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Abstract

One of the fundamental goals of genetics is to understand gene functions and their associated phenotypes. To achieve this
goal, in this study we developed a computational algorithm that uses orthology and protein-protein interaction information
to infer gene-phenotype associations for multiple species. Furthermore, we developed a web server that provides genome-
wide phenotype inference for six species: fly, human, mouse, worm, yeast, and zebrafish. We evaluated our inference
method by comparing the inferred results with known gene-phenotype associations. The high Area Under the Curve values
suggest a significant performance of our method. By applying our method to two human representative diseases, Type 2
Diabetes and Breast Cancer, we demonstrated that our method is able to identify related Gene Ontology terms and Kyoto
Encyclopedia of Genes and Genomes pathways. The web server can be used to infer functions and putative phenotypes of a
gene along with the candidate genes of a phenotype, and thus aids in disease candidate gene discovery. Our web server is
available at http://jjwanglab.org/PhenoPPIOrth.
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Introduction

Phenotypes denote the observable physical or biological traits of

an organism. Understanding the relations between genes and gene

functions (or related phenotypes) is one of the main objectives of

genetics in the post-genome era [1] [2] [3]. With the advent of

OMICS techniques, the number of uncovered gene-phenotype

associations has increased significantly over the last several

decades. However, the number of genes with identified pheno-

types has not been able to reach the genomic scale yet, due to

some technical challenges such as the multi-functionality of genes

and heterogeneity of diseases [4–6]. At this moment, various types

of proteomic and/or genomic data (such as protein-protein

interaction (PPI) data [6–12], sequence data [13,14] and function

annotations [15–19]) have been used to identify gene-phenotype

associations. Previous studies showed that products of different

genes tend to physically interact with each other if these genes are

involved in causation of similar disorders [20,21]. Similar

phenotypes are determined by genes with related functions, too

[22]. Researchers used this information to predict phenotypes by

the interactome [6,8] or by the topology of the PPI network [7].

Moreover, sequence information, together with function annota-

tions, has been used to prioritize candidate gene-phenotype

associations. For example, the features of sequence data were used

to build a model, which was then trained by the function

annotations [13,14,23]. Researchers also employed machine

learning approaches and function annotations to construct

models[16] [24] [14].

The cross-species information has been frequently used to study

human diseases and to identify human disease genes [17,25–30].

Chen et al applied phenotypes of mouse to improve prioritization

of human disease causal genes. The prioritization was implement-

ed based on high-throughput genome-wide data [28]. Researchers

have also studied human orthologs in model organisms to explore

the relationship of human phenotypes and diseases [17,29,30].

The ‘‘orthology-function conjecture’’ - orthologs tend to retain the

functions from ancestors - was widely applied to annotate gene

functions [31,32], though it has been criticized to be ‘‘weak’’ by

some researchers [33,34]. Nevertheless, function transfer among

orthologs is still supported [35], and a domain-based filter could

improve its reliability [36]. As the orthology-function indicates, a

gene and its orthologs may have similar functions, if they have not

experienced much duplication during evolution [37]. For instance,

CLCN5 is reported to be associated with several phenotypes, such

as proteinuria, hypercalciuric nephrocalcinosis (OMIM: 308990) [38,39],

dent disease (OMIM: 300009) [40] and nephrolithiasis, type I (OMIM:

310468) [41] in humans; while its orthologous gene Clcn5 is

known to be responsible for increased urine protein level (MP:

0002962), abnormal renal protein reabsorption (MP: 0011445), abnormal

tooth development (MP: 0000116) and nephrocalcinosis (MP: 0003197) in

mouse. The two orthologous genes share the same domains and

have a sequence identity of 0.97. Because the close relationship

between sequence similarity and phenotype similarity, orthology
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data has a potential to be used for gene-phenotype association

identification.

In addition, gene-phenotype associations have been studied in

species other than humans. PhenomeNET [17] is a cross-species

phenotype network using function annotations to infer gene-

phenotype associations of different organisms. Nicole et al tried to

extend the human diseases to animal models using an ontology-

base method [42]. Over the years, a number of integrative

databases have emerged. They have collected known gene-

phenotype associations of different species by function annotations

[43,44]. However, these resources did not take both the PPI and

orthology information simultaneously. In this article, we used

PhenomeNET to connect cross-species phenotypes, and proposed

a method to integrate both PPI and orthology information to

perform gene-phenotype association inference for six species: fly

(drosophila melanogaster), human (homo sapiens), mouse (mus musculus),

worm (caenorhabditis elegans), yeast (saccharomyces cerevisiae), and

zebrafish (danio rerio). The results were evaluated with the top

100 genes that have the highest number of phenotypes identified.

