornille et al., 2012). For this reason, we chose to
analyse the genetic structure between oleasters and the
Laperrine’s olive (Fig. 3A) and between cultivars and the
Laperrine’s olive (Fig. 3B). In these two separate analyses,
most accessions of subspecies laperrinei (263/270) and euro-
paea (852/860) are assigned to clusters L and E, respectively,
with a mean membership coefficient (p) .95 % (Fig. 3; see

TABLE 2. Pairwise differentiation (FST) between the
Mediterranean and Saharan olive taxa based on nuclear data

Oleasters Cultivars

Cultivars 7.36***
Laperrine’s olive 18.91*** 26.61***

***P,0.001.
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also Supplementary Data Fig. S3 for K ¼ 3 or 4 clusters). This
clear assignment was expected since the genetic differentiation
between both subspecies is high (Table 2). Nevertheless, a few
accessions were assigned to their respective subspecies with a
mean membership coefficient (p) ,0.90. Considering the high
genetic differentiation between Mediterranean and Saharan
olive populations, such patterns may reflect admixture between

gene pools E and L, but this hypothesis needs to be statistically
tested (see below).

Because partial assignment to both subspecies could be not
necessarily due to admixture and to some extent may arise by
chance (Vähä and Primmer, 2006; Winkler et al., 2011), we ana-
lysed pairs of simulated panmictic populations of laperrinei and
europaea based on observed allelic frequencies in each taxon.
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The assignment of genotypes to their respective cluster (i.e. L for
the Laperrine’s olive and E for oleasters) is correct using both
observed and simulated data sets (Fig. 4). The mean membership
probability (p) on the observed data is slightly lower than on
simulated data. In particular, the assignment of simulated geno-
types to their cluster is rarely below 0.9 (i.e. 0.16 and 0.03 % of
simulated genotypes in the Laperrine’s olives and oleasters, re-
spectively) while this occurs in .1 % of observed genotypes
(1.85 and 1.03 % of individuals in the Laperrine’s olives and
oleasters, respectively; Fig. 4). This means that when one indi-
vidual is partially assigned to both subspecies with p values
.0.1, this is probably not random and may reflects admixture
between laperrinei and europaea.

Based on an assignment threshold of 0.1, a few Laperrine’s
olive individuals from the Tassili n’Ajjer (South Algeria) show
evidence of admixture with the Mediterranean cluster E
(Fig. 3). Five individuals from this population are assigned to

E with p .0.1, reaching a maximum of 0.317 in individual
Tassili no 5 (Fig. 3A). We also find five Mediterranean acces-
sions (three cultivars and two oleasters) that are similarly
assigned to cluster L with p .0.1 (Fig. 3A, B): cultivars
‘Belluti’ (Turkey; assignment probability to cluster L, p ¼
0.255), ‘Ifri’ (Algeria; p ¼ 0.105), ‘Dhokar’ (Tunisia–
Morocco; p ¼ 0.136), Oleasters ‘Pylos no 12’ (Greece; p ¼
0.101) and ‘Taroudant no 6’ (Morocco; p ¼ 0.237). All putatively
admixed individuals from the Sahara and Mediterranean basin
are more assigned to subsp. laperrinei and subsp. europaea, re-
spectively, suggesting they may result from early generations
of backcrosses (e.g. BC1 or BC2) with the local taxon. Our simu-
lations of backcrosses indicate that the observed level of admix-
ture may indeed correspond to BC1 or BC2, but the confidence
interval of assignment to each gene pool is large for BC genera-
tions (see details in Supplementary Data Figs S4 and S5). This is
probably due to an insufficient number of loci to assess precisely
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the contribution of each gene pool in advanced generations of
backcrosses (e.g. Vähä and Primmer, 2006). This also means
that our approach may not allow detection of all BC2 generations
and is inappropriate for detecting more advanced generations of
hybrids.

DISCUSSION

In this study, we directly compared for the first time the genetic
diversity in the cultivated olive, and wild populations of oleasters
and Laperrine’s olives. In the following section, patterns of
genetic differentiation in the Mediterranean basin are first inter-
preted in the light of recent studies that confirmed a primary
origin of cultivated olives in the Levant (Kaniewski et al., 2012;
Zohary et al., 2012; Besnard et al., 2013a). The admixture
between Mediterranean and Saharan gene pools is then discussed.

