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Abstract

In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates
to assess diagnostic test accuracy in situations where the true disease status is not observed, but
observations on three or more conditionally independent diagnostic tests are available. A fast Monte
Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate
parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of
covariates. To obtain standard errors for confidence interval construction of estimated parameters,
the missing information principle is applied to adjust information matrix estimates. We compare the
adjusted information matrix based standard error estimates with the bootstrap standard error estimates
both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation
demonstrates that the adjusted information matrix approach estimates the standard error similarly
with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have
satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects
from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis
in women with atypical glandular cells of undetermined significance (AGC) to compare the
diagnostic accuracy of a histology-based evaluation, a CA-I1X biomarker-based test and a human
papillomavirus (HPV) DNA test.

Keywords

adjusted information matrix; bootstrap standard errors; diagnostic accuracy; imperfect gold standard;
latent class model; MCEM estimation

1. Introduction

Standard measures of diagnostic accuracy include sensitivity (probability of positive diagnosis
given disease), specificity (probability of negative diagnosis given no disease), positive
predictive value (probability of disease given positive diagnosis), and negative predictive value
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(probability of no disease given negative diagnosis). A discussion of the relative merits of these
diagnostic accuracy measures was presented in [30] and [31].

In medical literature the focus has been primarily on the estimation of sensitivity and specificity
because these measures usually can be considered as characteristics of the diagnostic tests that
are not influenced by varying prevalence or characteristics of the population. Positive
predictive value (PPV) and negative predictive value (NPV), on the other hand, vary with the
prevalence of disease in the population.

Note that sensitivity and specificity can be evaluated based on the premise that the true
classification is known, i.e., a gold standard (GS) test that is regarded as definitive exists. In
practice, it is often difficult, inappropriate, or impossible to have a true GS test because of
prohibitive time and cost, risk to the living subjects or ethical concerns[45]. It has been found
in about 1/3 of all medical articles, describing diagnostic test evaluations, that no well-defined
GS was used [42]. In most such cases, naive estimates of sensitivity and specificity were
calculated by treating a reference method as if the reference was a “perfect” GS. Several authors
[e.g., 14, 40] have pointed out that such naive estimates are biased and, therefore, the
misclassification in the reference test should not be ignored. Thus, the problem of assessing
the accuracy of diagnostic tests when there is no perfect GS against which to compare is
commonly faced by biostatisticians.

Latent class models (LCM) have been proposed as a statistical technique that allows such
assessment [1, 37, 45]. An extensive treatment of LCM analysis was first presented in [20]. In
traditional LCM applications, a dichotomous latent variable is used to indicate the true disease
status of each patient. The test results are assumed conditionally independent (CI) given the
latent disease class variable. A system of nonlinear moment estimating equations (MEES) is
constructed, setting the joint cell probabilities equal to functions of conditional probabilities
of test results given disease status (sensitivities/specificities) and probability of disease status
(prevalence). With a minimum of K = 3 observed tests, the MEEs can be uniquely solved
because the number of parameters, 2K + 1, is equal to the available degrees of freedom, 2K —
1.

Although applying MEEs to LCM analysis is straightforward, several difficulties arise. For
instance, the numerical estimates for sensitivity, specificity and prevalence from MEEs may
be out of interval [0, 1]. The prevalence in MEEs applied to traditional LCM is assumed to be
constant, which might not be appropriate for some diseases, e.g., HPV prevalence in the United
States, where risk of the disease may vary with age. Furthermore, this method does not handle
the over-identified case well. When the number of MEEs to solve exceeds the number of
parameters, the over-identification problem exists and is handled only in an ad hoc fashion.
Lastly, the ClI assumption may not always be valid. Estimators of diagnostic accuracy and
disease prevalence can be problematic when the assumption of Cl is violated [44]. Various
extensions of traditional LCM have been proposed to relax this Cl assumption [e.g., 43, 50,
51].

Alternatively, when three or more tests are applied simultaneously to the same individuals, the
measures of test accuracy and true prevalence in the populations can be routinely estimated by
maximum likelihood (ML) methods [e.g., 1, 2, 4, 16, 37]. The expectation-maximization (EM)
algorithm can be used as an estimation tool in LCM analysis [6, 24, 47]. When the E-step in

an EM algorithm is intractable because of difficulty in computing the expectation of the log-
likelihood, Monte Carlo EM (MCEM) algorithm [3, 47] is suggested.

The EM/MCEM algorithm, however, does not produce standard errors of estimates directly.
Louis [26] and Oakes [35] derived formulas for standard errors when using the EM algorithm,
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based on the missing information principle [36], by extracting the observed information matrix.
McLachlan and Krishnan [29] recommended Louis’s method as the one best suited to be
adapted for MCEM, although the performance of Louis’s adjusted information matrix for
standard error estimates in MCEM is not yet clear.

In this article, we implement a fast MCEM algorithm to estimate parameters of interest and a
Monte Carlo version of Louis’s formula for standard error estimates. Our study also compares
the standard error estimates from Louis’s formula with the bootstrap standard error estimates
[9, 10] in MCEM settings through an extensive Monte Carlo study. Simulation demonstrates
that the Louis adjusted information matrix based approach usually overestimates standard error
when the sample sizes are very large (n = 500). When sample size is moderate (e.g., n = 122),
Louis’s formula estimates standard errors that are similar to the bootstrap standard errors.