We drew the ROC curves and achieved the AUC values of 0.805,

0.825, 0.740, 0.780, 0.861 and 0.755 for fly, human, mouse,

worm, yeast and zebrafish, respectively. Further, we investigated

the inferred genes of two human representative diseases, Diabetes

Mellitus type 2 (OMIM: 125853) and Breast Cancer (OMIM:

114480), and performed the statistical analysis with Gene

Ontology (GO) [45] and with the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways [46]. Related GO terms and

pathways enriched with each disease were observed. We have

implemented this method as an online resource, which is now

publicly available at http://jjwanglab.org/PhenoPPIOrth. Our

online resource can fetch the candidate genes of a given phenotype

(or the potential phenotypes of a particular gene) and display them

accordingly in an intuitive manner.

Materials and Methods

Data Preparation
Gene and protein data. Gene and protein data of the six

species were obtained from BIOMART of Ensembl (http://www.

ensembl.org/biomart/martview). As we focused mainly on PPIs

and orthologous proteins, the genes retrieved were restricted to the

protein-coding genes. The corresponding Ensembl Protein ID was

considered because it would be cross-linked to the PPI and

orthology data.

PPI and orthology data. The PPI and orthology data were

retrieved from the online database resource, Search Tool for the

Retrieval of Interacting Genes (STRING) database [47]. The

experimentally validated PPI in Human Protein Reference

Database (HPRD) [48] were also incorporated by assigning a

solid high score of 0.9. The combined score was calculated using

the same strategy of STRING [47]. Each interaction was assigned

by a combined score of various sources, indicating the reliability of

the interaction. Since the majority of interactions in STRING

were derived from computations based on prediction algorithms or

interolog inference, we abandoned the interactions with a

combined score less than 0.5. We also obtained orthologous

proteins data from the STRING database, and scanned the

domains by PfamScan[49] for further domain composition

calculation (see Prioritization of gene-phenotype associations).

Phenotypes and known gene-phenotype

associations. The majority of the phenotypes were download-

ed from the Open Biological and Biomedical Ontologies (http://

www.obofoundry.org/). Known gene-phenotype associations were

retrieved from the database of each corresponding species (Table

S1). For humans, we incorporated two databases, the Human

Phenotype Ontology (HPO)[50] and the Online Mendelian

Inheritance in Man (OMIM), into our database [51], and

connected OMIM to HPO by annotations from http://www.

human-phenotype-ontology.org.

PhenomeNET. PhenomeNET is a cross-species phenotype

network, in which the similarity between the nodes was calculated

based on the information content of ontology terms [17]. We

employed the information of the node pairs with a similarity score

$0.5. With this network, the phenotypes from different species are

available to be compared. PhenomeNET is available at http://

phenomebrowser.net/availability.html.

Prioritization of gene-phenotype associations
Figure 1 describes the workflow of our method. A phenotype Ph

could be inferred to be associated with a gene G via one or

multiple PPI path(s) and/or orthology path(s). Ph is derived from

PPI if Ph is reported to be associated with gene P, which is an

interactive partner of G. Similarly, Ph is inferred from orthologs if

Ph is associated with gene O, which is identified as an ortholog of

G,through PhenomeNET, of the other five species. Either a

phenotype is involved in the PPI or in the orthology path of

a gene; we regarded it as a potential phenotype of that gene, and a

gene could have multiple potential phenotypes. Then we tried to

prioritize the gene-phenotype associations by giving scores to

inferences from PPI and from orthology paths.

For the PPI path (PPI path in Figure 1), all the interactive

partners of G were taken into account. These partners have to be

associated with the phenotype to be prioritized. We then obtained

the raw PPI score for a gene-phenotype pair (G-Ph) as follows:

Sraw
ppi (G,Ph)~

X
Pi[p(Ph)

sppi(G,Pi),

where p(Ph) refers to all genes that are known to be associated with

Ph. Pi is one of them, and sppi(G, Pi) is the PPI score between the

products of G and Pi derived from the STRING database.

