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Sex pheromones provide an important means of communication 
to unite individuals for successful reproduction. Although sex 
pheromones are highly diverse across animals, these signals fulfil 
common fundamental roles in enabling identification of a mating 
partner of the opposite sex, the appropriate species and of opti-
mal fecundity. In this review, we synthesize both classic and recent 
investigations on sex pheromones in a range of species, spanning 
nematode worms, insects and mammals. These studies reveal com-
parable strategies in how these chemical signals are produced, 
detected and processed in the brain to regulate sexual behaviours. 
Elucidation of sex pheromone communication mechanisms both 
defines outstanding models to understand the molecular and neu-
ronal basis of chemosensory behaviours, and reveals how similar 
evolutionary selection pressures yield convergent solutions in 
distinct animal nervous systems.
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behaviour; evolution
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Introduction
Nearly 150 years ago, Charles Darwin and the French entomologist 
Jean-Henri Fabre—although disagreeing on the theory of evolution—
both postulated the existence of chemical signals involved in the 
control of sexual behaviours [1,2]. It was only in the middle of 
the twentieth century, however, when the German biochemist Adolf 
Butenandt purified—from half a million scent glands of female silk 
moths (Bombyx mori)—the first sex pheromone: bombykol [3]. 
Despite this discovery, in many other animals the precise chemical 
identity and function of sex pheromones in regulating interactions 
between males and females have been difficult to define. The limited 
progress might be due, in part, to the inability of our noses to detect 
the sophisticated chemical conversations of other species [4].

This situation has changed dramatically in the last decade as sex 
pheromones and receptors have been identified in many species, 
which have allowed visualization and manipulation of the neural 
circuits that link these sensory signals with particular behaviours. 
There is enormous diversity in the chemical nature of sex phero-
mones, including long-chain hydrocarbons in insects [5], ascaroside 

(ascr) glycolipids in nematodes [6] and peptides or small proteins in 
vertebrates (Fig 1; [7,8]). Consistently, the receptors for pheromones 
have evolved independently in these different animal groups [9,10], 
and are housed in different types of sensory organ (Fig 1). 

Here we consider the crucial roles of sex pheromones and illus-
trate how diverse animals use and respond to these chemical signals 
to fulfil them. We focus on the best-described examples of true sex 
pheromones, defined as chemicals produced by an individual that 
elicit innate, stereotyped sexual behaviours in conspecifics [11]. We 
do not cover sexually relevant ‘signature mixtures’, which are com-
plex combinations of chemicals produced by individuals that can 
vary within a species and must be learned by the receiver [11], or the 
many other well-established functions of pheromones—for example, 
as alarm, trail and aggregation signals [4].

Sex pheromone signalling and gender discrimination
The most important function of sex pheromones is to allow organ-
isms to identify mating partners of the opposite gender. Predictably, 
chemical signals advertising gender are commonly produced in 
a  sex-specific manner, whether male-specific, female-specific or a  
combination of the two. Stemming from the identification of 
bombykol [3], many of the best-characterized insect sex phero-
mones are female-specific, long-range male attractants [12,13]. This 
might reflect a historical, rather than taxonomic class, bias: studies 
of several Hemiptera (true bugs) have revealed principally male-
specific sex pheromones [14,15]. Furthermore, in drosophilids, the 
only identified volatile pheromone is the male-specific cis-vaccenyl 
acetate (cVA) (Fig 1), which inhibits male–male courtship [16,17]. 
Non-volatile—or at least less volatile [18]—cuticular hydrocarbon 
pheromones in insects, detected by contact chemosensation, seem to 
be combinations of both male-specific and female-specific cues [13]. 
In Drosophila melanogaster, for example, 7,11-heptacosadiene 
(7,11‑HD), an aphrodisiac for males, is a female-specific cuticular 
hydrocarbon, whilst male hydrocarbons are enriched for 7‑tricosene 
(7‑T), an anti-aphrodisiac for other males (Fig 1; [19,20]).