Considering the coverage probabilities, the bootstrap percentile intervals are the most accurate.

The rest of our article is organized as follows. The motivating data example is described in
Section 2. In Section 3, we first briefly summarize the proposed LCM technique and describe
the fast MCEM algorithm for estimation in LCM analysis. We further study the performance
of the proposed fast MCEM algorithm by discussing the rate of convergence for varying sizes
of the observed and simulated samples as well as the levels of tolerance. We also present
standard error estimation using Louis’s formula within MCEM framework. A simulation study
follows in Section 4 comparing standard error estimates and confidence interval coverage
probabilities between Louis adjusted information matrix based approach and bootstrap
approaches. In Section 5, we focus on the application to the motivating data example. We close
with Section 6 on a broader discussion on LCM for evaluating diagnostic tests in the absence
of a perfect GS.

2. Motivating Example

As recently as the 1940s, invasive cervical cancer was a major cause of death among women
of childbearing ages in the United States. However, with the introduction of the Papanicoloau
(Pap) smear in the 1950s—a simple test that uses exfoliated cells to detect cervical cancer and
its precursors—the incidence of invasive cervical cancer declined dramatically. Between 1955
and 1992, cervical cancer incidence in this country declined by 74% [32].

Many researchers [18, 21, 48] found that women with a cytological diagnosis of atypical
glandular cells of undetermined significance (AGC) from Pap smear had a high rate of
intraepithelial neoplasia or invasive carcinomas. Yet a notably high percentage of women with
AGC [72% reported in 25] do not have a significant cervical lesion (SCL) and do not require
the aggressive level of treatment that is often provided to those women. After a diagnosis of
AGC, additional screening to distinguish between those women who have significant cervical
precancerous or cancerous lesions and those who do not is needed to avoid an unnecessarily
high referral rate and over treatment of healthy women.

Research conducted by the National Cancer Institute (NCI) and other investigators throughout
the 1980s and 1990s demonstrated that in the United States virtually all cases of cervical
neoplasia are caused by persistent infection with specific types of human papillomavirus
(HPV), which can be transmitted by sexual contact. Dunne et al. [8] in their paper found a
statistically significant trend for increasing HPV prevalence aged from 14 to 24 years among
females (P < 0.001), followed by a gradual decline in prevalence through 59 years (P = 0.06).
They indicated that the burden of prevalent HPV infection among females was greater than
previous estimates and was highest among those aged 20 to 24 years.

Liao etal. [25] in their GOG-0171 study reported that in the United States additional screening
for HPV status by the Digene® Hybrid Capture 11 (HC2) High-Risk HPV DNA test among
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women with AGC produced a 97% sensitivity, 87% specificity, and a 99% negative predictive
value (NPV). In short, the HC2 method detects presence of any one or more of 13 high-risk
type of HPV DNA including HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68
in a liquid-based cytology specimen. Thus, HC2 testing following a diagnosis of AGC fairly
accurately identified those women with SCL. Their paper also assessed the accuracy of a
carbonic anhydrase IX (CA-1X) biomarker of SCL and reported an overall sensitivity and
specificity of 75% and 88%, respectively, and a NPV of 90%.

All of the accuracy statistics reported in [25] were based on an imperfect “Gold

Standard” (“GS”) diagnosis determined from histological evaluation of the cervical
transformation zone within 6 months of the initial cytologic diagnosis of AGC. This “GS”,
however, produced observations that were contaminated to some degree by misclassifications.
It is known that misclassified “GS” diagnosis caused a bias in the accuracy estimates when
using the diagnosis as if they are the truth [14]. The estimates are generally biased toward zero,
thus underestimating true accuracy, with the bias increasing with the percentage of
misclassifications by the “GS”.

We want to assess the diagnostic accuracy of the HC2 test and the CA-1X tumor-associated
biomarker as well as the histology-based “GS” without assuming true disease status is known.
Either a positive (1) or negative (0) result is recorded for histological evaluation, CA-1X
biomarker test, and HC2 test for each individual. Given the association described above of
HPV prevalence with age [8] and hence, with cervical neoplasia, it is necessary to allow
prevalence in the LCM to vary with age.

3. The Proposed Method

Let the latent binary variable X indicate the presence (X = 1) or absence (X = 0) of true disease.
We observe the results of K (K = 3) binary test variables, {Y1, ..., Yk}, foreach ofi =1, ...,
n patients. One of these variables may be the best available but yet imperfect reference test,
and the others may be newly developed tests that would offer an advantage over the reference
test, if accurate. A statistical model with vector parameter 0 is assumed for the joint distribution
of {Y1, ..., Yk} given X, denoted by Py (Y1, ..., Yk | X), and for the distribution of X, denoted
by Pg (X =X).

3.1 Conditional Independence Assumption

The simple yet popular model for Pg (Y1, ..., Yk|X) assumes conditional independence (ClI),
i.e., given the unobserved true disease status X, the test variables {Y, ..., Yk} are statistically
independent. In this case the likelihood function is

n K
.,S,”(&):H {Hpo(YEHXi)} Py(Xi=z;). (1)

i=1 (k=1

Wasserman [46] argued this CI assumption intuitively means that once you know the true
disease status X, the test result of Y1 provides no extra information about any of Y», ..., Yk test
results, which is reasonable in diagnostic settings for tests that have different bases, e.g.,
histology-based versus DNA test. The sensitivity and specificity of test k are Py (Yixk=1| X; =
1) and Py (Yjk = 0| X; = 0), respectively. The prevalence of disease is Pg (X; = 1).