For the orthology path (Orthology path in Figure 1), similarly,

we calculated the raw orthology score for G-Ph first by considering

all genes that are: 1) found to connect to Ph in PhenomeNET and

2) identified as an orthologous gene of G. The raw orthology score

for G-Ph was calculated as follows:

Sraw
orth(G,Ph)~

X
Oi[o(Ph)

sorth(G,Oi)sphnet(Oi,Ph)

where o(Ph) refers to all orthologs of G that are related to Ph in

PhenomeNET. Oi is one of them. sorth(G,O) refers to the domain

similarity of G and Oi. sphnet(Oi,Ph) stands for the pre-computed

cross-species gene-phenotype score from PhenomeNET.

For the domain similarity, we first scanned the protein domains

by PfamScan, and then obtained a vector with domains and their

counts of each protein. The domain similarity was calculated by

the cosine similarity as follows:

sorth~

Pn
i~1

(Ai|Bi)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Ai)
2

s
|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Bi)
2

s

where Ai and Bi represent the number of the same domain of two
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proteins, respectively, and n represents the total number of unique

domains of the two proteins scanned.

Finally, the raw score for a gene-phenotype pair is composed of

the above two scores with the pre-defined or user-assigned weight

(l) of the PPI score as presented in the following equation:

Sraw(G,Ph)~lSppi(G,Ph)z(1{l)Sorth(G,Ph)

in which Sppi(G,Gph) represents the score which was normalized by

being divided by the maximal raw score of potential phenotypes of

G inferred from PPI; whereas Sorth(G,Ph) represents the score which

was normalized by being divided by the maximal raw score of

potential phenotypes of G inferred from orthology paths. We then

normalized Sraw(G,Ph) for G-Ph pairs and used this score to

prioritize the gene-phenotype associations:

S(G,Ph)~
Sraw(G,Ph){ min

n

i~1
Sraw (G,Phi)f g

max
n

i~1
Sraw(G,Phi)f g{ min

n

i~1
Sraw(G,Phi)f g

where Phi represents any of the potential phenotypes of G inferred

from either PPI or orthology paths, whereas n is the total number

of potential phenotypes of G inferred from both PPI and orthology

paths.

Description of the Web Server
The web server was built with PHP language (http://php.net)

and the open source database MySQL (http://www.mysql.com)

on the server side, and with a user-friendly interface on the client

side. Users can check all the contents of the data in just one

browser window, with different categories of information in

different tabular views. The uniform resource identifier of a tab is

recorded in the form of browser cookies once the tab opens. It can

be re-checked in the ‘History’ tab. We provide both simple search

and advanced search options for users to access the web server.

Using the simple search option, users can simply type a keyword or

an identifier of genes, proteins, or phenotypes into the search box

on the upper right, which will persist through the whole session.

Alternatively, users can open the ‘Advanced Search’ tab to

perform advanced search, which offers a list of suggested keywords

when species, entries and attributes are specified.

Upon submission of the keywords by the user, the server will list

all the related records including s their orthologs and phenotypes

in all six species. Proteins will be automatically connected to their

genes as part of the gene information. Figure 2 depicts the scenario

that a gene is selected as the entry point to the server. The scores

of the potential phenotypes of this gene are calculated as

previously described. For each phenotype in the inferred list, the

inferring paths are displayed on the right, which can be retrieved

and located in the ‘PPI’ and ‘Orthologs’ tabs. It is also possible for

users to use the phenotypes as entry points to infer their candidate

genes. In this way, the results are fetched from the pre-computed

gene-phenotype pairs. The inferring paths will still be shown but

will not be locatable (Figure S1).

Although we have pre-set the parameter l (details were

discussed in the ‘‘Results’’ section) for each species, users could

assign a different weight if desired. Besides l, in the ‘Settings’ tab,

users can turn on the option to indicate whether they would like to

use only the experimental PPI data, rather than the PPI data

obtained by both experimental and computational methods, for

inference.

