
INTRODUCTION

Autophagy 

Autophagy, which is a highly conserved pathway from yeast 
to mammals, is a major catabolic process that delivers cytosolic 
components to lysosomes for degradation. It is considered to be 
important for cellular homeostasis, especially under nutrient-
deficient or stress conditions, by degrading cytosolic materials 
in order to either supply the components required for alternate 
energy metabolism pathways or remove toxic components for 
cell survival. However, a growing body of evidence has suggested 
that autophagy is constitutively activated during normal nutrient 

conditions in a cell-type specific manner. Autophagy has been 
implicated in various cellular processes such as protein and 
organelle quality control, development and differentiation, ageing, 
and immunity. Therefore, alteration of autophagy is associated 
with several cellular pathologies and diseases, including tumor 
formation, infectious diseases, liver diseases, myopathy, diabetes, 
and several neurodegenerative diseases [1, 2]. Autophagy can 
be generally classified as microautophagy, chaperone-mediated 
(CMA), or macroautophagy [2-4]. Microautophagy delivers the 
cytoplasmic contents by invagination of the lysosomal membrane 
into its lumen. CMA involves the selective sequestration of 
proteins with a KFERQ-like motif into lysosomes via chaperones 
Hsc70 and LAMP-2A (Lysosomal-Associated Membrane Pro
tein-2A) complex. Macroautophagy (referred to as autophagy) 
is the well-characterized form of autophagy that involves the 
sequestration of cytosolic components into lysosomes in a 
non-selective manner. Although autophagy is mostly a non-

Neuronal Autophagy and  
Neurodevelopmental Disorders

Kyung-Min Lee1, Su-Kyung Hwang2 and Jin-A Lee3*
1Department of Anatomy, Graduate School of Medicine, Kyungpook National University, 2Department of Pediatrics, 

Kyungpook National University Hospital, Daegu 700-422, 3Department of Biological Science and Biotechnology, 
College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811, Korea 

http://dx.doi.org/10.5607/en.2013.22.3.133
Exp Neurobiol. 2013 Sep;22(3):133-142.
pISSN 1226-2560 • eISSN 2093-8144

Review Article

Received August 30, 2013, Revised September 12, 2013,
Accepted September 12, 2013 

*To whom correspondence should be addressed.
TEL: 82-42-629-8785, FAX: 82-42-629-8769
e-mail: leeja@hnu.kr

Neurodevelopmental disorders include a wide range of diseases such as autism spectrum disorders and mental retardation. 
Mutations in several genes that regulate neural development and synapse function have been identified in neurodevelopmental 
disorders. Interestingly, some affected genes and pathways in these diseases are associated with the autophagy pathway. Autophagy 
is a complex, bulky degradative process that involves the sequestration of cellular proteins, RNA, lipids, and cellular organelles into 
lysosomes. Despite recent progress in elucidating the genetics and molecular pathogenesis of these disorders, little is known about 
the pathogenic mechanisms and autophagy-related pathways involved in common neurodevelopmental disorders. Therefore, in 
this review, we focus on the current understanding of neuronal autophagy as well as recent findings on genetics and the roles of 
autophagy pathway in common neurodevelopmental disorders.

Key words: mTOR, autophagy, neurodevelopment, homeostasis, neurodevelopmental disorders

Copyright © Experimental Neurobiology 2013.
www.enjournal.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and 
reproduction in any medium, provided the original work is properly cited.



134 www.enjournal.org http://dx.doi.org/10.5607/en.2013.22.3.133

Kyung-Min Lee, et al.

specific degradative process, there are some selective forms 
of autophagy in terms of cargo selectivity (e.g. mitophagy for 
mitochondria, pexophagy for peroxisomes, nucleophagy for 
nucleus, reticulophagy for endoplasmic reticulum, xenophagy for 
pathogens, and granulophagy for stress granules) [4, 5]. Although 
these several forms of autophagy are important for physiology and 
pathology, in this review, we discuss the general form of autophagy, 
macroautophagy, in neurodevelopment and neurodevelopmental 
disorders. In this section, the current understanding of the 
roles of molecular components and autophagy signaling in 
neurodevelopment are described. A thorough understanding 
of the molecular mechanism by which autophagy is regulated 
in neurodevelopment might provide potential targets for the 
novel therapeutic intervention of common neurodevelopmental 
disorders associated with autophagy.