It is worth noting that even relaxing this CI assumption, the workflow to use our proposed
algorithm in LCM analysis would stay the same. However, to focus more on the following
estimation part, we assume ClI holds at this stage.
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3.2 Model Specification

In the current application, it is necessary to modify the traditional LCM to allow prevalence to
vary as a function of covariates [e.g., 12, 15]. The prevalence Py (X; = X;) in Equation (1) is
replaced by Pg (Xi = X; | Z;), where Z; is, potentially, a vector of covariates that are thought to
affect the prevalence of disease. In our application, Z; includes the variables age and age
squared.

Since {Y1, ..., Yk} and X are dichotomous variables, it is natural for us to model Pg (Yik | X;)
and Pg (X | Z;) using logistic functions. The models are specified as

exp(Bor+L1:Xi
Py(Yi=1|X;)= ( ! )" "
1+eXp(ﬁOk+ﬁ1le)
Py(Xi=1|Z;)= exp(Yo+nZi+1227) o
o ' 1+eXP(70—I—'y1Zi+72212)'

We use quadratic function to model the logit of Py (X; = 1| Z;) because this pattern is indicated
from raw data summary statistics as well as in [8]. In this setup, the vector parameter 0 is being
estimated rather than accuracy parameters themselves (sensitivity, specificity, and prevalence).
This model specification guarantees that the diagnostic accuracy parameter estimates
calculated from estimated © are always bounded in [0, 1].

If the values of X were observed, by maximizing the complete data likelihood

n K
Z(0x,y,2)=]] {H [Pemk:lXz-n’“k-”[Pe(m:oX»]””k“’)}x[Pe(Xi:lZm“x'—”[P0<Xi=0|zz->1”x"-°>.,
1=1 k=1

we would obtain the estimate for 6 = [Bo1, B11, ---» Bok: Bik: Yo» Y1, Y2] and thus estimates for
sensitivities, specificities and prevalence. Unfortunately, X’s were not available in LCM
analysis. That is to say, we cannot directly apply ML method to % (; X, y, 2). Instead of
dealing with complete data likelihood, the usually less tractable observed data likelihood,
which integrates out the unobserved variable X, can be maximized,

n K
Zu0:y.2)=]] [ {H[Pe<m—1|Xi>]’<“=”[Pe<m—0|xi>1““:")}X[P9<Xi—1|zi>1”f=”[P9<X1-—0|Z»]“XF%F(X),
i=1" X (k=1

where F (') is the distribution function for random variable X.

3.3 EM Algorithm

EM algorithm [6, 19] is an iterative method for ML parameter estimations when some of the
random variables involved are not observed, and is very useful when maximizing %gps can be
difficult but maximizing the conditional expectation of complete data log-likelihood given the
observed data is relatively simple. Given a previous parameter estimate 8(-1), EM obtains an
updated parameter estimate 8 by maximizing the conditional expectation of complete data

log-likelihood
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Q (00 V) = [ logZ(6:X,y,2)aF (Xly. 2,00 o
X

with respect to 0. The conditional distribution of X; for the it" individual under our model
specification and CI assumption is

K
1:1 Fo (yik
Py (Xi|Yia Zi,e(tfl)) — kflK |
3 11 Py (yix| Xi, 6=01"1) Py (X2, 6=60D)

X k=1

X, 0:90—1)) P, (Xi|zi, 9:9@—1))

Under regularity conditions [6, 46, 49], o0 - 9ast — 0o, where 0'is the ML estimate. It is
shown that the observed data likelihood function evaluated at 8 is nondescending with
increasing t [49].

3.4 Monte Carlo EM Algorithm

We show above that the integral Q(@; 8 ("1} in Equation (4) can be calculated as weighted
sum under our model specification. More often than not, however, it is analytically intractable
or involves tedious evalution. Numerical quadrature integration is possible. Alternatively, the
Monte Carlo EM (MCEM) as a modification of the EM algorithm was proposed [24, 47] where
the conditional expectation step is computed numerically through Monte Carlo simulations.
Let M Monte Carlo (MC) samples generated at t iteration for the it individual

xP,.  xOXF (Xi|}'i-,zi70(t71)), when M — oo,
Q (o0 Y) == iilog.ﬁ’ (0:x5,y1,2) @ (0647
] li=1

MCEM maximizes Q instead of Q to obtain " and 0 —fast— 0o, M — oo.

M

Levine and Casella [24] discussed Markov chain Monte Carlo routines such as the Gibbs and
Metropolis-Hastings samplers [27, 28] as general approaches to obtaining MC samples in each
iteration of an MCEM algorithm. However, in the following section, we would utilize the
property of independent MC sampling and present a fast MCEM algorithm that is
computationally efficient with binary data.