Figure 1. Workflow to infer phenotypes for a query gene. A potential phenotype Ph of query gene G could be inferred from both PPI and
orthology paths, which are marked as light blue and light red pane, respectively. sppi(G, Pi) refers to the PPI score derived from STRING database, and
sorth(G, Oi) represents the domain similarity of the products of orthologous genes. The gene sets p(Ph) and o(Ph) in the blue and red box stand for the
PPI partners and orthologs of query gene G, respectively. The PPI partners are known to be associated with Ph. Orthologs are associated with Ph
through phenomeNET, with the phenotype similarity sphnet(Oi, Ph) (yellow box). These two scores are combined to obtain the final score of the gene-
phenotype pair (G, Ph) after a weightlhas been assigned to the PPI path.
doi:10.1371/journal.pone.0077478.g001

PPI and Orthology Infer Gene-Phenotype Association
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Results

Determination of the parameterl
According to our scoring function, for a given gene, l is the only

parameter that could be pre-set to affect the ranking list of

candidate phenotypes, as the PPI and orthology data have already

been determined in the database. We used genes with phenotypes

annotated and with both PPI and orthology data to determine l
for each species. We counted the number of annotated phenotypes

of each gene and ranked them in a descendent order. Since many

genes have unreported phenotypes, here we only used the top 100

genes to determine l. We then drew a receiver operator

characteristic (ROC) curve (data not shown) and calculated the

area under the curve (AUC) [52] for each chosen gene. If an

inferred phenotype agrees with the known phenotype, it is

regarded as a true positive, otherwise as a false positive. On the

other hand, if a phenotype below the cutoff agrees with the known

phenotype, it is regarded as a false negative, otherwise a true

negative. We changed the l from 0 to 1 with step of 0.1 and

calculated AUCs for each of the 100 genes for each species. The

means of these AUCs were calculated and their relationships with

l were shown in Figure 3. The value of the parameterl of a species

was taken as the one that led to the maximal average AUC for the

100 genes. The definedlwould be used to evaluate the results for

each species, as well as the suggested parameters in the web server.

Figure 3 also indicates that both PPI and orthology information

could contribute to the inference of gene-phenotype associations.

Taking humans as an example, we defined l as 0.8, which presents

0.714 as the average AUC, whereas when l equals 0 (which

implied that no PPI information has been involved in the

inference), its AUC value is 0.213. The AUC value turns to

0.693 when l is set to 1, meaning that only PPI is employed to

identify the associations. The data for all species could be checked

in Table S2.

Evaluation with Known Gene-Phenotype Associations
We used l to predict phenotypes for the top 100 genes ranked

by the number of known phenotypes and with phenotypes

inferable by our algorithm. For each species, we pooled

phenotypes of all 100 genes and drew the ROC curves. The

gene-phenotype pairs above the cutoff agreeing with the known

pairs are regarded as true positives, otherwise as false positives. If

the gene-phenotype pairs below the cutoff agreeing with the

known pairs, they are false negatives; otherwise, true negatives. So

the sensitivity (true positive rate) indicates the rate of true positives

above the cutoff, and the false positive rate represents the rate of

false positives below the cutoff. As shown in Figure 4, the AUC

values are significantly higher than those of random guess.

To further demonstrate the reliability of our method, for each

species we defined the best cutoff by applying the descending

Figure 2. Main workflow and contents of the web Server. Phenotypes of a gene are inferred via PPI paths and orthology paths. All elements in
the web server are well annotated. Each element offers a cross-reference link that links to its original source or to the NCBI database. Genes are
described by their names, descriptions, Entrez Gene ID, synonyms, Ensembl Gene IDs and other cross-reference links. Their products are identified by
their Ensembl Protein IDs and UninprotKB Accessions. PPI information is presented by a network visualization tool, Cytoscape Web[61]. Orthologs are
listed and grouped by the orthologous groups. The known phenotypes are listed above the inferred ones, which are sorted in a descendant order by
the score.
doi:10.1371/journal.pone.0077478.g002

PPI and Orthology Infer Gene-Phenotype Association
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diagonal intersection criterion. In another word, the intersection

point of the descending diagonal and the ROC curve was selected

as the best cutoff point, which achieves the same cost of true

positive rate increase and false positive rate decrease. We used the

corresponding cutoff for each species, and randomly picked the

same number of phenotypes from the phenome to substitute the

positives. The randomization was performed for 100 times. We

calculated the Matthews Correlation Coefficient (MCC) for both

inferred and randomized results using the following equation:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p

where TP, TN, FP and FN refer to the true positives, true

negatives, false positives and false negatives defined above,

respectively. MCC returns a value between 21 and +1. +1 means

a perfect prediction. 0 means that the prediction is no better than a

random guess. 21 indicates that the prediction totally disagrees

with the observation. The results were shown in Figure S2. MCCs

of randomization are close to 0 and are significantly lower than the

corresponding values of our prediction.