Autophagy machinery and signaling pathway

Understanding of the molecular pathway of autophagy has 
been achieved by identifying several autophagy genes (ATG) 
from yeast to mammals. Autophagy requires several essential 
steps for lysosomal degradation: initiation (induction), nucleation 
(formation of isolation membrane), expansion (elongation of 
autophagosomes), and maturation of autophagosome. Several 
ATG are involved in each step of autophagy, and mutations in 
these genes have been found in several human diseases [2-4].

Initiation (induction)
Autophagy can be induced in an mTOR-dependent or -inde

pendent manner by diverse input signals such as nutrients, growth 
factors, Ca2+, ATP, cAMP, hormone, and protein accumulation 
under physiological or pathological conditions [4]. Interestingly, 
in the induction stages of autophagy, many signals converge at the 
level of the mammalian target of rapamycin complex 1 (mTORC1), 
which consists of mTOR and several other signaling molecules 
(DEPTOR [DEP-domain containing mTOR interacting 
protein], RAPTOR [Regulatory Associated Protein of mTOR], 
PRAS40, and GβL), although mTOR-independent induction of 
autophagy by cAMP/Epac (exchange protein directly activated by 
cAMP 2)/Rap2 (Ras-like small GTPase)/PLC (Phospholiase C) 
signaling or calpain inhibition has been reported [6]. mTORC1 
is known as an important regulator of cell growth, proliferation, 
and protein synthesis. Under nutrient conditions, PIK3C1 kinase 
(Class I Phosphatidyl-3-Inositol Kinase) activates mTORC1, 
which in turn phosphorylates ULK1 (Uncoordinated [unc-51] 
Like Kinase 1) and ATG13 of the ULK complex (consists of 
ULK1/2, ATG13, FIP200 [Focal Adhesion Kinase (FAK) family 
Interacting Protein of 200 kDa]), resulting in inhibition of 

autophagy. Consequently, inactivation of mTORC1 by nutrient 
deprivation or rapamycin treatment could activate the autophagy 
pathway. ULK1 phosphorylates FIP200 and ATG13 as members of 
the ULK complex as well as regulates trafficking of ATG9 and the 
proper localization of PIK3C3 (Class III Phosphatidyl-3-Inositol 
Kinase), which is another crucial autophagy-inducing complex. 
[2-4, 7]. 

Nucleation
The Beclin1/PIK3C3 complex (Beclin1 [Bcl2 interacting protein 

1], PIK3C3, AMBRA1, p150, UVRAG [UV Radiation Resistance-
Associated Gene], and ATG14) participates in the nucleation step. 
In this step, phosphatidyl-inositol-3-phosphate (PI3P) induced 
by PIK3C3 recruits other ATG proteins at the phagophore 
(isolation membrane) assembly site. These ATG proteins include 
DFCP1 (Double FYVE- Containing Protein 1), WIPI 1-4 (WD 
repeat domain Phosphoinositide Interacting), mATG2, VMP1 
(Vacuole Membrane Protein 1), and ATG9. Once autophagy 
is induced, activated ULK1 phosphorylates AMBRA1, leading 
to translocation of the PIK3C3 complex from the microtubule 
network to the endoplasmic reticulum (ER), which is considered 
as the most important source of autophagosome formation. 
Beclin1 regulates PIK3C3 kinase activity through interactions 
with multiple modulators. Beclin1 negatively regulates autophagy 
by interacting with the anti-apoptotic proteins BCL2 (B-cell 
Lymphoma) and BCL-XL [1]. Interaction of Beclin1 with Atg14 
or with UVRAG with Bif1 via UVRAG promotes PIK3C3 kinase 
activity [2-4, 7]. 

