
REVIEW

Intracardiac flow visualization: current status and
future directions
Daniel Rodriguez Muñoz1*, Michael Markl2,3, José Luis Moya Mur1, Alex Barker2,
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Non-invasive cardiovascular imaging initially focused on heart structures, allowing the visualization of their motion and inferring its functional
status from it. Colour-Doppler and cardiac magnetic resonance (CMR) have allowed a visual approach to intracardiac flow behaviour, as well
as measuring its velocity at single selected spots. Recently, the application of new technologies to medical use and, particularly, to cardiology
has allowed, throughdifferent algorithms inCMRand applicationsof ultrasound-related techniques, the description andanalysis of flow behaviour
in all points and directions of the selected region, creating the opportunity to incorporate new data reflecting cardiac performance to cardiovas-
cular imaging. The following review provides an overview of the currently available imaging techniques that enable flow visualization, as well as its
present and future applications based on the available literature and on-going works.
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Introduction
In the last few years, we have witnessed a growing interest in under-
standing flow behaviour inside cardiac chambers. This has become
possible due to the wake of new technologies that have expanded
our options in cardiovascular imaging to include the chance to visu-
alize and analyse the complex flow distribution inside the heart and
to use its potential to the diagnosis of cardiac function. With this
whole new perspective come new concepts and technologies of
which this article provides a general overview.

Understanding intracardiac
flow: the role of vortices
Although there have been numerous attempts to accurately describe
myocardial fibre architecture, its precise distribution remains to be
elucidated. However, fibre orientation and function has been
described to be a major determinant of blood flow orientation in
cardiac chambers,1 therefore, playing an essential role in cardiac per-
formance.2 This distribution generates marked changes of blood flow
direction and magnitude when passing through the atria and ventri-
cles. Kilner et al.3 used multi-slice cardiac magnetic resonance

(CMR) to illustrate the asymmetries and direction changes of flow
through the heart chambers resulting in a redirection of the momen-
tum of blood flow towards the next cavity. One of these changes in
flow motion is the appearance of vortices, regions of accumulated
vorticity, a property of a fluid particle based on its local angular vel-
ocity that describes its tendency to rotate. A vortex is, therefore, a
circular or elliptical-shaped rotating mass of fluid spinning around a
virtual central axis.

Vortices form as follows: when blood flows through a tubular
structure, fluid layers at the centre of the jet move faster than
those adjacent to the containing boundaries due to friction
(Figure 1A). When boundaries disappear or abruptly expand, this
friction-generated shear stress generates a swirling tendency of the
peripheral layers of fluid to spin away from the central jet
(Figure 1B). This generation of vorticity can organize in compact
regions as vortices, a situation given in cardiac chambers. A clear
example is the vortex ring that forms along the tips of the mitral leaf-
lets which, seen in a two-dimensional (2D) plane, shows a stronger
anterior component and a weaker posterior one (Figure 1C).3

It is assumed that vortices play an important role in normal cardiac
function, keeping blood in motion inside cardiac chambers, preserv-
ing momentum, avoiding excessive dissipation of energy, facilitating
inflow into the ventricle, and redirecting it towards the aortic
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valve.3,4 These flow patterns in the left heart have shown differences
related to age, gender, blood pressure, and ventricular geometry, as
shown in Figure 2.5

Recent studies have pointed to a single parameter defining key
aspects of vortex development, vortex formation time (VFT), as a
strong index of cardiac health6 and effective fluid transport.7 VFT, a
dimensionless parameter expressing the duration of early diastole
and, hence, reflecting the quality of ventricular filling, is correlated
with transmitral thrust and mitral annulus recoil, and is, therefore,
considered to be a powerful tool to assess diastolic perform-
ance.8 –10 The VFT index has already demonstrated its applicability
in detecting alterations in transmitral flow efficiency and relation to
prognosis of heart failure patients.11

Visualizing intracardiac flow:
available techniques
Studying intracardiac flow has been possible with the development
and application of new techniques. Overcoming significant technical
challenges, CMR- and echocardiography-based applications have
started to show its potential for research and clinical applications
(Table 1).