3.5 A Fast MCEM Algorithm for LCM Estimations

Recall that under the CI assumption, the it individual’s contribution to the complete data log-
likelihood is
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logZ.(0;X;,yi, 2)

K
exp(Bok+516Xi) 1 }
=3 {I(y=1)1 I(y=0)]
kl{ (i )Og1+exp(50k+»’31kXi)+ (bt )Og1+exp(50k+/31kXi)

FI(X;

=1)lo
+I(X;

exp(yo+m1 Zi""YZZ? )
1+exp(Yo+712i+7227)

1
1+exp(Yo+m1zi+7222)

=0)log

We use capital X; to emphasize that the latent variable is unobserved. Again from Bayes’
theorem,
P (X;=1ly;, z,6"V)
P (inXi=1,9<t—1>) P (Xizl\zi,a(t—l))
T h0P (yilXi=d, 00 D) P (X;=d]z,, 00 D)
K
{ Ir (yik|Xi=1,9(t*1)) } P (Xi:1|z1-, e(tfl))
k=1
1

K
> { [1 P(yik|Xi:d~,0(t_1))}P(Xi:d|zis6(t_1))
d=0 | k=1

Note that modifications to the above equations are straightforward when we do not assume CI.

The usual data augmentation approach [47] to MCEM would involve generating

t) iid i
Xi(j> o P (Xi|yi,zi, o 1)),j =1, 2, ..., M observations and substituting into an augmented
data (i.e., each observation in the original data set to be augmented and paired with generated
Xij’s at each iteration) log-likelihood to complete the E-step of the MCEM algorithm. Because

the Xi(;) in this study are Bernoulli observations [11], computational efficiency can be gained
by working with the associated binomial distribution instead. The calculation of the ith
individual’s contribution to the expected log-likelihood can be written as follows:
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EjlogZ, (0:X". yi, %)
1

M (Zx(t)) Lzl {1 (yix

j=1
exp (55 +617)
14-exp (ﬁok +ﬂ(t))

=1)log

exp (70" +91"2495"22) 1 (

+_
Trexp (W10 zt0y022) M

+1(y;,=0)log

M K
. zxf?) >t
= k=1

1+exp (ﬁOk +ﬂ(t)) log
e ()
_1)log1+exp (ﬁ&))

+1(Yi
1
=0)log—————+
e (70) }
1

+1Og1+exp (’Y((J S0zl 22 )J

This means rather than using the generated random samples in an augmented data log-
likelihood function, we only need to count the number of generated 0’s and 1’s. This still
requires heavy random sampling when M is large. Notice that here we utilize the property of
independent MC sampling of M Bernoulli trials. Due to the fact that the sum of iid Bernoulli
random variable follows binomial distribution, we could directly sample the number of 1’s out
M
of M from the binomial distribution. This is to say, we will replace ijng) in Equation (6)
with random count C") ~ Binomial (n, p)with n=Mand p= P(X; = 1]y;, , 60). It is worthwhile
to point out that our implementation of the MCEM algorithm is not a new version from the
Wei and Tanner [47] algorithm but rather a computationally faster version of it. Therefore, it
is expected that statistical properties of the MCEM estimators studied in the current paper also
hold for the estimators defined by the Wei and Tanner [47] algorithm. For the maximization
step, commonly used optimization methods can be applied [e.g., see 7, 34]. When M is large,
this technique would greatly reduce the computing time and cost.

3.6 Rate of Convergence for the Fast MCEM Algorithm

In this section, we study the rate of convergence of our proposed fast MCEM algorithm for
varying sizes of the observed and MC simulated samples as well as the levels of tolerance.
Because the computing time is dependent on machine capability, e.g., computer processor
frequency and memory capacity, it is better to study the rate of convergence in terms of number
of iterations till convergence.

It is known that number of iterations t for a convergent solution Gaepends on the size of both
observed sample nand simulated MC sample M, as well as the tolerance criteria 6 for stopping
iterations. Here & is defined as the stopping criteria for the fast MCEM algorithm, i.e., a

convergent solution 0'is reached if |\é§? - éf\t[_l) |<é. Table 1 summarizes the rate of
convergence of the algorithm. From the table, we could see that with the increase of simulated
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MC sample size M, the number of iterations needed for a convergent solution decreases. Also
if the observed sample size n is larger, it is easier to reach convergence. However, if the
tolerance criteria is more stringent, it takes more steps to reach a convergent solution, which
is expected.

Several colleagues [e.g., 3, 17, 23, 24, 38] discussed automated rules for increasing the MC
simulated sample size when the Monte Carlo error overwhelms the estimate at certain given
iteration. From Table 1, a larger M corresponds to a smaller number of iterations needed for a
convergent solution. Furthermore, with our fast MCEM algorithm, choosing a large M does
not increase the computing cost significantly. Table 2 shows an illustrative example on
computational efficiency. Therefore, it is always advised to consider a large (fixed) M across
the iterations when using our fast MCEM algorithm.

3.7 Standard Error Estimations in MCEM

After obtaining the MLE eﬁ~sing the proposed fast MCEM algorithm, it is necessary to estimate
the covariance matrix for 0. The Fisher information [22] cannot be measured because of the
unobserved/missing variable in the complete data likelihood function.