Elongation
The elongation step for efficient expansion of the phagophore 

requires two ubiquitin-like conjugation systems: the ATG12-
ATG 5 - ATG 1 6 L 1  ( ATG 1 2 , ATG 7 , ATG 1 0 , ATG 5 , a n d 
ATG16L1) and LC3-PE (Microtubule-associated Light Chain 
3-Phosphatidyl Ethanolamine; consists of LC3, ATG4, ATG7, 
and ATG3) complexes. The ATG12-ATG5 complex involves 
expansion of the phagophore membrane through interactions 
with other PI3P-recruited proteins. Cleaved LC3 (LC3-I) by ATG4, 
a cysteine protease, is conjugated to PE by the concerted activities 
of the ATG7, ATG3 (an E2 ligase), and ATG12-ATG5-ATG16L1 
complexes to form the LC3-PE (LC3-II) system (Fig. 1). The LC3-
PE system also involves cargo recognition through interactions 
with p62/SQSTM1 (Sequestosome 1), NBR1 (Neighbor of 
BRCA1 gene), and NDP52 (Nuclear Dot Protein 52). LC3-PE 
(LC3-II) is used as a marker of autophagosomes [8]. Despite the 
extensive involvement of these two ubiquitin-like conjugation 
systems in autophagy, the presence of ATG5-, ATG7-, and LC3-



135www.enjournal.orghttp://dx.doi.org/10.5607/en.2013.22.3.133

Autophagy in Neuronal Development and Neurodevelopmental Disorders

independent autophagy pathways has been reported [9]. 

Maturation (fusion with lysosomes)
After completion of autophagosome formation, autophagosomes 

can fuse with endosomes or lysosomes. Although it is unclear 
how exactly autophagosomes fuse with lysosomes, their fusion is 
known to require several proteins such as LAMP2, the Rubicon-
UVRAG complex, SNAREs (soluble N-ethylmalemide sensitive 
factor attachment protein receptor), HOPS (homotypic fusion 
and protein sorting), Rab (Ras [rat sarcoma] like in rat brain), 
ESCRT (Endosormal sorting complex required for transport), and 
LC3 [4, 10, 11]. Once the autophagosome fuses with lysosomes, 
cytosolic components are degraded by hydrolases and lipases. 
Genetic manipulation of autophagy genes in vitro and in vivo has 
enabled us to elucidate the roles of autophagy in neurons. 

Neuronal autophagy

Although the autophagy pathway is important for most cells 
in various tissues, it must be tightly regulated in post-mitotic 
neurons, which are sensitive to the accumulation of  toxic 
proteins/damaged organelles. Neuronal autophagy is important 
for proper development and neuronal signaling, which ensures 
the formation of appropriate neuronal connections and their 

function. Consequently, alteration of autophagy in neurons 
causes a cellular traffic jam in highly polarized structures during 
neural development and neuronal functions. Indeed, autophagy is 
constitutively active in healthy neurons [12-14]. A previous study 
using neuron-specific atg5-/- or atg7-/- deficient mice in the central 
nervous system showed abnormal protein aggregates and eventual 
neurodegeneration leading to motor dysfunction, indicating 
that autophagy is essential for neuronal homeostasis and quality 
control [15-17]. In addition, autophagy plays a prominent role in 
clearing defective organelles in post-mitotic neurons. It has been 
reported that elimination of impaired mitochondria (mitophagy) 
depends on ubiquitination by Parkin, an E3 ubiquitin ligase [3]. 

Neuronal homeostasis in developing neurons might be critical 
for growth or refinement of their polarized structures such as 
axons and dendrites. Indeed, during development, proper degra
dation of proteins or organelles is required for structural plasticity. 
Recent studies have demonstrated a crucial role for autophagy-
related genes in the development and maturation of axons, 
dendrites, and synapses. Mice with a specific deletion of atg7 in 
Purkinje neurons in the cerebellum show massive accumulation 
of aberrant membrane-bounded organelles as well as abnormal 
membrane structures in dystrophic neurites in a cell-autonomous 
manner, indicating that autophagy regulates axon homeostasis. 