Flow visualization through
echocardiographic imaging
The low cost, wide availability and possibility to perform real time
evaluation of flow motion with relatively short post-processing

times has fostered the development of ultrasound-based flow visual-
ization techniques and drives the current efforts to explore its clinical
relevance and applicability. Several initiatives have emerged to over-
come the limitations inherent to conventional ultrasound techniques
in potentially visualizing flow motion. However, several challenges
remain unresolved, such as technical limitations in the accurate de-
tection of all flow velocities present in cardiac chambers, due to a
2D visualization of three-dimensional (3D) flow, although
approaches to a 3D echo-based flow visualization have been
reported.12,13 With regard to the latter, CMR has been used as the
standard for in vivo comparison, but the potential inaccuracies
when comparing instantaneous with averaged flow are a matter of
concern.14,15

Echocardiographic particle image
velocimetry
Echocardiographic particle image velocimetry (Echo-PIV) is based on
the use of ultrasound tracking groups of contrast agent particles.
Motion patterns are detected through a frame-by-frame analysis of
the distribution of contrast particles throughout the analysed
region, which generates data on flow direction and velocity.
Echo-PIV has proved to accurately reproduce intracardiac flow be-
haviour both in vitro and in vivo in various clinical settings.12,13

However, limitations on the detection of high velocities due to the
need for very high frame rates, not achievable with currently available
ultrasound devices, have hindered its further development and po-
tential clinical applicability.

Vector flow mapping
Vector flow mapping (VFM), based on colour-Doppler data, solves
the obstacle of angle-dependency through mathematical calculations
based on echo-dynamography. This consists of a series of equations
aimed at converting a 2D distribution of measured axial velocities
(parallel to the ultrasound beam)andestimated radial velocities (per-
pendicular to the former ones) into a plane of vortical and non-
vortical flow vectors.16 The application of specific functions to infer
flow velocity vectors includes two main assumptions: first, that
flow along each scan radius is laminar, and, therefore, can be decom-
posed into vortical and non-vortical components; secondly, that
through-plane flow is minor or non-existent. In spite of these two im-
portant assumptions, VFM has proved to be a reasonably accurate
tool for depicting and measuring in vitro generated flow structures.17

An example of the flowandvortex visualization is provided in Figure 3.
Current efforts in the development of VFM algorithm are aimed at
enabling 3D flow characterization. Additional limitations such as
time and spatial resolution and optimal Nyquist limit adjustment to
avoid aliasing without missing relevant low-velocity flow data come
from its Doppler-based character.

Combination of colour-Doppler data with
speckle tracking
Combination of colour-Doppler data with speckle tracking comple-
mented by applying the continuity equation to yield cross-beam vel-
ocity information has also been successful in depicting
intraventricular vortex flow behaviour,18 as shown in Figure 4. The
limitations of this technique include those inherent to Doppler and

Figure 1 A fluid moving inside a straight vessel presents higher
velocities in its centre and slower in the external fluid layers due
to friction (A). The difference in flow velocity generates a tendency
of the fluid to spin away fromthe central jet that causes swirling flow
motion when the limiting boundaries expand (B). This situation
appears in cardiac chambers when the filling inflow passes
through the atrio-ventricular valve into the ventricle, where this
swirling tendency organizes in vortices (C).
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speckle tracking, as well as the ones previously mentioned affecting
echocardiographic flow visualization tools. By neglecting through-
plane information, this technique has calculated to miss �15% of
flow when compared with CMR.

Flow visualization through
magnetic resonance imaging
The intrinsic motion sensitivity of MRI can be used to image vessels
with flow-sensitive CMR techniques, also termed phase contrast
(PC) MR angiography, or to directly acquire and quantify blood
flow in the major vessels or inside the heart chambers.19

Flow-sensitive 2D CMR
The basic principle of PC-CMR relies on the intrinsic sensitivity of the
MR signal to motion. PC-CMR is most frequently applied in its basic
form using PC data acquired in a 2D imaging plane positioned at a
user-selected location. The MR-signal phase in this 2D imaging
plane is directly affected by blood flow, which can be used to spatially
and temporally measure blood flow velocity along flexibly selectable

encoding directions. To measure and analyse pulsatile blood flow,
data acquisition is synchronized with the cardiac cycle using the
ECG signal. This gating allows for the reconstruction of images repre-
senting anatomy and flow over the duration of a heartbeat (also
termed CINE imaging). Two-dimensional CINE PC-CMR in the thor-
acic region is typically performed during a breath-hold that potential-
ly limits spatial and/or temporal resolution.