Nematodes have several different mating systems, including 
dioecy—males and females—as represented by Panagrellus redivivus, 
and androdioecy—self-fertilizing hermaphrodites and males—as rep-
resented by Caenorhabditis elegans. Although ascr-related sex phero-
mones are broadly used in nematodes (Fig  1;  [6,21]), sex-specific 
production and responses reflect these different mating systems. For 
example, P. redivivus females, but not males, produce ascr#1, which 
is repellent for females but a strong attractant for males. P. redivivus 
males produce the dihydroxy ascaroside derivative dhas#18, one of 
the few characterized female-attractants in worms  [22]. C. elegans 
hermaphrodites produce a different pheromone blend to attract 
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males and, usually, to repel other hermaphrodites. Within this 
blend, #ascr3—also known as C9 [23]—is behaviourally the most 
potent [24,25]. In contrast to the dioecious species, however, no 
male-specific sexual attractants are known. This might be because 
hermaphrodites represent the overwhelming majority in C. elegans 
(approximately 99.5%, at least in laboratory populations), strongly 
favouring a male’s chances of finding a mate. 

In mammals, few definitive cases have been identified in which 
single pheromone compounds evoke robust sexual behaviours, 
which might reflect an important contribution of signature mixtures 
in sexual communication [11,26]. The most compelling example 
of a sex pheromone is the male-specific exocrine gland-secreting 

peptide 1 (ESP1; Fig 1). ESP1 is secreted into tear fluids from the 
extraorbital lacrimal glands [27] and promotes female sexual 
behaviours, such as lordosis [28]. A second strong sex pheromone 
candidate is the major urinary protein (MUP) darcin (also known 
as Mup20), a small protein present in adult male urine ([29]; Fig 1). 
Darcin can promote attraction of females [29] but also males [30]. 
In addition, darcin induces spatial learning of other chemical cues, 
allowing both females and competitor males to relocate sites of 
previous social interactions  [29,30]. Other male pheromones 
might be volatile chemicals, such as (methylthio)methanethiol 
(MTMT), 3,4-dehydro-exo-brevicomin (DHB), 2‑sec-butyl‑4,5-
dihydrothiazole (SBT) and (Z)‑5-tetradecen‑1‑ol (Z5-14:OH); these 
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Fig 1 | Diversity of sex pheromones, receptors and sensory organs in insects, nematodes and rodents. In insects, many volatile sex pheromones (for example, 
bombykol from the silk moth Bombyx mori and cVA in drosophilids) are long chain hydrocarbons and are detected by ORs—an unusual class of ionotropic 
receptors unrelated to GPCRs [108]—which are expressed in the main olfactory organ, the antenna. Non-volatile—or at least less volatile—pheromones (for 
example, drosophilid 7,11‑HD and 7‑T) are thought to be detected by GRs (structurally related to ORs) and/or PPK ion channels in the labellum and the 
forelegs. In nematode worms, sex pheromones are glycolipidic ascarosides and are probably detected by GPCRs expressed in amphid chemosensory neurons, 
similar to receptors for non-sex pheromone ascarosides. In rodents, many small, volatile sex pheromones, such as DHB, as well as non-volatile protein and 
peptide pheromones (for example, MUPs and ESP1) might be detected by two different families of GPCRs, V1Rs and V2Rs, respectively, in the vomeronasal 
organ. A different GPCR family, the ORs, expressed in the main olfactory epithelium detects volatile pheromones, such as MTMT and (Z)‑5-tetradecen‑1‑ol 
(Z5‑14:OH; [109]). 7,11‑HD, 7,11-heptacosadiene; 7‑T, 7‑tricosene; cVA, cis-vaccenyl acetate; DHB, 3,4-dehydro-exo-brevicomin; ESP1, exocrine gland-secreting 
peptide 1; GPCR, G-protein-coupled receptor; GR, gustatory receptor; MTMT, (methylthio)methanethiol; MUP, major urinary protein; OR, odorant receptor; 
PPK, Pickpocket; V1R, vomeronasal receptor type 1; V2R, vomeronasal receptor type 2; Z5‑14:OH, (Z)‑5-tetradecen‑1‑ol.
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are found in male urine and are attractive to females, either alone 
or in combination (Fig  1;  [31–33]). An ESP1-related peptide of 
unknown function, ESP36, is expressed only in female tear glands, 
at least in one mouse strain [34]. However, the best candidate for a 
female sex pheromone in mammals is (Z)‑7-dodecen‑1‑yl acetate 
in the Asian elephant, which is released in urine during oestrus. 
In males this compound elicits flehmen behaviour—curling back 
of the upper lip and inhalation with the nostrils closed—which is 
thought to facilitate further chemosensation by the vomerona-
sal organ [35]. Remarkably, this same molecule is also a female-
specific pheromone in many moths, presumably reflecting 
convergent evolution of volatile hydrocarbon derivatives [35].