Fig. 1. Molecular components and signaling of autophagy. Autophagy begins with phagophore formation (isolation membrane). Initiation of 
phagophore formation is tightly regulated by various protein complexes. Under nutrient conditions, mTOR in the mTORC complex interacts with 
the ULK complex, thereby limiting its activity. mTOR is inhibited by autophagy induction conditon such as starvation, thereby activating the ULK 
complex, which in turn activates and translocates the PIK3C3 complex from microtubules to the ER. Beclin1, together with other components of the 
PIK3C3 complex such as Atg14, promotes PIK3C3 kinase activity. Activated PIK3C3 kinase generates PI3P, which in turn recruits WIPI1-4, VMP1, 
DFCP1, mATG2, and transmembrane mATG9 to nucleate the phagophore in close proximity to the cargo. Elongation of the phagophore to the 
limiting membrane around the cargo is regulated by the ATG5-ATG12-ATG16L1 and LC3-PE conjugation systems. ATG12 binds to ATG5, followed 
by ATG16L1 binding to form the ATG5-ATG12-ATG16L1 complex. LC3-PE complex formation is initiated by cleavage of LC3 by ATG4, followed 
by coordinated interactions with the ATG7, ATG3 (an E2 ligase), and ATG5-ATG12-ATG16L1 complex to generate LC3-PE on the phagophore 
membranes. The autophagosome then directly fuses with lysosomes for final degradation.
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It has also been reported that autophagosomes accumulate in 
developing neurons during brain development [18]. Interestingly, 
lysosomal activity has been associated with axon pruning in vivo 
[19]. Recent genetic studies have found that loss of autophagy in 
pro-opimelanocortin (POMC) neurons perturbs axon growth in 
vivo, indicating a crucial role for autophagy in axon growth [20]. 
Furthermore, our recent study showed that autophagy regulates 
early axon extension via the RhoA-ROCK pathway by regulating 
hnRNP-Q1 in cultured cortical neurons, indicating that autophagy 
might serve as a fine tuning mechanism for the regulation of 
structural plasticity during early axon growth [21]. The PI3K-Akt-
Tuberous Sclerosis Complex (TSC) signaling pathway is one of the 
pathways associated with autophagy during early axon growth [22, 
23]. TSC1 and TSC2, which inhibit mTOR signaling, are known as 
important regulators of cell size and growth [24, 25]. TSC has been 
reported to be localized to axons in developing cultured neurons, 
and overexpression of Tsc1/2 or rapamycin has been shown 
to suppress axon growth [26]. Moreover, a murine study using 
Unc51.1/Ulk1(ATG1), which is required for autophagy induction, 
revealed that inhibition of Ulk1 suppresses neurite outgrowth [27].

Neuronal autophagy might regulate synaptic growth or func
tion in polarized structures such as axons and dendrites. In Dro
sophila larvae, autophagy promotes synaptic development at 
neuromuscular junctions (NMJ) [28]. Specifically, mutants of 
atg showed shrinkage of NMJ synapses and reduction of bouton 
numbers. Further, autophagy was shown to regulate NMJ growth 
by downregulating the level of Hiw, an E3 ligase. In addition, 
according to a recent report, the autophagic pathway can also 
regulate presynaptic structure and function in dopaminergic 
neurons, indicating that it is involved in synaptic transmission in 
axon terminals [29]. Interestingly, AMPA receptors accumulate in 
autophagosomes in neuronal axons lacking adaptor protein AP-
4, suggesting the important role of autophagy in the recycling of 
AMPA receptors in Purkinje neurons. Furthermore, a recent study 
showed that neuronal stimulation induces autophagy for AMPA 
receptor degradation after long-term chemical depression in 
hippocampal neurons, further supporting the role of autophagy in 
synaptic plasticity [30].

Besides synaptic function, previous studies have indicated a role 
for autophagy in neuronal differentiation. Genetic study based on 
AMBRA1 haploinsufficiency or pharmacological (wortmanin, 
3-methyladenine) treatment showed disrupted neurogenesis in 
cultured cells derived from the olfactory bulb of mice. Treatment 
with 3-methyladenine also was shown to impair neurogenesis in 
chicken otic epitilial cells [31]. Moreover, autophagy impairment 
disrupts neuroblastoma differentiation into neurons as well as 
glioma stem/progenitor cell differentiation [32], indicating the 

role of autophagy in neuronal differentiation and neurogenesis. 
More interestingly, a recent study showed that Sonic hedgehog 
(Shh), which is a well known neurodevelopment gene, promotes 
autophagy in hippocampal neurons, indicating a link between Shh 
(a neurodevelopmental gene) and autophagy pathways [33].