Two-dimensional CINE PC-CMR methods require appropriate
control of flow encoding sensitivities, a user-controlled variable re-
ferred to as velocity sensitivity (venc), which represents the
maximum velocity that can be encoded. Thus, accurate flow quanti-
fication requires some prior knowledge of the expected peak blood
flowvelocities to prevent the appearanceof aliasing. The acquired2D
CINE PC-CMR data can be used for flow quantification as illustrated
in Figure 5, enabling the calculation of flow-time curves, net flow,
mean velocities, peak velocities, and retrograde fraction.

Four-dimensional flow CMR
The combination of 3D spatial encoding and PC-CMR offers the pos-
sibility of isotropic high spatial resolution and thus the ability to
measure and visualize the temporal evolution of complex flow and

Figure 2 Vector graph visualization of intracardiac blood flow in a young (A) and an old (B) healthy volunteer. The formation of diastolic vortex
flow in the LA and LV is indicated by the dashed circles. Note the reduced diastolic in-flow velocities (colour coding) and less prominent vortex flow
in the older volunteer. LA, left atrium; RV, right ventricle; Ao, aorta.
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motion patterns in a 3D volume. In this context, ECG synchronized
3D PC CMR using three-directional velocity encoding (also termed
‘4D flow MRI’) can be employed to visualize and quantify 3D blood
flow characteristics in the heart and vessels.20,21 A number of
recent methodological improvements (parallel imaging, adaptive res-
piration control with increased efficiency, etc.) permit the acquisition
of 4D flow CMR data with full-volumetric coverage of the heart
within reasonable scan times of the order of 8–15 min.22,23 Given
the exam duration, systems allowing monitoring of breathing
pattern in parallel to the data acquisition have been developed.

To visualize complex, three-directional blood flow within a 3D
volume, various visualization tools, including 2D vector-fields, 3D
streamlines, and time-resolved 3D particle traces have been pro-
posed.24,25 It is also possible to retrospectively quantify blood flow
velocities and volumes at user-selected locations of interest within
the 3D volume. In addition to the previously mentioned flow meas-
urement parameters, more advanced quantification methods and
algorithms have been presented in the literature. These include the
derivation of wall shear stress, pulse wave velocity, pressure differ-
ence, or turbulent kinetic energy.26 –30

Figures 6 and 7 illustrate the use of 4D flow CMR for the visualiza-
tion and quantification of 3D blood flow in the heart and pulmonary
system, respectively.

One of the main limitations associated with CMR flowvisualization
comes from the fact that the information is generated from averaged
flow values over several cardiac cycles. Other limitations are related
to the several effects that can introduce imperfection in the resulting
PC-CMR data, which cause errors in velocity measurements. Major
sources of inaccuracy in velocity-encoded images include eddy
current effects, Maxwell terms, and gradient field distortions. If un-
corrected, all three effects can severely distort the measured three-
directional velocities and thus result in distortion of 3D streamlines
and 3D particle traces, which might lead to incorrect flow pattern
visualization and, subsequently, to false conclusions regarding flow
characteristics. It is important to keep in mind that such phase
offset errors exhibit a substantial and non-linear increase with in-
creasing distance from the iso-centre of the MR system.

Defining flow study: regions and
parameters
So far, the study of intracardiac flow behaviour has aimed at providing
a better understanding of both physiological and pathological situa-
tions, aswell as toexplorepotential newtools tobetterdiagnoseclin-
ical entities and optimize their treatment. Many of these studies are
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Table 1 Summary of technical characteristics

Echo-PIV VFM CMR

Data source Echocardiographic tracking of groups
of contrast agent particles

Calculationof laminarandvortical flow
components from Colour-Doppler

Influence of flow motion on MR-signal
phase: phase contrast

Main advantages

Low cost
Wide availability

Shorter examination times

Higher spatial resolution with full 3D
coverage

Limitations

Inherent to conventional echocardiographic examinations (acoustic shadowing,
technically difficult examinations, etc.)

Intracardiac devices not suitable for
CMR studies

Longer examination times
Limited temporal resolution (poor

flow characterization in brief
phases of cardiac cycle)

Flow data are averaged over several
cardiac cycles

Need for the use of contrast agents
Requiring frame rates of 60–150 fps

for adequate detection of high
velocities

Lacking ‘in vivo’ validation study
Underestimation of velocities in

vortex areas perpendicular to
ultrasound beam

Sources of error

Cross-plane migration of contrast
agent particles

Manual contour detection

Manual de-aliasing
Manual definition of endocardial

borders

Eddy current effects
Maxwell terms
Gradient field distortions

Accuracy

High velocities Limited: affected by frame rate (upper
limit of �60 cm/s)

Accurate visualization. May require
adjustment of Nyquist limit or
manual de-aliasing