Whilst the pheromones that provide gender information are pro-
duced sex-specifically, characterization of the cognate receptors and 
downstream neural circuits has revealed two different strategies as 
to how these signals are received. In some cases, the pheromone 
receptor—and the sensory neurons in which it is expressed—are 
found exclusively in the opposite sex, rendering individuals of the 
same sex ‘blind’ to these stimuli. For example, several moth recep-
tors for female pheromones are expressed only in male olfactory 
organs (antennae), including the Bombyx mori bombykol receptor 
OR1 (Fig 2; [36]). Such sensory dimorphism provides a simple way to 
couple precisely a pheromone to sex-specific behavioural responses. 
In B. mori, males respond to a female pheromone through a series 
of behaviours, including wing-flapping, orientation and attempted 
copulation. Remarkably, artificial activation of BmOR1-expressing 
neurons—by transgenic manipulation of B. mori to express ectopi-
cally a pheromone receptor from a different moth species and pres-
entation of its cognate ligand—is sufficient for full induction of these 
sexual behaviours [37]. Mapping of the neural circuitry responsible 
for converting detection of a single chemical cue into this range of 
behaviours will be an exciting, albeit challenging, goal.

In other cases, sex-specific pheromones are detected by both gen-
ders, and can elicit distinct behaviours. The D. melanogaster male-
specific pheromone cVA is detected by OR67d, which is expressed 
in both male and female antennae (Fig 2; [16,38]). In males, activa-
tion of OR67d by cVA inhibits courtship behaviour, thereby prevent-
ing males from fruitlessly courting other males. Similarly to B. mori 
OR1-expressing neurons, artificial activation of OR67d neurons is 
also sufficient to suppress courtship [16]. In females, activation of 
OR67d neurons is necessary for full sexual receptivity [16]. How 
cVA can reduce sexual behaviour in males, but increase it in females 
is an intriguing problem. OR67d-expressing sensory neurons have 
largely non-dimorphic anatomical and physiological properties. 
However, higher-order neurons have sexually dimorphic connectiv-
ity [39,40], which might underlie sex-specific behavioural responses 
to the same pheromone (reviewed in [41]).

Discrete sensory neuron populations for D.  melanogaster 
cuticular hydrocarbon sex pheromones of females (7,11‑HD) and 

males (7‑T) have been identified. These express different combina-
tions of Pickpocket (PPK) receptors (Fig 2; [42–46]). PPKs belong to 
the degenerin/epithelial sodium channel class of ion channels, but 
whether these are the pheromone receptors themselves is unclear. 
A second, apparently distinct, population of sensory neurons for 7‑T 
has been described, which express the gustatory receptors GR32a 
and GR33a [47,48]. All of these sets of neurons are present in male 
and female labella as well as in their forelegs, with which flies ‘taste’ 
mating partners (Fig 1). Importantly, the PPK-expressing neurons have 
sexually dimorphic projection patterns (Fig 2; [42–46]). Physiological 
and behavioural analysis of these neurons has so far been restricted 
to males [20,42,46–48], but these anatomical observations raise the 
possibility that females also detect these sex pheromones, but process 
and respond to them differently. Indeed, females show greater recep-
tivity to males perfumed with additional 7‑T [49]. Beyond studies of 
the roles of individual sex pheromones in D. melanogaster, recent 
work has also begun to explore how volatile and contact chemical 
cues are integrated to reinforce or refine selection of the right gender 
for mating [50–52], although the underlying neural basis for sensory 
integration remains obscure.