Acute defects in autophagy during early neurodevelopment or 
synaptic activity may cause impairment of neural differentiation, 
axon growth, or neuronal signaling, resulting in synaptic 
malfunction before severe neurodegeneration. Thus, manipulation 
of  the autophagic pathway may represent an important 
therapeutic strategy for the promotion of neural differentiation, 
axonal growth, synaptic growth, or regeneration of neurites in 
neurodevelopmental disorders.

Autophagy-related signaling in neurodevelopmental disor

ders

Neurodevelopmental disorders characterized by cognitive 
deficits and behavioral impairment include a multifaceted 
group of mental diseases. Numerous works have demonstrated 
a link between aberrant signaling pathways and various 
neurodevelopmental disorders represented by abnormal neural 
structures and function. However, the abnormalities affecting genes 
and signaling pathways associated with neural development and 
synaptic function are more collective effects rather than individual 
ones, as they overlap among various neurodevelopmental 
disorders. Despite complicated pathophysiological mechanisms 
underlying neurodevelopmental disorders, the study of autism 
spectrum disorders (ASDs) has provided insights into the 
pathways involved in autophagy-related disease pathogenesis. 
Here, we discuss a subset of ASDs related to mTOR-dependent 
or -independent signaling associated with autophagy: autism, 
tuberous sclerosis, and fragile X syndrome and neurofibromatosis 
(Fig. 2). 

Autism

Mutations in PTEN (phosphatase and tensin homolog deleted 
on chromosome ten) are well known to be associated with autism 
[34]. PTEN functions as a lipid phosphatase to regulate PI3K/Akt 
signaling and controls TSC-mTOR, which regulates induction of 
autophagy. Recently, it was reported that disinhibited mTOR is 
implicated in mice displaying an autistic phenotype, suggesting 
that autophagy may be deregulated in autism [35]. Parada and 
colleagues reported that dysfunctional activation of the PI3K/
mTOR pathway upon mutation of PTEN is associated with 
abnormal neuronal arborization and social interaction deficits [35]. 
Malformation of the neuronal structure resulting from abnormal 
TSC-mTOR signaling upon PTEN mutation might be associated 
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with alteration of autophagy during neural development. Conver
sely, pharmacological treatment with rapamycin to inhibit mTOR 
pathway has been shown to partially restore most autism-like 
symptoms, including social behaviors, as well as improve abnormal 
neuroanatomical structures such as neuronal hypertrophy and 
macrocephaly in PTEN mutant mice [36, 37]. 

Several autism-associated genes encompass the mTOR-indepen
dent Epac2-Rap pathway [38], consistent with a pivotal role in 
neural development and synaptic plasticity [39]. Epac2, a guanine 
nucleotide exchange factor (GEF) for Rap (Ras-like small GTPase), 
is a product of the RAPGEF4 gene responsible for autism [40] 
and is known to play a role in the inhibition of autophagy. Penzes’s 
research group have reported that Epac2 has an important func
tion in basal dendrite formation during development via Rap 
signaling, further supporting the involvement of autophagy in 
neurite growth and Epac2-Rap pathway [38].