Accurate visualization, although
selectable velocity sensitivity (venc)
requires some prior knowledge of
the expected velocity valuesLow velocities Accurate visualization Underestimation. Nyquist limit

adjustment and focus on smaller
areas may improve the detection
but introduces noise through the
detection of cardiac wall motion
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Figure 3 VFM provides two main visualization modes: (i) On the left, vector display shows the direction and intensity of flow velocity in each point
of the scanned area through yellow arrows proportional in length to flow velocity. (ii) On the right, vortex visualization mode displays round lines
indicating thepresenceof a vortex,with higher line density corresponding to areas of more intense flow. Both vectorand vortex scale and density can
be adjusted by the user.

Figure 4 Through a combination of strain and speckle tracking, flow visualization as developed by Bermejo et al. provides a visualization where
streamlines represent velocity direction; colour bar represents codification of velocity values. A schematic figure with vortex cores location can be
seen on the upper left corner: clockwise vortex (in white) and counter-clockwise vortex (in green).The bottom-left colour bar indicates the phase of
the cardiac cycle [red: ejection; blue: filling; white: isovolumic periods; during filling black marks indicate (left-to-right) the instants of peak-E wave
velocity, A-wave onset, and peak-A wave velocity].
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still hindered by the ongoing development of visualization techni-
ques, reduced number of patients, and uncertainty about the real sig-
nificance of measured parameters. However, some have already
provided interesting results (Table 2).

Left ventricle vortex flow and its relation
with systolic and diastolic function
LV has, by far, been the cardiac region to serve as a reference for the
development of these techniques, from a silicon LV replica31 to the
most of the published work related to clinical entities. Studied para-
meters can be grouped as related to vortex size, intensity, and
position:

Vortex size: regardless of the variations among different studies,
vortex size or shape (depth, length, width, area, and sphericity
index) seem to be associated with LV systolic function,32 even
more in specific moments of cardiac cycle, such as isovolumetric
contraction.33

Vortexflow intensity: measured as relative strength, pulsation correl-
ation, maximum circulating flow or delay in acquiring its maximum
energy vortex intensity has been associated with both systolic and
diastolic dysfunction, wider QRS complexes, and larger end-
systolic longitudinal diameters.32– 34

Vortex position: a persistent apical vortex during ejection has been
associated with LV systolic dysfunction.35 Other studies have
shown that the incidence, location, and extent of vortex flow

Figure 5 (A) Blood flow quantification in the aorta using a 2D CINE PC-CMR acquisition placed immediately distal to the aortic valve plane and
encoded for through-plane velocities. (B) After data acquisition and reconstruction of magnitude and phase difference images, the vessel contours of
the AAo are identified by lumen segmentation to quantify time-resolved blood flow. (C ) Flow-time curves in the ascending aorta above the aortic
valve averaged over 10 normal healthy subjects (error bars ¼ inter-individual variation of blood flow). AAo, ascending aorta; PA, pulmonary artery;
DAo, descending aorta.

Figure 6 Four-dimensional flow MRI and visualization of 3D flow. (A) Four-dimensional flow MRI raw data comprises information along all three
spatial dimension, three velocity directions (vx,vy,vz), and time spanning the cardiac cycle. (B) Co-registered four-chamber CINE images and 3D flow
visualization in the atrium and ventricle during mitral in-flow.
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Figure 7 Three-dimensional blood flow visualization in the pulmonary system based on time-resolved 3D pathlines in a normal volunteer. Systolic pulmonary outflow with high blood flow velocities
(red colour) is followed by lower diastolic flow with mild helix flow (solid white arrows) and mild retrograde flow (open white arrow) in the right pulmonary artery. Top left: retrospective flow quan-
tification was employed to calculate flow-time curves in the main, right, and left pulmonary artery. PA, pulmonary artery.