On patterns of genetic differentiation among Mediterranean olives

Both oleaster and cultivar samplings cover the whole
Mediterranean area and are representative of the different gene
pools present in this region (Haouane et al., 2011; Besnard
et al., 2013a). We observe a reduction of 33 % of the allelic rich-
ness and 16 % of the total gene diversity for nuclear SSRs in cul-
tivars compared with oleasters, while a reduction of 62 % of the
allelic richness and total gene diversity is revealed for ptDNA
haplotypes in the cultivated pool. Such a lower genetic diversity
in cultivars compared with oleasters has also been revealed by
Lumaret et al. (2004), Belaj et al. (2010) or Besnard et al.
(2011) with different marker sets. This substantial reduction of
diversity on both nuclear and plastid genomes may be interpreted
as a signature of genetic erosion linked to domestication and dif-
fusion, and, here, we can definitely conclude that all the oleaster
diversity was not captured in the cultivated pool despite recurrent
crop–wild gene flow (Miller and Gross, 2011).

A clear genetic differentiation between eastern and western
Mediterranean oleasters is also observed in our study. This
result has been reported by several authors (Angiolillo et al.,
1999; Besnard et al., 2001a, 2013a; Breton et al., 2006; Rubio
de Casas et al., 2006). The assignment of most cultivars
(83 %) to gene pool E-II (Fig. 2; Supplementary Data Fig. S1)
with p .0.8 confirms the strong eastern affiliation of the culti-
vated gene pool as indicated by plastid markers (Besnard et al.,
2013a). Actually, no cultivar was strongly assigned to the
western gene pool E-I (for p .0.8), emphasizing its secondary
contribution to the olive domestication. It is usually accepted
that olive domestication has primarily started in the eastern
Mediterranean basin (Kaniewski et al., 2012; Zohary et al.,
2012). The human-mediated dispersal of oleiculture from the
East to the West with the main civilizations was then associated
with secondary diversification of cultivars in the central and
western Mediterranean, as reported by several authors
(Besnard et al., 2001a; Belaj et al., 2002, 2012; Owen et al.,
2005; Baldoni et al., 2006; Sarri et al., 2006; Breton et al.,
2008; Haouane et al., 2011; Dı́ez et al., 2012). This long story
may explain the existence of a sub-structure among cultivated
olives with three main gene pools (Supplementary Data Fig.
S2), as recently shown by Haouane et al. (2011), Belaj et al.
(2012) and Dı́ez et al. (2012). Additional investigations are
still necessary to depict processes of cultivated olive

diversification, and particularly to infer the history of olive diffu-
sion and to determine precisely the contribution of the western
gene pool.

A high genetic differentiation between Mediterranean
and Saharan olives

The genetic differentiation based on nuclear SSRs between the
Mediterranean and Saharan olives is particularly high (Table 2),
as observed by Rubio de Casas et al. (2006). In addition, no recent
seed-mediated gene flow is detected between oleaster and
Laperrine’s olive populations that do not share any ptDNA haplo-
type. These patterns may result from a long isolation between the
Mediterranean and Saharan regions due to a desert barrier that pro-
moted vicariance since the Miocene–Pliocene boundary
(Sepulchre et al., 2006; Besnard et al., 2007c; Migliore et al.,
2012). Yet, a Saharan haplotype (L1.1) is detected in ‘Dhokar’,
attesting to an indisputable contribution of the Laperrine’s olive
in the Maghreb cultivated gene pool.

Evidence for admixture between Mediterranean
and Saharan olives

Based on ten nuclear SSR loci, we then used model-based
clustering analyses to test for recent admixture between
Saharan and Mediterranean olives (Figs 3 and 4). According to
simulations on oleasters and the Laperrine’s olives, the probabil-
ity to obtain assignment of one genotype to its respective cluster
inferior to 0.9 does not exceed 2 × 1023. A partial assignment
with p-values .0.1 to each cluster is thus very unlikely to be
reached by chance but instead indicates admixture between
these taxa (Fig. 4). Based on this very conservative threshold,
five Laperrine’s olive individuals and five Mediterranean acces-
sions (two oleasters and three cultivars, namely ‘Dhokar’, ‘Ifri’
and ‘Belluti’) show assignment to both clusters L and E
(Fig. 3A, B). This analysis thus confirms that the Maghreb culti-
var ‘Dhokar’, that has a Saharan maternal origin (see above),
results from admixture between Laperrine and Mediterranean
olives, but other wild and cultivated admixed accessions are
detected, and particularly in the Tassili n’Ajjer population.
Such reciprocal gene flow was also strongly suspected on an
AFLP profiling (Rubio de Casas et al., 2006). These ten
admixed individuals may result from early generations of back-
crosses (e.g. BC1 to BC2) within the local taxon as supported by
additional simulations (Supplementary Data Figs S4 and S5).