Tuberous sclerosis

Tuberous sclerosis, a type of ASD, is a neurocutaneous synd

rome that causes non-malignant tumors in multiple organs. 
Tuberous sclerosis is caused by mutation of the TSC1 and TSC2 
genes, which encode harmartin and tuberin, respectively. A 
heterodimeric complex consisting of TSC1 and TSC2 regulates 
protein synthesis in various cells including neurons [41, 42], and 
retains mTOR in mTORC1 [43-45]. As a protein kinase, mTOR is 
released from the TSC1/TSC2 complex, which acts as a negative 
regulator of mTOR, by upstream PI3K and Akt signaling. Patients 
with tuberous sclerosis generally have heterozygous mutations 
in either TSC1 or TSC2, as homozygous gene mutations cause 
embryonic death. Signal transduction via mTOR is known 
to be required for synaptic plasticity [46], and enhancement 
of mTOR activity in tuberous sclerosis is involved not only 
in the impairment of hippocampal mGluR-LTD (long-term 
depression) [47, 48], but also dendritic spine plasticity, which 
alters the characteristics of glutamatergic synapses [49, 50]. Mice 
with heterozygous mutations in TSC1 or TSC2 display cognitive 
dysfunction without neuroanatomical defects [51]. In contrast, 
brief treatment of rapamycin in TSC2+/- mice shows reversal 
of learning deficits along with enhancement of late-phase LTP 
(long-term potentiation) [52]. Besides these findings, a recent 
publication by Sabatini and his colleagues reported that the TSC-
mTOR signaling pathway is central to the regulation of neural 
network activity by suppressing inhibitory synapses. Alterations of 
the excitatory and inhibitory synaptic balance due to deregulation 
of TSC-mTOR signaling produce the neurological dysfunction 
with characteristic of tuberous sclerosis [53]. On the other hand, 
treatment with rapamycin, an mTOR inhibitor, has been shown 
to cause persistent recovery of pathological neuronal features as 
well as several behavioral phenotypes, including impaired social 
interactions in a mouse model of tuberous sclerosis [54, 55].

Fragile X syndrome (FXS)

Fragile X syndrome, the most common known genetic disease 
among ASDs, is caused by mutation of FMR1, which codes for 
FMRP (fragile X mental retardation protein). FMRP negatively 
regulates the translation of numerous mRNAs at synapses and has 
been suggested to be important for activity-dependent synapse 
elimination, a key process during postnatal brain development 
[56-58]. In a mouse model deficient in homologous FMR1 genes, 
FMRP was shown to mediate the specific impairment of PI3K-
Atk signal transduction by upregulating Ras activity, although 
MEK (extracellular signal-regulated kinase kinase)-ERK (extra
cellular signal-regulated kinase) signaling downstream of Ras 
is normal [59]. Additionally, FMR1 knockout (KO) mice show 
elevated mTOR signaling, leading to dysregulation of the PI3K/

Fig. 2. Autophagy-related common pathway in neurodevelopmental 
disorders. Activation of PI3K-Atk signaling suppresses TSC1 and TSC2 
complex leading to inactivation of Rheb (isoform of Ras superfamily) 
and release of mTOR from mTORC1 (mTOR complex 1). Dysfunctions 
of FMRP as a PIKE (PI3K enhancer) repressor in fragile X syndrome 
and TSC1/TSC2 as an mTOR repressor in tuberous sclerosis produce 
defects of neuronal development and synaptic plasticity with autistic 
behavioral phenotypes. In autism, mutations of PTEN (phosphatase 
and tensin homolog deleted on chromosome ten) also induce abnormal 
hyperactivity of  PI3K/mTOR signaling pathway. Besides mTOR-
dependent pathway, mTOR-independent pathway such as Epac2-Rap 
signaling affects neurite formation and autism phenotypes. Epac2, autism 
candidate gene RAPGEF4, is activated by cAMP binding and then 
changes an inactivated form to activated form of Rap which can regulate 
calpain via PLCε pathway. Neurofibromin encoded by NF1 normally 
leads to inactivation of Ras. However, mutations of neurofibromin 
in Neurofibromatosis 1 causes overactivation of Ras/ERK and PI3K 
signaling, leading to inactivation of TSC1/TSC2 complex and release of 
mTOR from Rheb suppression.
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Atk/mTOR pathway [60]. Based on the aforementioned role of 
neuronal autophagy in synaptic growth and function, evidence has 
suggested a direct correlation between impairment of PI3K-Atk 
signaling and abnormal dendritic spine morphogenesis as well as 
selective defects in associative learning in fragile X syndrome [61-
66]. A previous study showed that human patients with fragile X 
syndrome display dysregulation of mTOR signaling, as observed in 
a FMR1 KO mouse model [67]. Furthermore, from a fundamental 
pathophysiological point of view, FMR1 KO mice show increased 
basal protein synthesis [68, 69], which is consistent with the notion 
of FMRP as a translational repressor, suggesting the possibility of 
altered neuronal autophagy activity due to disruption of cellular 
homeostasis or cellular energy metabolism. Indeed, the molecular 
mechanisms linking functional loss of FMRP1 with excessive 
synthesis of proteins such as PIKE (PI3K enhancer) through 
aberrant mGluR-dependent synaptic plasticity are implicated in 
the enhancement of PI3K/mTOR signaling at synapses [60, 70]. 
These findings highlight the potential roles of mTOR inhibitors 
such as rapamycin as therapeutic drugs for treatment of fragile X 
syndrome [71].