Louis [26] presented an adjustment technique for computing the observed information within
the EM framework. Let #(x, 0) be the gradient vector of log A®8; X, y, z) and (X, ) be the

associated second derivative matrix. We assume that the regularity conditions [41] hold. These
guarantee that the Fisher information exists. The observed information is

1, (0)=Eo{~#(X.0)} - Varg{.# (X.0)}. ()

For a detailed proof, please see the Appendix of [26]. Notice that all of these conditional
expectations can be computed in the EM algorithm using only .#(x, 8) and #(x, 0), the score
vector and Hessian matrix [33] for the complete data problem. In the MCEM setting,

M

1,0) = 3724

n M n
S (580) - { B (00) 0

7j=1 li=1
1 M ® n ® 1M ® T
e () £ (00 - 85 (300)]
J=Ll= 1= j=li=

is an analogue observed information, which is an extension of Robert and Casella’s formula
(see [39], pp. 186-187). We give computer code in the Appendix for calculating (i, j) element
of Iy () in Equation (8).

Plugging in e,NIy(e)~couId then be inverted to get the estimated covariance matrix of 0. The
multivariate delta method could be applied to obtain standard errors of accuracy parameters
(sensitivity, specificity, and prevalence) given the specifications in Equations (2) and (3).

Alternatively, the estimated standard errors of 6 could be computed through bootstrap
resampling [9, 10]. The procedure is as follows. Resample the original data by row (subjects)
with replacement and compute the estimated parameter 850t based on resampled data using
the fast MCEM algorithm. Repeat this resampling step B = 1000 times and each time we get
an estimated parameter 6,qq:. Finally, due to the bootstrap plug-in principle we would get an
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estimate of the sampling distribution of parameters of interest. The results of Louis’s formula
and the bootstrap for standard error estimates from the fast MCEM are to be compared.

4. Simulation Studies

We fix the ages, Zj, in our first simulation study, to be those in the original GOG-0171 dataset
(n=122). In the second and third simulation study, Z;’s ~ Uniform(2.0, 7.1) are generated with
n=500 and n= 1000, respectively. The simulated MC sample size M and the level of tolerance
§ are fixed at 10000 and 1074, respectively.

The unobserved truth, X;, i =1, 2, ..., n, was generated from independent Bernoulli trials with

-1
P(X;=1|Z;)= [1+6XD(70+712:'+7221-2)71] , where yg = —1.5093, y; = 0.7245, v, =
-0.1271. This trend was indicated from the raw data as well as in [8]. The test results Yjx given
Xi, k=1, 2, 3, were generated from independent Bernoulli trials with P (Y; = 1]X;) = [1 + exp
(Bok + P1rXi) 1172, where ok, B1i’s are preset according to true accuracy parameters (sensitivity
and specificity). For instance, if Box = —1.7346, B1x = 4.0482, this parameter setup would
correspond to a sensitivity of 0.91 and specificity of 0.85 for test k. That is, we inversely solve
for Bok and B1x based on Equation (2), 0.91 = exp(Bok + P1k)/ {1 + exp(Bok + Bk}, 0.85 =1/

{1 + exp(Boi)}-

Each of the randomly generated datasets is to be analyzed by the fast MCEM to obtain
parameter estimates. Following Section 3.7, standard error estimates for the parameters are
derived from Louis’s formula in MCEM. The 95% confidence intervals based on normal
approximation are computed for estimated accuracy parameters. The coverage probabilities as
well as expected interval lengths are also investigated with 1000 Monte Carlo samples. For
each of the 1000 Monte Carlo samples, bootstrap standard error estimates were derived by
resampling B = 1000 times to obtain 1000 resampled datasets. An asymptotic 95% bootstrap
confidence interval based on normal approximation as well as on bootstrap percentile were
calculated for comparison.

The results of the simulation studies are summarized in Tables 3-5. The MCEM parameter
estimates are nearly unbiased, very close to the true values on average. This suggests that with
appropriately chosen initial values for MCEM iterations, the fast MCEM algorithm for the
estimation of LCM parameters provides consistent and unbiased estimates for the chosen n.

De Menezes [5] has shown that the standard error based on the asymptotic information matrix
evaluated at the MLEs can be problematic when data are sparse. In our analysis with binary
test outcome, compared to the bootstrap method, Louis’s formula for adjusting information
matrix based estimates of standard errors performs reasonably well when n=122. However,
when sample sizes are getting large, e.g., n =500 or n = 1000, Louis’s formula overestimates
the standard errors resulting in much wider interval lengths for many simulation configurations.

When the true parameter is close to a boundary value of 1, the coverage probability is smaller
than the nominal level of 95% for normal intervals from both Louis’s adjusted information
matrix and the bootstrap method with sample size n = 122, while the bootstrap percentile
interval has coverage closer to the nominal level. With sample size n = 500 and n = 1000,
bootstrap confidence intervals generally have nominal coverage. We argue that it is probably
due to greater asymmetry when the true parameter is close to boundary and thus large sample
sizes are needed to hold the asymptotics. For this reason, the range-preserved bootstrap
percentile method is preferred in constructing confidence intervals for sensitivities and
specificities.
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Nevertheless, Monte Carlo studies suggested that n = 122 is sufficiently large for the MLE
asymptotics to hold approximately (Config 1). This indicates validity of our LCM analysis in
the real data analysis with n = 122,

5. Analysis of GOG-0171 Data

The purpose of this study was to apply a LCM analysis to GOG-0171 data from the United
States to assess the diagnostic accuracies of the HC2 test, CA-IX biomarker-based test, and
the histological lesion evaluation, i.e., the imperfect “GS”. The dataset contains 122 patients
with ages ranging from 2.0 to 7.1 (in decades). Of these, 38 were diagnosed positive by the
imperfect “GS”; the CA-1X biomarker-based test detected 31 positive patients; and the HC2
test captured 48 positive cases.

