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The article by Trebicka et al. (1) in the current issue of Clinical
and Vaccine Immunology, on antibodies to Salmonella among

adults and children in the United States, is paradoxically impor-
tant for our understanding of immunity to nontyphoidal Salmo-
nella (NTS) globally and the development of a much-needed vac-
cine for Africa. In recent years, there has been a growing awareness
of the major public health problem attributable to NTS infections
in sub-Saharan Africa (2–5). Unlike the self-limiting gastroenteri-
tis commonly seen in high-income countries (6), the presentation
in Africa is often with life-threatening invasive NTS (iNTS) dis-
ease (2, 3, 5). This usually manifests as bacteremia, where fever
may be the only symptom, but also as meningitis (7).

Incidence levels of iNTS are around 500 cases/100,000 people/
year among African children under 2 years (8, 9), with case fatality
rates of 20 to 25% (2). Diagnosing iNTS without blood culture
facilities is particularly difficult, and there is an increasing fre-
quency of antibiotic resistance, with no vaccine available for use in
humans (3). An effective vaccine could have an enormous bene-
ficial impact on health care in the continent. This would make a
strong positive contribution to achieving the Millennium Devel-
opment Goals, particularly goal 4, the reduction of child mortality
(10). As with young children, HIV-infected individuals of all ages
are highly susceptible to iNTS disease (11, 12), and there are well-
recognized clinical associations with malaria (13), anemia (14),
and malnutrition (15).

The high prevalence of iNTS disease in Africa and its relative
rarity in high-income countries may relate to the specific micro-
biological features of the circulating strains and the transmission
of the bacteria in Africa (3). Recently, NTS isolates in Africa have
been shown to be genetically different from those present else-
where. Salmonella enterica serovar Typhimurium, the most com-
mon serovar responsible for iNTS disease in Africa, with a distinct
multilocus sequence type, ST313, has been implicated in the ap-
pearance of epidemic iNTS disease (4, 16). This pathovar is rarely
found outside Africa and has genomic features in common with S.
enterica serovar Typhi, most notably the presence of high levels of
genome degradation (16). However, relatively little is known
about its phenotypic features that are associated with invasive dis-
ease. Transmission of iNTS in Africa also appears to be different
from the food-borne or animal-related transmission commonly
associated with Salmonella infections in high-income countries.
There is evidence for human-to-human spread as the main form
of transmission in Africa (17, 18). This may be facilitated by the
lower levels of sanitation and the lack of availability of clean water
in much of the continent.

Apart from the distinct bacterial genotype associated with

iNTS, differences in immunological status are likely to have an
impact on the occurrence of iNTS disease (3). This is not least
because early childhood can represent an immunologically naive
state and the clinical associations with iNTS disease in Africa
(HIV, malnutrition, malaria, and anemia) can all have an impact
on immunity. A proper understanding of immunity to NTS is
required for the development of a vaccine against iNTS disease for
Africa. Hence, studies of immunity to NTS are important and
should be conducted in high-income countries as well as low-
income countries. Mechanistic immunological research into Sal-
monella infections in high-income countries has tended to focus
on disease in mice, resulting in an unusual paradigm in which the
more-recent studies on immunity to iNTS in humans have been
conducted in low-income countries (19, 20). The current study by
Trebicka et al. represents a welcome step toward redressing this
imbalance and attaining a more holistic overview of immunity to
NTS infections at a global level.

It is key for us to acquire a fuller understanding of the mecha-
nisms of protective immunity and to identify the relevant target
antigens for developing such immunity (21). Cell-mediated im-
munity has long been viewed as essential for protection against
this facultative intracellular pathogen (22). While cell-mediated
immunity is important for clearing intracellular disease, it is inef-
fective at preventing fatal bacteremia. In contrast, bacteremia can
be countered by antibody acting both directly through comple-
ment-mediated killing (19) and indirectly through opsonic mech-
anisms and blood cell phagocytes (20). There is strong epidemio-
logical evidence from Africa for the protective effect of antibody,
with markedly reduced numbers of cases of iNTS disease being
associated with placentally transferred IgG and the acquisition of
antibody to NTS with age (19).

Relatively little work on the key targets of protective, acquired
immunity to iNTS in Africa has been published. Investigation into
the underlying mechanisms responsible for the link between HIV
infection and fatal iNTS disease in African adults found that sera
from some HIV-infected individuals were unable to kill S. Typhi-
murium in vitro (23). That study went on to show that the lack of
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killing was associated with the presence of high levels of antibodies
targeting the O antigen of S. Typhimurium LPS. When purified,
such antibodies blocked in vitro complement-mediated killing of
Salmonella by antibodies from healthy individuals.

Interestingly, Trebicka and colleagues have shown bactericidal
activity against S. Typhimurium in deidentified sera from healthy
adults and children (6 months to 5 years of age) (n � 49) attending
clinics in Boston, as has been found in Africans (19, 23). Compar-
ison with the results of work from Malawi has been facilitated by
the use of similar methodologies in the different studies. The main
obvious difference between these studies was the use of a common
laboratory strain of S. Typhimurium (SL1344; ST19, a genotype
common worldwide) by Trebicka et al. and the use of the invasive
S. Typhimurium ST313 isolate, D23580, by the African studies
(16, 19, 20, 23). As shown for African children (19), the need for
both antibody and complement for cell-free bactericidal activity
was confirmed. Although all sera from children in the Boston
study were able to kill SL1344, the level of killing was significantly
lower than that effected by sera from adults, presumably due to
lower levels of antibodies to S. Typhimurium.

