Skip to main content
. 2013 Oct 23;33(43):17188–17196. doi: 10.1523/JNEUROSCI.2348-13.2013

Table 3.

Logistic regression models predicting decisions to donate in photograph and silhouette conditions

Behavioral Neural Combined
Photograph condition
    Positive arousal 2.79** (0.98, 0.34) 2.87** (0.98, 0.34)
    Negative arousal −1.64 (−0.67, 0.41) −1.70 (−0.69, 0.41)
    NAcc 2.50* (0.87, 0.35) 2.99** (0.92, 0.31)
    Insula −0.99 (−0.38, 0.38) −0.78 (−0.32, 0.40)
    Amygdala −0.40 (−0.21, 0.52) −0.34 (−0.16, 0.49)
    MPFC 1.31 (0.25, 0.19) 1.01 (0.19, 0.19)
    Log likelihood −320.90 −360.25 −315.73
    R2 0.224 0.130 0.240
    AIC 729.8 806.1 727.4
Silhouette condition
    Positive arousal 3.58*** (1.83, 0.51) 3.55*** (1.87, 0.53)
    Negative arousal −4.46*** (−1.80, 0.41) −4.49*** (−1.81, 0.40)
    NAcc 0.24 (0.08, 0.33) 0.35 (0.14, 0.39)
    Insula −0.50 (−0.17, 0.33) −0.78 (−0.24, 0.31)
    Amygdala 0.91 (0.27, 0.30) 0.73 (0.26, 0.35)
    MPFC 0.93 (0.14, 0.15) 1.49 (0.24, 0.17)
    Log likelihood −304.0 −372.0 −303.2
    R2 0.259 0.097 0.264
    AIC 684.5 827.3 689.4

Z-scores with coefficients and SEs in parentheses. Significance: ***p < 0.001; **p < 0.01; *p < 0.05. Regressions include subject random effects.