Estimated sensitivities, specificities, bootstrap standard errors and corresponding 95%
percentile-based confidence intervals (Cls) are presented in Table 6 for each of the tests. The
estimates obtained by treating the histological lesion evaluation as the “GS” are also presented
to illustrate the impact of its imperfection on accuracy estimates.

The logistic regression model with a quadratic predictor was fitted for the prevalence of SCL,
pi = P (X = 1|Z). The fitted curve in linear predictor form was:

log (1 . ) = — 1.50934-0.7245 x Age(in decade) — 0.1271 X Age? ©

The estimated prevalence curve with 95% confidence bands superimposed is plotted in Figure
1. To see how well the model fits the data, we categorized the patients into 5 groups based on
their ages in decade: < 3; < 4; <5; < 6; > 6, and computed the positive rates for each category
based on imperfect “GS”. The fitted curve follows the raw SCL prevalence trend, which is
consistent with the trend observed in [8].

Positive predictive value (PPV) as well as the complement of negative predictive value (1
—-NPV) were calculated based on the estimated probability that women have a SCL given CA-
IX, HC2 and “GS” test either positive or negative. Because the prevalence of the disease varies
with the age of the woman, PPV and 1-NPV vary with age. We present the PPV and 1-NPV
curves together with the corresponding confidence bands for each test in Figures 2—4,
respectively.

6. Discussion

From Table 6, we found “GS” was nearly perfect. This validated its use in the previous
GOG-0171 study in which histological evaluation is considered as the GS.

CA-IX test had the lowest sensitivity to detect the cervical neoplasia. CA-IX is a
transmembrane protein and the only tumor-associated carbonic anhydrase isoenzyme known.
It is expressed in all clear-cell renal cell carcinomas, but is not detected in normal kidneys or
most other normal tissues. It may or may not be involved in cell proliferation and
transformation. Therefore, it is not odd that CA-IX test performs not so well. 1-NPV of the
CA-IX test is unacceptably high for clinical use in determining whether a patient can safely
forego an excisional procedure in favor of observational follow up.

The HC2 test, which detects high-risk HPV DNA types that are highly carcinogenic, has quite
good performance considering the overall sensitivity and specificity. From the 1-NPV curve
for HC2, a negative HC2 result is sufficient to safely rule out a SCL and forego the invasive
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treatment that is often provided to women from the United States with AGC. Such treatment
is not safely indicated by a positive HC2 result alone, as at least 18% of women with a positive
HC2 result did not have a SCL and underwent an invasive procedure that was not necessary.
Further research to find additional biomarkers that will increase specificity and allow
identification of HC2 test positive women who have a SCL is needed.

In this article, we replace the generation of M values from the Bernoulli distribution with a
value generated from the Binomial in the MCEM algorithm to gain computational efficiency.
It is shown that our fast MCEM algorithm for parameter estimation in LCM is accurate. We
also address the problem of comparison between Louis’s formula and bootstrap standard error
estimation in MCEM, which is the first time study of this kind to our knowledge. The adjusted
information matrix based estimates of standard errors from Louis’s formula in MCEM can
provide Cls with satisfactory coverage probabilities when the sample sizes are moderate,
except when the true parameters are close to boundary values. When the sample sizes are
getting large, say, n=500, Louis’s formula overestimates standard errors providing confidence
intervals too conservative. We also need to point out that Louis’s formula in MCEM requires
augmented data with generated 0’sand 1’s. See Equation (8). Of course, they need be evaluated
only once on the last iteration of the MCEM procedure [26].

Bootstrap standard error estimation in MCEM is relatively computationally intensive, but with
our fast MCEM algorithm, it is a straightforward approach. The proposed fast MCEM
algorithm does not require heavy random generation of 0’s and 1’s but only the number of 1’s
out of M trial at any iteration, which requires only a binomial sampling process. Simulation
studies also indicate that bootstrap percentile interval has the best coverage properties.

It is known that in MCEM estimation, a Monte Carlo error is introduced at the E-step and the
monotonicity property of EM algorithm is lost. In our study, we also noticed this phenomenon.
Our experience suggests using a large M, e.g., M = 10000, from the very beginning of MCEM
iterations to decrease the Monte Carlo error when approximating the expected log-likelihood
function. See Figure 5 with n = 122 and level of tolerance § = 10~4. As we already pointed
out, choosing a large M does not increase the computing cost significantly with our fast MCEM
algorithm. Thus, it is advised to consider a large M when using our fast MCEM algorithm.

Last but not least, there have been concerns about the conditional independence assumption in
LCM analysis applied in diagnostic test settings [e.g., 13, 44]. It is important to realize the fact
that different tests measure different biological processes does not always indicate that the
different tests are conditionally independent given the truth. Failure to account for conditional
dependence might lead to potential bias in diagnostic accuracy and prevalence estimation. In
our study, our biological expertise provides reasonings that validate conditional independence
assumption. On the other hand, it is not possible to model or test conditional dependence
structure in LCM analysis for this study because there are only three diagnostic tests [20].
Future research incorporating conditional dependence is needed when additional diagnostic
tests enter into the study.