Anatomical evidence for sex-specific pheromone processing has 
also come from studying mouse ESP1. Although exclusively male-
specific, this pheromone is recognized by the receptor Vmn2r116—
also known as V2Rp5—expressed in vomeronasal organ neurons 
present in both males and females (Fig 2; [28]). Consistently, ESP1 
exposure activates neurons in the vomeronasal organ and several 
higher centres of the vomeronasal system in both genders [28]. 
However, at least some ESP1-evoked activity is sexually dimorphic; 
for example, only females show responses in the posteromedial 
cortical amygdaloid nucleus and the ventromedial hypothalamic 
nucleus. ESP1 promotes sexual receptivity in females, notably lordo-
sis behaviour [28]. Although the effect of this peptide on males has 
yet to be described, the differential activation patterns in the brain 
are suggestive that this pheromone, as with cVA in D. melanogaster, 
could evoke sex-specific behaviours.

In C.  elegans, dissection of the neural pathways underlying 
detection of the hermaphrodite pheromone ascr#3 has revealed 
a combination of sex-specific sensory detection and central pro-
cessing properties, which might explain why this pheromone is 
attractive to males but aversive to hermaphrodites (Fig  2; [23]). 
ascr#3 stimulates, through an unidentified receptor, the ADL class 
of sensory neurons in hermaphrodites; these neurons are well-
characterized, multi-functional noxious stimuli detectors and their 
activation promotes avoidance behaviour—although this response 
can be modulated, as described below [23]. By contrast, males—
who also possess ascr#3-sensitive ADL neurons—are attracted by 
low concentrations of ascr#3 [24]. This marked switch in valence 
of behavioural response has been related to three sexually dimor-
phic neural properties. First, ADL physiological responses to 
pheromone are reduced in magnitude and temporally delayed in 
males [23]. Second, another class of ascr3#-responsive neurons, 
ASK, antagonize ADL-mediated avoidance in males, but not her-
maphrodites, through the RMG interneuron—a ‘hub’ that inte-
grates many sensory cues [23,53]. Finally, a third, male-specific 
neuron, CEM, is necessary for attraction to ascr#3, although it is 
unknown whether it is directly activated by this pheromone [24]. 
Thus, both peripheral and central dimorphisms, in part anatomical 
and in part neurophysiological, seem to underlie the sex-specific 
behavioural responses to ascr#3. 

Glossary

daf	 dauer formation
NPR‑1	 neuropeptide receptor 1
OR	 odorant receptor
TGF‑β	 transforming growth factor beta
Vmn2r116/V2Rp5	 vomeronasal 2 receptor 116
V1R	 vomeronasal receptor type 1 
V2R	 vomeronasal receptor type 2
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Fig 2 | Sexually dimorphic pheromone processing. Sex pheromones induce gender-specific behaviours through different neural processing strategies. In some cases, 
such as the female sex pheromone in the silk moth B. mori, the cognate receptor is expressed only in the opposite sex. In others, sex-specific pheromones are detected 
by both sexes but processed differently—either peripherally or centrally—to produce distinct behavioural outputs. cVA, in Drosophila melanogaster, and ESP1 in the 
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brain. Cuticular hydrocarbon pheromones in D. melanogaster (for example, 7,11‑HD and 7‑T) are detected by circuits that have sexual dimorphisms in sensory 
neuron projections. In C. elegans, ascaroside ascr#3 evokes avoidance in hermaphrodites and attraction in males, in part through a male-specific sensory neuron 
(CEM) and in part through differential processing of sensory signals from neurons present in both sexes (ASL, ASK) by the RMG interneuron. In many of these 
examples, the identity of the pheromone receptors is unknown. 7,11‑HD, 7,11-heptacosadiene; 7‑T, 7‑tricosene; ascr, ascaroside; cVA, cis-vaccenyl acetate; ESP1, 
exocrine gland-secreting peptide 1; GR, gustatory receptor; OR, odorant receptor; PPK, pickpocket.
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Despite the relatively incomplete knowledge of the identity and 
function of sex pheromones in any animal species, these examples 
indicate that gender identification depends on sex-specific phero-
monal cues produced by both males and females. These might indi-
cate both whom to and whom not to mate with, through sexually 
dimorphic peripheral and central neural pathways. Several striking 
observations suggest that sex-specific behaviours might be founded 
on relatively limited differences in these sensory circuits. In insects, 
female tobacco hornworm moths (Manduca sexta) grafted with 
male antennae follow plumes of female pheromones (detected by 
the male-specific receptors; [54]). In C. elegans, mutation of a single 
developmental regulator, daf‑7, encoding a TGF‑β related protein, 
is sufficient to render hermaphrodites attracted to pheromones that 
are normally only attractive to males [55]. Finally, female mice with 
impaired vomeronasal signal transduction display not only reduced 
female-specific behaviours but also new behaviours characteristic 
of males, such as mounting and pelvic thrusting [56]. These stud-
ies reveal the existence of ‘latent’ neural pathways capable of driv-
ing behaviours normally shown only by the opposite sex. Such 
properties might reflect the evolution of sex pheromone-sensing 
circuits from non-dimorphic pathways through relatively limited 
developmental modifications.