Evaluation with Gene Ontology and KEGG Pathway
Gene ontology (GO) [45] is an annotation in common

language, which presents the conserved functions of genes or

their products. It has three categories: biological process,

molecular function and cellular component, referring to the

biological objectives, biochemical activities and active locations of

genes (or their products), respectively. If genes or their products

share the same biological properties, a unified GO term was

assigned. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database [46] connects interactions, reactions

and relations of molecules or genes if they share the same

metabolic mechanism, genetic information processing, environ-

mental processing, cellular processes, organismal systems or

human diseases, or even if they have some similarities in structures

for drug development. Both databases have been applied to

perform the evaluation of the inferred genes of a disease, by

performing the hypergeometric test between the inferred gene set

of the disease and the gene set of each GO term (or pathway) to

Figure 3. The average AUC values of the inference are affected
by the parameter l. The average AUC values were calculated for each
species based on the top 100 genes having the highest number of
identified phenotypes. l defined for fly, human, mouse, worm, yeast
and zebrafish are 0.9, 0.8, 0.9, 0.8, 0.9 and 0.8, respectively, which
present the maximal average AUC values and are marked in the
consensus color as the series of each species.
doi:10.1371/journal.pone.0077478.g003

Figure 4. ROC curves for predicting gene-phenotype pairs for each species. The diagonal line stands for a random guess. The AUC value is
expected to be 0.5. AUCs for fly, human, mouse, worm, yeast and zebrafish are 0. 805, 0.825, 0.740, 0.780, 0.861 and 0.755, respectively.
doi:10.1371/journal.pone.0077478.g004

PPI and Orthology Infer Gene-Phenotype Association
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check how the enriched GO terms (or pathways) are related to the

disease. The GO and pathway gene set data were downloaded

from the Molecular Signatures Database (MSigDB v4.0) (http://

www.broadinstitute.org/gsea/msigdb/index.jsp)[53]. When con-

ducting the analysis with GO gene sets, the number of genes in the

inferred gene set was limited to 90, which is the average gene

number of gene sets for all GO terms. This number is 69 for the

pathways. Human diseases Diabetes Mellitus type 2 (also known as

noninsulin-dependent diabetes mellitus, NIDDM)

(OMIM:125853) and Breast Cancer (BC) (OMIM:114480) were

chosen, and the top 5 entries having the most enriched GO terms

and pathways are listed in Table 1 and Table 2, respectively.

Similarly we applied this approach to the mouse phenotype Insulin

Resistance (MP:0005331) and GO. The results are shown in Table

S3.

Glucose uptake is induced by the activation of insulin receptor.

The cells are incapable of taking up glucose partly due to a

decrease in insulin receptor signaling (involving in Insulin receptor

signaling pathway (GO:0008286)), resulting in NIDDM. The insulin

receptor is also a transmembrane receptor, which can be activated

by insulin. So this process is also related to Transmembrane receptor

protein tyrosine kinase signaling pathway (GO:0007169), a parent term

of GO:0008286 [54]. The molecular function GO term Kinase

activity (GO:0016301) is related since this receptor belongs to the

tyrosine kinase receptors class [55]. For enriched pathways of

NIDDM, as stated previously, the insulin receptor can be activated

by insulin. As a result, the Insulin signaling pathway (hsa04910) can

also lead to NIDDM. The pathway Type II diabetes mellitus

(hsa04930) is directly associated with NIDDM, and maturity onset

diabetes of the young (MODY) (hsa04950), a monogenic form of

NIDDM, is suffered by 2–5% diabetic patients [56]. It is caused by

heterozygous mutations of multiple transcription factors, including

HNF1alpha (MODY3, HNF1A)[57] and PDX1 (MODY4)[58],

which are two of the inferred genes of NIDDM and also are

present in the gene set of pathway hsa04950.