Neurofibromatosis type 1 (NF 1)

NF1 gene implicated in neurofibromatosis encodes neuro
fibromin, a GTPase activating protein, which acts as a negative 
regulator of Ras. Disinhibited Ras-MAPK signaling and mTOR 
hyperactivity have been observed in the patients with NF1 [72]. 
Mutations in neurofibromin generate overactivity of Ras, leading 
to enhanced activation of both PI3K and ERK signaling. The 
activation of these kinases suppresses the TSC1/TSC2 complex, 
which releases inhibitory activity of Rheb, leading to mTOR 
activation. Because of over-activation of Ras signaling caused by 
NF1 gene mutations, the functional suppression of Ras signaling 
with genetic or pharmacological approaches attenuates the 
impairment of synaptic plasticity and learning deficits shown in 
neurofibromatosis animal model [73, 74]. However, several studies 
using human and mouse brain analysis suggest that dysregulation 
of mTOR signaling in neurofibromatosis leads to increased glial 
cell growth as well as neuroglial progenitor proliferation [75] 
and gliomagenesis [76]. Interestingly, these are not the common 
cellular defects shown by mutations of PTEN, TSC1, or TSC2. 
Indeed, over-proliferation of astrocyte and glioma formation 
caused by functional inactivation of NF1 gene are associated with 
hyperactivity of mTOR signaling in a TSC-independent manner 
[76]. Therefore, it will be interesting to elucidate how each mTOR-
related signaling affects disease progression and autophagy 
pathway.

CONCLUSION & PERSPECTIVES 

Insight gained from the above studies has led to the following 
conclusions: 1) Neuronal autophagy may play important roles 
in structural refinement of neurite growth or regeneration, 
neural differentiation, synaptic growth, or synaptic plasticity. 2) 
Therefore, alteration of autophagy during neurodevelopment 
and synaptic plasticity might cause abnormal development and 
synaptic malfunction, leading to neurodevelopmental disorders. 
3) Mutation of mTOR-related genes or alteration of mTOR sig
naling in common neurodevelopmental disorders seems to be 
associated with dysfunctional autophagy pathway, indicating the 
potential roles of autophagy in these disorders (Fig. 2). 4) The 
autophagy-associated pathway, including mTOR signaling or 
mTOR independent-Rap signaling, might contribute to molecular 
pathogenesis of common neurodevelopmental disorders. 5) 
The autophagy pathway might represent a potential valuable 
therapeutic strategy for treatment of neurodevelopmental disor
ders.

Although previous studies have highlighted potential roles for 
autophagy during neurodevelopment and synaptic plasticity, 
further detailed mechanistic studies are needed. The involvement 
of autophagy-dependent mTOR signaling in neurodevelopmental 
disorders should be examined since mTOR pathways are asso
ciated with several autophagy-independent pathways. Further, 
there are many interesting questions that need to be addressed 
in order to elucidate the regulation of  autophagy during 
neurodevelopment and synaptic function. Such questions include: 
What are the autophagy substrates in axon terminals, dendrites, 
and synapses? How is autophagy tightly controlled in highly 
polarized axons or dendrites in a context-dependent manner? 
How does autophagy affect neurodevelopmental disorders? Is 
autophagy detrimental or beneficial to these disorders? How 
do neurodevelopmental genes affect the autophagy pathway? 
Further studies aimed at identifying the modifiers or modulators 
of  autophagy regulation in highly polarized neurons will 
contribute to our understanding of the autophagy pathway during 
development and synaptic plasticity and will further aid the 
development of therapeutic strategies for treatment of autophagy-
associated neurodevelopmental disorders.
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