Intracardiac
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inside the LVweremarkedlyaltered inpatientswith dilatedcardio-
myopathy.5,36

LV vortices’ presumed role in energy preservation seems to be
related to a combination of their location, size, and intensity. As
previously mentioned, VFT provides a good basis for analysing
the generation of vortices and how this influences its haemo-
dynamic significance. However, direct visualization and quantifica-
tion techniques seem to provide a whole different range of
parameters that may also determine different aspects of cardiac
performance. In addition, other determinants of flow patterns
inside the LV non-vortex related, such as a direct flow within the
LV from the left atrium through the aortic valve, has shown to
be decreased in patients compared with healthy volunteers.37

Right ventricular flow
Advances in the study of right ventricular (RV) 3D flow have been
made lately, showing a relation between RV ejection fraction and
blood residence time in it.38

Assessment of cross-orifice flow
Flow visualization techniques open new options to quantify flow
across regurgitant, stenotic or artificial valves,21,39– 41 atrial septal
defects, or aortic coarctation42 –45 with reasonable accuracy.
Recent studies have shownthat 4Dflow MRIcan providenew insights
into the impact of aortic valve disease on changes in aortic haemo-
dynamics such as significant changes in wall shear stress associated
with bicuspid aortic valves.46

Other
Applications include thedetectionof areas ofpotential thrombus for-
mation due to slow or stagnant flow,47 left atrial flow,15,48 or changes

in flow motion in paced rhythms.49 Several groups have reported
advances in the analysis of blood flow through artificial valves,
blood flow characteristics in the thoracic aorta,50,51 peripheral
vessels,52 carotid arteries,53 large intracranial arteries,54 as well as
flow in the pulmonary and venous systems.55

Conclusions
A series of technical advances have opened the possibility to visualize
and analyse intracardiac blood motion, generating new options to in-
vestigate flow patterns that provide additional information to the
functional status of the heart. One of the main determinants of intra-
cardiac flow is vortex behaviour, which has already shown to be asso-
ciated with optimal cardiac performance.

Results from initial studies already demonstrate the potential of
these techniques to detect pathologically altered flow characteristics
and identify new patho-mechanisms for the development of cardiac
and vascular disease. Ongoing improvements in the accuracy and
feasibility of the available techniques together with a growing knowl-
edge on the main determinants of blood flow in the cardiovascular
system should lead us to finding the right parameters to incorporate
to our current range of diagnostic tools.
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Table 2 Flow measurement: correlation to clinical and echocardiographic indices

Region Measured parameter Correlation Technique

Left ventricle Vortex size

�Length
�Depth
�Sphericity index
�Width

Decreased LV systolic function Echo-PIV, VFM

Vortex intensity

�Relative strength
�Pulsation correlation
�Time to peak kinetic energy
�Flow volume

LV systolic dysfunction
LV diastolic dysfunction
Wider QRS, LV dilation

Echo-PIV, VFM

Vortex location

Persisting at apex during ejection
LV systolic dysfunction VFM

Right ventricle Blood residence time
Differential regional function

RV systolic function
RV function in pulmonary hypertension

CMR, 3D-echo

Left atrium Vortex formation Prevention of blood stasis CMR

Valve disease

Cross-flow quantification
Solid correlations with haemodynamic or

imaging gold standards
CMR, VFMAtrial septal defects

Aortic coarctation
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We report the case of a 40-year-old male
known carrier of the Becker muscular dystrophy
(BMD) who presented with fatigue in the out-
patient clinic. Echocardiographic examination
revealed a regional inferior left ventricular (LV)
wall motion abnormality (Supplementary data
online, Movie S1).

A cardiovascular magnetic resonance imaging
study (CMR) was indicated, showing a near
dilated left ventricle with hypokinesia in the mid-
inferolateral and lateral segments (Panels A1–
C2) in the SSFP cine images (Supplementary data
online, Movies S2–S4) and mild depression of
LV ejection fraction. Late gadolinium enhance-
ment (LGE) imaging (Panel D–F ) depicted ex-
tensive mesocardic fibrosis in the mid-septum
and lateral wall, with a distribution pattern
similar to the observed in similar cases. CMR
tagging sequences (Panels G1–G3) showed a
reduced (88) LV myocardial torsion (LVT) between the base and the apex (Supplementary data online, Movie S5).

Although our case presented already with LV dysfunction, mid-wall myocardial fibrosis and reduced LVT can be present at early stages
of the disease, before the onset of cardiac symptoms, making contrast enhanced CMR an accurate imaging technique to detect early cardiac
impairment in patients with BMD.

Systolic and diastolic CMR images of the LV longitudinal long-axis (A1 and A2), horizontal long-axis (B1 and B2) and short-axis views
(C1 and C2). LGE CMR images of the longitudinal long-axis (D), horizontal long-axis (E) and short-axis (F ) views. Arrows indicate the myo-
cardial fibrosis regions. Basal (G1) and apical (G2) views of tagged CMR images and curves showing LVT impairment (G3).

Supplementary data are available at European Heart Journal – Cardiovascular Imaging online.
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