The formation of BC is similar to that of other cancers. The

cells are unable to stop division and cannot be delivered to where

they belong. In these cells, apoptosis (Apoptotic process

(GO:0006915)) is disrupted. This process is also associated with

Programmed cell death (GO:0012501), a parent term of GO:0006915,

and Regulation of apoptosis (GO:0042981). Accordingly, the pathway

Apoptosis (hsa04210) is also related. Nucleotide excision repair

(hsa03420) is considered a relevant pathway since researchers

[59] have revealed that lack of DNA repair capacity can be a risk

factor of BC. Calcium signaling pathway (hsa04020) may also be

associated with BC as cellular calcium signals have been involved

in regulating apoptotic pathways and inducing apoptosis [60].

Discussion

Gene-phenotype association identification is one of the common

goals of biological studies. However, difficulties and challenges

exist in both computational and experimental approaches.

Researchers have applied sequence data, PPI data and function

annotations to identify gene-phenotype associations, but together

with comparative sequence information, such as orthology, has not

been taken into account thus far. The PhenomeNET, a cross-

species phenotype network, is applied here to connect phenotypes

among different species. Subsequently, we employed orthology, as

well as PPI information, to perform gene-phenotype identification.

We used a simple linear function to combine the two types of

information, and normalized the PPI and orthology items before

they were joined into the final score, which was normalized by

being divided by the maximal score of the phenotypes of a given

gene. In this manner, the phenotypes with the score consisting of

only PPI or only orthology item, have a chance to stay at the top of

the ranked list, which may lower the confidence of evidence by

both of the items. However, it is expected that phenotypes inferred

by both PPI and orthology would have a higher priority.

Introducing other weighting strategies to enhance these potential

phenotypes would worth a trial.

Our method is flexible to encompass data of more species. If

there are sufficient data of a new species, including PPI, orthology,

and function annotation that are used to extend the Phenom-

eNET, the species is ready to be incorporated into our database.

The new species will also benefit and be benefited from other

species as more cross-species information is joined. We also

observed that both PPI and orthology information could enhance

the ability to identify the phenotypes of genes. PPI and orthology

data sets may assist identification of gene-phenotype associations

cooperatively if both of them are available for a gene-phenotype

pair, or complementary to each other if one of them is found.

The ability of our method to identify the potential phenotypes of

genes offers more reference to our understanding of gene

functions. The functions of some genes may not be fully revealed

or verified experimentally. The potential phenotypes would

provide biologists guidance to study the genes. Additionally,

inferring the candidate genes of phenotypes, especially diseases,

helps to uncover the mechanisms of diseases. Identifying the

Table 1. Most enriched GO terms for Breast Cancer and Diabetes Mellitus type 2.

Disease P value GO term

Diabetes Mellitus type 2 1.03E-06 Insulin receptor signaling pathway (GO:0008286)

3.77E-04 Transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169)

4.09E-04 Phosphotransferase activity alcohol group as acceptor (GO:0016773)

7.22E-04 Kinase activity (GO:0016301)

9.08E-04 Sterol binding (GO:0032934)

Breast Cancer 2.03E-07 Apoptotic process (GO:0006915)

2.08E-07 Programmed cell death (GO:0012501)

6.90E-07 Cell cycle (GO:0007049)

8.66E-07 Regulation of cell cycle (GO:0051726)

1.40E-06 Regulation of apoptosis (GO:0042981)

doi:10.1371/journal.pone.0077478.t001

PPI and Orthology Infer Gene-Phenotype Association
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products of candidate disease genes as new targets can facilitate

drug development as well.

Supporting Information

Figure S1 Workflow and contents when accessing the
web server from phenotypes. The candidate genes of the

query phenotypes are retrieved from the pre-computed gene-

phenotype associations. (TIF).

(TIF)

Figure S2 MCC of our prediction and randomization
for each species. The MCC values for the prediction and 100-

time randomization. (TIF).

(TIF)

Table S1 Phenotype and known gene-phenotype asso-
ciation sources. The sources from which the phenotype data

and known gene-phenotype associations were retrieved are listed.

(TXT).

(DOCX)

Table S2 The average AUC values of different l for the six

species. (TXT).

(DOCX)

Table S3 The most enriched GO terms for mouse phenotype

insulin resistance (MP: 0005331). (TXT).

(DOCX)
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