Trebicka et al. detected IgM and IgG antibodies against S. Ty-
phimurium LPS in their sera and speculated that the bactericidal
antibodies are specific for LPS. Removal of bactericidal activity
after preabsorption with LPS from S. Typhimurium, but not LPS
from E. coli, supports this concept. It suggests that the specificity of
these bactericidal antibodies is for the O antigen of LPS, since this
is the most variable moiety of LPS among different species and
serovars of Gram-negative bacteria. The findings may appear con-
tradictory to those from studies in Malawi that focused on HIV-
infected adults (23). However, these HIV-infected individuals had
marked immune dysregulation. Many of them had CD4 counts
less than 200 cells/�l, and none was on antiretroviral therapy. All
had hypergammaglobulinemia. Lack of bactericidal activity and
inhibition of the bactericidal activity of control serum was ob-
served in a subset of HIV-infected sera containing the highest
concentrations of total and anti-LPS IgG antibodies. The inhibi-
tory effect could be recapitulated using affinity-purified anti-LPS
IgG from either HIV-infected or non-HIV-infected bactericidal
sera provided they were concentrated to the same high levels pres-
ent in the HIV-infected inhibitory sera (23).

Further work on the African sera has demonstrated that at
concentrations found in non-HIV-infected sera and most HIV-
infected sera, these anti-LPS antibodies are bactericidal (24). In
addition, absorption studies similar to the ones conducted by
Trebicka et al. show that bactericidal activity can be curtailed in
the African sera by removal of anti-LPS antibodies (25). Trebicka
et al. speculated that the contrast between bactericidal and inhib-
itory anti-LPS antibodies from Africa and the United States might
result from exposure to the ST313 pathovar of S. Typhimurium.

Against this, a recent study into the immunogenicity of the S.
Typhimurium ST313 D23580 isolate demonstrates that bacteri-
cidal antibodies are induced in mice immunized with this strain
(26) and that glycoconjugates consisting of D23580 O antigen
linked to cross-reacting material 197 (CRM197) induce bacteri-
cidal antibodies against D23580 (27). Passive transfer to naive
mice of immune sera from mice immunized with an S. enterica
serovar Enteritidis O-antigen flagellin glycoconjugate vaccine has
been shown to be protective against an invasive S. Enteritidis iso-
late from Mali, West Africa (28). Furthermore, mice immunized
with a live attenuated vaccine strain derived from another African

ST313 isolate also developed bactericidal antibodies against
strains of this genotype (29).

Overall, the results of this mechanistic study by Trebicka et al.,
conducted in a high-income country, have remarkable concor-
dance with those of African studies. Although, at very high con-
centrations, anti-Salmonella LPS IgG antibodies can exert an in-
hibitory effect on in vitro complement-mediated killing of S.
Typhimurium (23), at most concentrations they are bactericidal
(24). Perhaps the most surprising finding of the Boston study is
the almost-universal presence of anti-Salmonella LPS antibodies
in a collection of sera from healthy children and adults from that
city. The authors speculate two possible reasons for this: first, the
development of cross-reactive antibodies against S. Typhimurium
LPS from exposure to environmental LPSs from other organisms,
and second, the occurrence of subclinical infections with S. Typhi-
murium leading to the development of these antibodies. Both ex-
planations are plausible. While the former will require more than
exposure to E. coli LPS, the latter is not as strange as it may appear.
Asymptomatic infections with Salmonella, when looked for, are
more common than expected (30). Moreover, when HIV/AIDS
first emerged in high-income countries, severe disease with NTS
was a common presentation (31, 32), suggesting that exposure to
these bacteria is more widespread than appreciated.

One of the 49 sera examined in the Boston study was unable to
kill S. Typhimurium and was able to inhibit the killing of these
bacteria by control sera. The likely mechanism appears to be dif-
ferent from that in HIV-infected African adults. Using absorption
studies, the authors were able to implicate anti-Salmonella LPS
IgM, rather than IgG. Surprisingly, this was associated with a de-
creased level of complement deposition, rather than the high lev-
els of complement deposition seen in the African studies. IgM is
normally a potent activator of complement on Salmonella (33),
and the authors speculate that structural idiosyncrasies of these
particular IgM molecules might interfere with complement bind-
ing. It will be interesting to see whether such a mechanism can be
demonstrated in a future study. The observation suggests that
there are different mechanisms by which antibody-mediated kill-
ing of Salmonella can be blocked.

In conclusion, the findings of the Boston study, together with
ongoing emerging work from Africa, indicate an important role
for anti-LPS antibodies for complement-mediated killing of Sal-
monella and that the induction of such antibodies may be an ef-
fective vaccine strategy. The bactericidal and protective efficacies
of antibodies to Salmonella outer membrane proteins (23, 34, 35)
and flagellin (36) have also been described. The presence of such
protein antigens in a vaccine may be advantageous, since they have
the added potential benefit of being able to activate Salmonella-
specific CD4� T helper cells. Together, these results suggest that
glycoconjugate vaccines in which Salmonella LPS O antigen is
coupled to a Salmonella-specific or other protein can elicit protec-
tive antibodies and would be effective in reducing iNTS disease in
Africa.
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