Discrimination of species, strains and individuals 
Successful reproduction also requires the correct matching of 
conspecifics or, in some cases, individuals of particular strains 
within species. Many sensory modalities contribute to prevent 
cross-species and strain mating, including visual and auditory 
cues, as well as ecological and habitat constraints, which can 
depend on non-pheromonal chemosensory adaptations [57]. 
However, sex pheromone signals might be of particular impor-
tance to permit species discrimination—both for sexual and non-
sexual behaviours—in closely related, morphologically similar 
species that occupy overlapping niches. Sex pheromones are 
easily ‘mutable’, whether by changes in the function or expres-
sion of enzymes required for their biosynthesis, or—for peptide/
protein pheromones—changes in their sequence. This flexibility 
can provide a rapid way to evolve private communication between 
members of the same species, strain or even individuals [57].

Moths offer the best-described examples of sex pheromone-
dependent discrimination in phylogenetically close species 
(reviewed in [57]). Female pheromones typically comprise a 
species-specific blend of chemicals rather than just a single pher-
omone. Unique identity is conferred by varying minor compo-
nents of the blend, or by varying the ratio between components. 
The latter strategy is exemplified by the European corn borer moth 
(Ostrinia nubilalis), in which two sympatric strains (referred to as 
E and Z ‘races’) produce pheromone blends with opposite ratios 
of isomers of the major female sex pheromone components, E11–
14:acetate and Z11-14:acetate (Fig 3; [58]). The genetic basis for 
this variation has been mapped to allelic variation in a single gene 
that encodes a fatty-acyl reductase required for pheromone bio-
synthesis [59]. Such apparently simple changes have a powerful 
behavioural influence: in the laboratory, these two strains can be 
mated to produce fertile offspring, but in the wild they do not freely 
interbreed. The distinct behavioural sensitivity to these pheromone 
blends is correlated with changes in the peripheral physiological 
sensitivity of two populations of olfactory sensory neurons that 
sense these two isomers [60], which could potentially be achieved 

by a simple switch in OR expression (Fig 3). The molecular basis 
of this strain specificity remains to be fully worked out. In hetero
logous cells, several Ostrinia ORs respond to pheromone compo-
nents, such as OR6, which recognizes Z11–14:acetate, and OR3, 
which is broadly tuned to several pheromone components, includ-
ing E11–14:acetate [60,61]. However, precise matching of ORs 
to specific neuronal populations to firmly link in vitro and in vivo 
responses awaits. A distinct Ostrinia species, the Asian corn borer 
(O. furnacalis), has evolved a pheromone with a small but signifi-
cant change in the position of the double bond in the hydrocarbon 
tail (E/Z12–14:acetate), by using a Δ14-desaturase (Fig  3; [62]). 
Interestingly, the Asian corn borer OR3 orthologue has drastically 
reduced sensitivity to the European corn borer pheromone com-
ponent E11–14:acetate, which can be accounted for by a single 
amino acid polymorphism (A148T;  [63]). This receptor mutation 
might therefore have contributed to the process of speciation by 
reducing the efficiency of crossbreeding between the ancestors of 
O. nubilalis and O. furnacalis. 