The Laperrine’s olive has thus already been involved in the
cultivated olive diversification, confirming its potential use for
the olive breeding (Lavee and Zohary, 2011; Besnard et al.,
2012). Interestingly, due to their singular nuclear SSR profiles,
cultivars ‘Dhokar’ and ‘Ifri’ were included in the core collections
defined by Haouane et al. (2011), while ‘Belluti’ was not ana-
lysed in this study. Moreover, the level of admixture between
subsp. europaea and subsp. laperrinei is relatively low, since
no hybrid of the first generation is detected and only ten indivi-
duals out of 1130 (,1 %) are recognized as early generations
of hybrids (for p .0.1). This suggests that hybrids of the first
generation are relatively rare and/or that their fitness is poor. In
addition, successive backcrosses also greatly reduce the contri-
bution of a wild progenitor, hampering its identification based
on a few molecular markers as in the present study. Our approach
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based on ten nuclear loci is inappropriate for detecting advanced
generations of hybrids (Supplementary Data Figs S4 and S5) as
previously demonstrated by Vähä and Primmer (2006). In order
to assess precisely the importance of the laperrinei introgression
in the cultivated olive gene pool, our results could be refined
with a genome scan analysis (Scascitelli et al., 2010; Zhao
et al., 2010).

We can also question the vectors of dispersal between the
Mediterranean basin and the Saharan mountains. Both natural
and human-mediated vectors could be involved. The aridity on
the Sahara has greatly increased during the last five millennia
(Maley, 2011), contributing to a high isolation of the Saharan
olive populations during recent times. Ancient gene flow
between the two investigated taxa could be still detectable due
to the slow turnover of populations (Baali-Cherif and Besnard,
2005). Yet, the only evidence of maternal introgression was
detected in a cultivar that has been collected from Tunisia to
Morocco. This observation indicates that humans managed
some hybrids and spread them over long distances.

Lastly, the Laperrine’s olive is a highly restricted and endan-
gered plant (Besnard et al., 2012). Evidence of gene flow between
Saharan and Mediterranean olive taxa needs to be taken into
account by genetic resource managers and breeders. The
Laperrine’s olive population is a putatively important wild
genetic resource of the cultivated olive, and thus deserves to be
protected in situ. This wild taxon should be also included in ex
situ collections for further evaluation of agronomic traits.

SUPPLEMENTARY DATA

Supplementary data are available online at http://aob.oxfordjour-
nals.org/and consist of the following. Table S1: list of wild olive
populations (subspp. europaea and laperrinei) characterized in
the present study. Table S2: list of olive cultivars characterized
in the present study. Table S3: profiles of the 67 plastid DNA hap-
lotypes revealed in the present study using 45 polymorphic loci.
Figure S1: Bayesian inference of population structure in the
Mediterranean olive, for K ¼ 2, 3 and 5 clusters. Figure S2:
Bayesian inference of population structure in the oleasters and
cultivated olives. Figure S3: Bayesian inference of population
structure for two pairwise comparisons: (a) Laperrine’s olive–
oleasters and (b) Laperrine’s olive–cultivars. Figure S4:
Simulation of early and advanced generations of backcrosses
between western oleasters and the Laperrine’s olive. Figure
S5: Simulation of early and advanced generations of backcrosses
between Central Mediterranean cultivars and the Laperrine’s
olive.

ACKNOWLEDGEMENTS

This work was funded by the fellowships PIEF-GA-
2008-220813 and ANR-12-AGRI-0002 (ARIMNET 2011-
PESTOLIVE). It has been conducted in Silwood Park, the
UMR AGAP and the lab EDB, part of the LABEX entitled
TULIP (ANR-10-LABX-41). We also thank two referees for
their constructive comments.

LITERATURE CITED

Angiolillo A, Mencuccini M, Baldoni L. 1999. Olive genetic diversity assessed
using amplified fragment length polymorphisms. Theoretical and Applied
Genetics 98: 411–421.

Baali-Cherif D, Besnard G. 2005. High genetic diversity and clonal growth in
relict populations of Olea europaea subsp. laperrinei (Oleaceae) from
Hoggar, Algeria. Annals of Botany 96: 823–830.

Baldoni L, Tosti N, Ricciolini C, et al. 2006. Genetic structure of wild and culti-
vated olives in the Central Mediterranean Basin. Annals of Botany 98:
935–942.
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