In summary, our purpose in this article is two-fold: (1) to derive a fast MCEM algorithm for
the general estimation problems in LCM analysis, and (2) to compare the standard error
estimates from adjusted information matrix approach with the ones from bootstrap method in
MCEM framework. The main advantages of implementing our fast MCEM algorithm are that
deriving the E-step for any kind of likelihood function is numerically straightforward and
bootstrap standard error or confidence interval estimation within MCEM framework becomes
computationally accessible. We hope that the fast MCEM algorithm, our modification to LCM,
demonstration of superior coverage of bootstrap confidence intervals relative to adjusted
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information based intervals, and their applications in this paper will promote the use of
enhanced/improved LCM analysis in assessing diagnostic accuracy in the absence of true GS.
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Appendix A

Technical Detail

A.1 Mathematical Derivation

Louis’s formula requires the score vector and Hessian matrix of complete data log-likelihood
function. For instance, given the specifications in Equations (2) and (3),

lo ga,X“ iy 25
50087 (0:Xi,yi, 2:)

=1(yir
14-exp(Bok+L1xXi
—~0) exp(Bor+511:Xi)
14+-exp(Bor+B11X5)

=1(Yix

=1)

) - I(yik

__exp(Bor+P1eXi)
1+exp(Bok+B1xXi)

In a similar way, we could derive the following quantities,
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O log=X; { I(yin=1) — exp(Bor+B1X) )}

OBk 1+exp(Bok+0B1xXi
o ; 2
2 g o=1(x,=1) — ~POOTNETNRE)
M0 1+exp(yo+712i+7222)
9 ; 2
_logi”:zi I(Xzzl) . eXp(70+7121+’y221 )2 7
oM 1+exp(Yo+712i+7222)

ilog$:z2{l(xi=1) _ oplntnatns) }
972 ! 14exp(Yo+712i+7227)
P o exp(Bok+P1xXi)
O35, [1+exp(Bor+B1x Xi)]*
B 3_210 _ XZexp(Bor+PukXi)
9B [1+exp(Bor+581xX:)]>
& log.F— Xiexp(Bor+B1xXi)
9BokIPrk [1+exp(Box+B1x Xi)]>
_ P g = SPOoimzitezl)
NG [1-+exp(ro+mzit7227))
B 8_210 __zlexp(otmizite2?)
ot [1-+exp(o+rzitr222))
& zlexp(yotnzit+ae2?)
3" " [Texp(rotmzitrez?)]
9 e V= ziexp(Yo+712i+9227)
970711 [14-exp(Yo+m Zi—f-’)/QZ,?)]Z ’
_ @ log &= zlexp(Yo+mzi+y22})
970972 [1+exp(ro+mzit7222)])
— ’ log.¥= zlexp(Yo+12i+7227)
071072 [1+exp(Yo+m1 zi+7221.2)]2 ’
The sensitivity and specificity are computed from estimated 0,
. exp(Bok+L1k e 1
Sensitivity=Pp( Yik=1|Xi=1):WOk+ﬁl)k) Specificity=Pp( Yik:0|Xi:0):m
as well as estimated variances of sensitivity and specificity,
T
Var(Sensitivity)= [aPo(Ylk%I‘Xl 1)] [Bor»B1x] [aPG(Ym%I'XZ 1)]
Va’r‘(Speciﬁcity):[8P6(Yik8:00|Xi:0)] TV[ﬁOkl [BPH(Y%;&O'Xi:O)] s

where Vis the estimated variance-covariance matrix of ©.
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A.2 R Code for Elements in Equation (8)

inv.logit <- function(x) p <- exp(xX)/(1+exp(x))

B R T T R R R
HHHHHHHHAHE For calculating standard error #HHHHHHHHE
B R T T R R R
louis.func <- function(par.new,xxx) {

XX = as.vector(xxx)

HitHHHAHHAHE First term in Louis paper begin #HHHHHHHHHE
Hx.generic <- function(par,x) {

px = inv.logit(par[1] + par[2]*x)

px*(1-px)

b

Hz.generic <- function(par,z) {

pz = inv.logit(par[1] + par[2]*z + par[3]*z"2)
pz*(1-pz)

b

H11=Hx.generic(par.new[1:2],xx)

H12=H22=xx*H11

H33=Hx.generic(par.new[3:4],xx)

H34=H44=xx*H33

H55=Hx.generic(par.new[5:6],xx)

H56=H66=xx*H55

H77=Hz .generic(par.new[7:9],mysimdatal,1])
H78=H77*mysimdatal,1]

H79=H77*mysimdata[,1]"2

H88=H77*mysimdatal[,1]"2

H89=H77*mysimdatal[,1]"3

H99=H77*mysimdatal[,1]"4

B HHEHHHE compute B #HHHHHHHHHHHHHHH
B=matrix(0,9,9)

B[1,1]=sum( H11 )/N.mcsample

B[1,2]=sum( H12 )/N.mcsample;B[2,1]=B[1,2]