Species-specific cuticular hydrocarbon blends are well-
described in drosophilids. For example, D. melanogaster females 
produce a set of dienes (including 7,11‑HD) that are distinct 
from those found in D. erecta females, and essentially absent from 
other species, such as D. simulans [19]. As in moths, such phero-
mone variation might have a relatively simple genetic basis, with 
rapidly evolving fatty acid desaturases being prominent candi-
dates  [64,65]. Genetic ablation of pheromone-producing cells 
(oenocytes) in D. melanogaster leads to these females being courted 
inappropriately by D. erecta and D. simulans males, indicating that 
these dienes help species discrimination [50]. Artificially perfuming 
these D. melanogaster females with 7,11‑HD is sufficient to prevent 
their courtship by D. simulans males, thereby restoring this species 
barrier [50]. It is noteworthy that this single pheromone seems to act 
both to promote male courtship within D. melanogaster (through 
PPK-expressing foreleg neurons, as described above) and to inhibit 
interspecific courtship through an unknown sensory pathway. 
Formally, this latter function of 7,11‑HD in signalling between spe-
cies is not as a pheromone. A recent study implicated other cutic-
ular hydrocarbon sex pheromones, including 7‑T, in preventing 
male (but not female) D. melanogaster from mating with other spe-
cies, such as D. virilis [66]. Here, these signals seem to act through 
GR32a-expressing neurons in the male forelegs. As described 
above, this same pheromone and sensory neuron population have 
also been implicated in preventing inappropriate male–male court-
ship in D.  melanogaster [47,48,51]. However, the central neu-
ral circuits underlying these behaviours seem to be different [66]. 
The intertwined relationship of pheromones specifying sex and 
species discrimination in drosophilids is intriguing and prompts 
consideration of whether this is a general phenomenon in animals.

Many other insects (such as ants [67] and beetles [68]), as well 
as various nematodes [21,69] produce species-specific chemical 
blends. In most cases it is unclear whether these include true phero
mones or whether these blends are more appropriately classified 
as signature mixtures [11]. Regardless, little is known about their 
role (if any) in determining correct sexual pairing of conspecifics or 
strains. Insect sex pheromone blends do seem to provide signals to 
distinguish inbred and outbred individuals: inbred male African but-
terflies (Bicyclus anynana; [70]) and mealworm beetles (Tenebrio 
molitor;  [71]) produce chemical signals that are much less attrac-
tive to female conspecifics than those produced by outbred animals. 
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Although the mechanism by which inbreeding alters pheromonal 
blends is unclear, this phenomenon might be advantageous to species 
by minimizing inbreeding depression within populations [72].

In mammals, clear evidence for sex pheromones in defin-
ing species recognition is also lacking. However, the two known 
male pheromones, ESP1 and the MUP darcin, belong to larger 
families that display both inter- and intra-species genomic diver-
sity [34,73], raising the possibility that these proteinaceous phero-
mones could provide this type of information. Indeed, MUPs have 
been implicated as chemical signals that allow the recognition of 
genetic heterozygosity—a sign of phenotypic vigour—and enable 
avoidance of inbreeding, as well as in the distinction of individu-
als of the same or different species [74–77]. Moreover, some of 
these proteins can (directly or indirectly) stimulate neurons in the 
vomeronasal organ [74,78]. Disentangling precisely which MUPs 
are  important, and through which sensory pathways they act, 
remain important unsolved problems. A third genetically variable 
family, the major histocompatibility complex (MHC) class I recep-
tors, has also been implicated in defining individual identity [79] 
(however, by contrast, see [75]). As part of their role in the immune 
system, these receptors present short peptides (derived from endo
genous proteins) on the cell surface. Unexpectedly, such peptides, 

synthesized in vitro, can activate neurons both in the vomeronasal 
organ and main olfactory epithelium [80,81]. These observations 
prompted the hypothesis that the MHC genotype of an animal 
could define a repertoire of associated peptides potentially availa-
ble to act as pheromonal cues [79]. The natural source of such pep-
tides is, however, unclear as recent proteomic analysis of mouse 
urine—a rich source of behaviourally relevant chemical cues—
identified only one MHC-dependent peptide [82]. Nevertheless, 
this analysis identified in urine many other genetically variable 
MHC-independent peptides, which also activated vomeronasal 
neurons [82]. Although biological functions for such ligands are 
unknown, the blends of genetically variable peptides—analogous 
to the chemically diverse hydrocarbon profiles of insects—could 
potentially provide precise information on species, strain and even 
individuals during mate choice.

Discrimination of age, fecundity and mating status
Although sex pheromones, by definition, evoke innate, stereotyped 
sexual behaviours, there can be substantial plasticity in pheromone 
production and the responses they evoke to provide greater nuance 
in how these chemicals control interactions between conspecific 
males and females. The best-documented role for plasticity in sex 
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pheromone signalling is in indicating the age of individuals, a cru-
cial property to ensure mating occurs only after sexual maturation, 
but before the onset of senescence. For example, in nematodes, sex 
pheromone production by Caenorhabditis remanei females or by 
C. elegans hermaphrodites peaks in young adults [69,83]. Notably, 
in C. remanei, the attraction of male worms to this pheromone also 
reaches maximum levels at this time [69]. Similarly, in the noc-
tuid moth Agrotis ipsilon, male behavioural responses to female 
pheromones are observed only 3–5 days after eclosion. This matu-
ration correlates with increased physiological responses of olfac-
tory interneurons to pheromones but not to plant volatiles [84,85]. 
Finally, in mice, ESP1 expression is not observed before four 
weeks of age [27]—the time when these animals become sexually 
mature—and initiation (but not the maintenance) of expression is 
dependent on the male sex hormone testosterone [34].

Pheromone levels can also change in sexually mature adults. In 
D. melanogaster, cuticular hydrocarbon profiles of both males and 
females vary with age in adults [86,87]. Interestingly, the aphrodisiac 
7,11‑HD declines over time, which might underlie, in part, a prefer-
ence of males for younger females [86]. Youthfulness is not always 
favoured, however: in the European corn borer moth O. nubilalis, 
females have a mating preference for older males [88], and females 
of the African butterfly B. anynana prefer middle-aged (14-day old) 
over young (three-day old) males [89]. In both cases, these inclina-
tions correlate with changes in proportions of the main components 
of the male sex pheromone blend. Furthermore, perfuming young 
B. anynana with synthetic ‘young’ and ‘old’ male pheromone blends 
is sufficient to recapitulate the difference in attractiveness, suggest-
ing a direct role for age-dependent pheromone signals in controlling 
mating success [89].

Ageing also influences production of pheromones, or putative 
pheromones, in mammals [90–92]. In inbred male mice the urine 
levels of some androgen-dependent urinary volatiles are increased 
in middle-aged compared with young adult animals. These changes 
seem to be behaviourally relevant as female mice are more attracted 
to the urine of middle-aged animals. The precise pertinent cues are 

unclear, but MUPs and volatiles bound by MUPs are good candi-
dates, as female preference is abolished when urine is depleted of 
these proteins [91]. Consistent with this hypothesis, during senes-
cence, male urine becomes less attractive to females and shows 
declining MUP levels [92], reflecting a potentially honest signal of 
decreasing fecundity.

In addition to the progressive increases or decreases in sex phero-
mone signalling that occur with age, shorter-term variation in sex 
pheromone production and/or responses has been described in 
several species, including diurnal fluctuations [93–95], seasonal 
changes [96,97] and, in mammals, during the female reproduc-
tive cycle [35,98]. Although specific adaptive advantages of these 
variations are often easy to accommodate into models reflecting the 
lifestyle and sexual behaviour of individual species, they are often 
difficult to prove experimentally as many other phenotypic traits 
change coordinately over these timescales. 

A second major influence on sex pheromone signalling is mating 
itself. In many species, the chemical profile of the female changes 
depending on their mating status (reviewed in [99]). This phenome-
non has been mostly characterized in insects. For example, in some 
tortricid moths, mated females suppress production of pheromones 
that would attract new suitors [100]. In many species, males ‘apply’ 
new pheromones to females during mating. In D.  melanogaster, 
two male-specific pheromones, cVA and CH503, are transferred 
to the female during copulation through the seminal fluid, thereby 
marking her non-virginal status. cVA suppresses further courtship of 
the mated female by other males through OR67d [16], in the same 
way as this pheromone prevents male–male courtship (see above). 
CH503 also inhibits male courtship, through an unknown sensory 
pathway. Because it perdures longer on females than cVA—perhaps 
due to its lower volatility—CH503 might suppress remating over a 
longer time period [101].