B[2,2]=sum( H22 )/N.mcsample

B[3,3]=sum( H33 )/N.mcsample

B[3,4]=sum( H34 )/N.mcsample;B[4,3]=B[3,4]

B[4,4]=sum( H44 )/N._mcsample

B[5,5]=sum( H55 )/N._.mcsample

B[5,6]=sum( H56 )/N.mcsample;B[6,5]=B[5,6]

B[6,6]=sum( H66 )/N_.mcsample

B[7,7]=sum( H77 )

B[7,8]=sum( H78 );B[8,7]=B[7,8]

B[7,9]=sum( H79 );B[9,7]=B[7,9]

B[8,8]=sum( H88 )

B[8,9]=sum( H89 );B[9,8]=B[8,9]

B[9,9]=sum( H99 )

HitHHHAHHHAHE First term in Louis paper end #HHHHHHHHHHHHHHHHE
HHHHHHHHH second term in Louis paper start #HHHHHHHHHHHHE
Si1=function(par,x,yl) yl-inv.logit(par[1] + par[2]*x)
S2=function(par,x,yl) x*(yl-inv.logit(par[1] + par[2]*x))
S3=function(par,Xx,y2) y2-inv.logit(par[3] + par[4]*x)
S4=function(par,x,y2) x*(y2-inv.logit(par[3] + par[4]*x))
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S5=function(par,x,y3) y3-inv.logit(par[5] + par[6]1*x)
S6=function(par,x,y3) x*(y3-inv.logit(par[5] + par[6]1*x))
S7=function(par,x,z) x-inv.logit(par[7] + par[8]*z + par[9]*z"2)
S8=function(par,x,z) z*(x-inv.logit(par[7] + par[8]*z + par[9]1*z"2))
S9=function(par,x,z) z"2*(x-inv.logit(par[7] + par[8]1*z + par[9]*z"2))
Scorel = matrix(0,ncol=N.obs,nrow=N.mcsample)
Score9=Score8=Score7=Score6=Score5=Score4=Score3=Score2<-Scorel

for (i in 1:N.obs) {

Scorel[,i]=S1(par.new, xxx[,i], mysimdata[i,2]) ## S1, N.mcsample x N.obs
Score2[,1]=S2(par.new, xxx[,i], mysimdata[i,2])
Score3[,1]1=S3(par.new, xxx[,i], mysimdata[i,3])
Score4[,i]=S4(par.new, xxx[,i], mysimdata[i,3])

Score5[, 1]=S5(par.new, xxx[,i], mysimdata[i,4])

Score6[, 1]=S6(par.new, xxx[,i], mysimdata[i,4])
Score7[,1]1=S7(par.new, xxx[,i], mysimdata[i,1])

Score8[, 1]1=S8(par.new, xxx[,i], mysimdata[i,1])
Score9[,i]=S9(par.new, xxx[,i], mysimdata[i,1]) } ## S9, N.mcsample x N.obs
Savg.i=cbind( ## S1,N.mcsample..S9,N.mcsample
rowSums(Scorel) , rowSums(Score2) , rowSums(Score3), ## N.mcsample x 9
rowSums(Score4) , rowSums(Score5) , rowSums(Score6),
rowSums(Score7) , rowSums(Score8) , rowSums(Score9) )

Savg=Savg. i-matrix(l,nrow=N.mcsample,ncol=1)%%*%%t(colMeans(Savg.i))
### Savg.suml=matrix(0,9,9)

### for (J in 1:N.mcsample) {

### Savg.suml=Savg.suml+Savg[j,1%%*%%t(Savgli,.1) }
Savg.sum=t(Savg)%%*%%Savg ### vector computation

it second term in Louis paper end #iHHtHHHHHHEHHEE

info.mat = B - Savg.sum/N.mcsample

return(solve(info.mat))

}

HHHH R R
HitE Louls Tunction end it

HHHH R R
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Figure 1.
Prevalence of SCL among women with AGC
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Figure 2.
Positive predictive value and 1 minus negative predictive value of “GS”
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Figure 3.
Positive predictive value and 1 minus negative predictive value of CA-1X
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Observed data log-likelihood versus number of iterations in MCEM with different M
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Convergence times of MCEM estimation procedures for one Monte Carlo sample (n = 122, § = 10~4)

Table 2

M Usual augmentation approach Thefast MCEM approach

100
1,000
10,000

60.51 sec(s) 0.89 sec(s)
~ 16 min(s) 0.91 sec(s)
~ 5 hour(s) 1.10 sec(s)
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MCEM estimation of sensitivity/specificity of “GS”, CA-I1X, and HC2 tests for cervical neoplasia in women with

Table 6
AGC
“GS’ CA-IX HC2
Sensitivity
Liao et al. est. — 0.6579 0.9737
LCM est. 0.9958 0.6754 0.9985
Bootstrap SE 0.0173 0.0818 0.0005

95% CI
Specificity
Liao et al. est.
LCM est.
Bootstrap SE
95% ClI

[0.9789, 0.9989]

0.9867
0.0132
[0.9566, 0.9997]

[0.5107, 0.8331]

0.9286
0.9289
0.0279

[0.8646, 0.9765]

[0.9978, 0.9997]

0.8690
0.8696
0.0382

[0.7904, 0.9413]
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