Mating experiences can also modify pheromone responses. As 
with many animals, male A.  ipsilon moths have a post-ejaculatory 
refractory period, in order to refill their sex glands [102]. This quies-
cent period seems to be linked to reduced sensitivity to female sex 
pheromones. Whilst peripheral pheromone sensation is unchanged, 
olfactory interneurons show markedly diminished pheromone 
responsiveness, suggesting a role for neuromodulatory factors in this 
physiological regulation [102]. A different type of pheromone-sensing 
plasticity has been observed in D. melanogaster males, which show 
enhanced behavioural sensitivity to cVA after sexual rejection by 
mated—cVA-scented—females. This ‘courtship learning’ helps males 
focus their subsequent mating attempts on more receptive, virgin 
females [103,104]. Although dopaminergic neuron input to the mush-
room body—a site of learning and memory in insects—is required 
for modulating pheromone responses [104], where and how this 
intersects with the cVA-sensing circuitry has not yet been determined.

Finally, other social conditions might indirectly modulate 
sex pheromone-evoked behaviours. In C.  elegans, behavioural 
responses to the hermaphrodite sex pheromone ascr#3 are modified 
by changes in the neuromodulatory state, as revealed by different 
alleles of the neuropeptide receptor npr‑1 [23]. Low activity alleles 
of npr‑1—which are thought to recapitulate a state of metabolic or 
crowding stress—reduce hermaphrodite avoidance but increase 
male attraction. NPR‑1 functions predominantly in the RMG ‘hub’ 
interneuron, which coordinates sexually dimorphic processing of 
sex pheromones [23]. The adaptive advantage of these changes in 
pheromone-evoked behaviours is unknown.

Sidebar A | In need of answers

(i)	 How many different sex pheromones are produced by a given animal 
and what are their chemical identities? How and where are these 
signals synthesized, and how is pheromone production modified 
during development and ageing?

(ii)	 What are the specific receptors for each sex pheromone, and how 
are their downstream sensory circuits organized in the brain? 
How does activation of a specific receptor lead to a particular 
behavioural response?

(iii)	 What are the similarities and differences between circuit anatomy 
and function in males and females, and what are the crucial 
distinctions that define sexually dimorphic behavioural responses 
to pheromones? How are these dimorphic properties established 
during development?

(iv)	 How do sex pheromone signals integrate with other sensory 
modalities, such as signature mixtures of chemicals or visual cues, 
to control behaviour?

(v)	 Do common strategies in sex pheromone production and detection 
between organisms reflect evolutionary conservation or convergence? 
How does the use of distinct strategies between animals reflect their 
different lifestyles in nature? How do changes in pheromone signalling 
contribute to speciation?
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Closing remarks
Within the complex universe of chemosensory stimuli that control 
the interactions of animals with their environment, sex pheromones 
provide outstanding examples where specific chemical signals are 
tightly linked to particular species, receptors, sensory circuits and 
behavioural responses. Fascinatingly, this close relationship has led 
to sex pheromones being coopted for several other non-sexual func-
tions. For example, larvae of the cotton leafworm moth, Spodoptera 
littoralis, are attracted by an adult sex pheromone, which might 
help guide them to suitable food sources [105]. Nematophagous 
fungi sense the ascaroside pheromones produced by their prey 
as a trigger to set ‘traps’ [106]. Most famously, sexually deceptive 
orchids produce remarkably good chemical mimics of female sex 
pheromone blends of particular insect species in order to attract the 
corresponding males as unwitting pollinators [107].

Considering the principal roles of sex pheromones, as reviewed 
here—in uniting conspecific, fecund males and females—there is 
clearly still much to discover (Sidebar A). Progress will depend on 
a continued integration of chemistry, molecular genetics, neuro-
physiology, behavioural analysis and ecology, in both traditional 
laboratory models and those with better-defined natural histories. 
Nevertheless, pheromone-sensing pathways have become firmly 
established as premier models to understand how external informa-
tion is processed in the nervous system to evoke adaptive behav-
iours. Current knowledge clearly demonstrates how common 
functions of sex pheromones are met with common solutions as to 
how these chemical cues are produced and detected.
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