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circadian clock by regulating the nucleosome
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Rhythmic frq transcription is essential for the function of the
Neurospora circadian clock. Here we show that there is a circadian
histone occupancy rhythm at the frq promoter that is regulated by
FREQUENCY (FRQ). Using a combination of forward genetics and
genome sequencing, we identify Clock ATPase (CATP) as an essential
clock component. Our results demonstrate that CATP associates
with the frq locus and other WCC target genes and promotes histone
removal at these loci to allow circadian gene transcription. These
results indicate that the rhythmic control of histone occupancy at
clock genes is critical for circadian clock function.
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structure; Neurospora
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INTRODUCTION
Eukaryotic circadian oscillators are auto-regulatory circadian
feedback loops that are based on regulation of transcription
and translation [1,2]. The mechanism of the circadian oscillator
of the filamentous fungus Neurospora crassa is remarkably similar
to those of higher eukaryotes [3–5]. In the Neurospora clock,
the heterodimeric white collar complex (WCC) formed by two
PAS-domain transcription factors WHITE COLLAR-1 (WC-1) and
WC-2 binds to the promoter of the frequency (frq) gene and
activates its transcription [6–13]. FRQ and its protein partner FRQ-
interacting RNA helicase (FRH) form a complex called FFC that
inhibits the expression of frq both transcriptionally and post-
transcriptionally [8,9,14–18]. The inhibition of frq transcription
by FFC is mediated by FRQ-dependent WC phosphorylation,
which represses WC DNA binding activity and promotes its
cytoplasmic localization [8,9,18–22]. The rhythmic activation and
repression of frq transcription allow the endogenous rhythmic
expression of frq.

DNA bound by core histones forms nucleosomes, which are the
fundamental units of eukaryotic chromatin. Post-translational
modifications of histones are the basis of epigenetic regulation
that can have important roles in controlling gene transcription.
Rhythmic histone acetylation, and histone methylation of
clock gene loci and of many clock-controlled genes have been
shown [23,24]. In addition to histone modifications, nucleosome
occupancy also impacts gene expression [25,26]. In Neurospora,
two ATP-dependent chromatin-remodelling factors, CLOCK-
SWITCH (CSW-1) and chromodomain helicase DNA-binding-1
(CHD1), have been shown to be involved in the clock function by
regulating frq transcription [10,27]. These proteins presumably
function by regulating the chromatin status of the frq locus, but
how they act is not clear. In addition, a histone H3K4 methyl-
transferase is required for normal circadian rhythms [28]. Still,
how nucleosome occupancy is controlled by circadian clocks and
whether it has a role in the circadian control of gene expression
are not clear.

In this study, we show that there is a circadian nucleosome
occupancy rhythm at the frq promoter that corresponds to
the activation and repression of frq transcription. By combining
forward genetic- and genome-sequencing approaches, we identi-
fied Clock ATPase (CATP), a highly conserved eukaryotic protein,
as an essential circadian clock component in Neurospora. We
showed that CATP controls frq transcription and WCC binding to
the frq promoter by regulating the nucleosome occupancy and
chromatin status of the frq locus and other WCC target genes.

RESULTS AND DISCUSSION
Rhythmic nucleosome occupancy at the frq locus
To investigate the involvement of chromatin structure in the
regulation of frq transcription, we examined the nucleosome
occupancy at the c-box, a WCC-binding site in the frq promoter,
using a chromatin immunoprecipitation (ChIP) assay with a
histone H3 antibody. As shown in Fig 1A, the histone H3
occupancy was rhythmic in constant darkness (DD): low around
DD14 and high around DD22. This result indicates that nucleo-
some occupancy rhythm is anti-phase to the known rhythm of
WCC binding at the frq c-box [8,10]. Nucleosome occupancy
is low when the WCC binding is high and the frq transcription is
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activated, and is high when the WCC binding is low and the frq
transcription is repressed.

To further confirm this result, we performed the histone H3 ChIP
assays with the frq9 strain, in which a premature stop codon results
in a truncated FRQ protein and the loss of circadian rhythm [29].
The H3 occupancy rhythm was lost in the frq9 strain; no histone
occupancy increase was observed at DD18 or 22 (Fig 1B).
Because FRQ protein levels peak at these time points when frq
transcription is repressed, this result suggests that FRQ promotes
nucleosome formation at the frq locus. To test this hypothesis, we
induced FRQ expression in frq9 and wild-type strains that harbour
a quinic acid-inducible frq construct. As expected, ectopic
expression of FRQ resulted in a significant increase in H3
occupancy at the frq c-box in both strains (Fig 1C). These results
indicate that FRQ is required for high nucleosome occupancy on
its own promoter in the repressive phase. Nucleosome occupancy
is important in regulating transcription: gene expression is inhibited
when nucleosome occupancy is high [25,26]. Therefore, the
rhythmic nucleosome occupancy at the frq locus likely has a
critical role in the circadian negative feedback process.

Identification of a new Neurospora clock mutant
In our analyses of different progenies from a routine cross between
Neurospora strains, we identified a clock mutant strain, mut10
that arose from a spontaneous mutation. As shown by race tube
assay, mut10 has lost the normal circadian conidiation rhythm:
this strain showed a low-amplitude long-period rhythm for the first
2 days and then became arrhythmic (Fig 2A). In addition, the
circadian conidiation rhythm was also abolished in the bd mut10
double mutant (supplementary Fig S1 online). To determine the
molecular phenotype of the mutant, we examined the FRQ
expression profile at different time points in DD. As shown
previously [30], FRQ oscillated in both its level and its
phosphorylation profile in a wild-type strain. In contrast, the
mut10 strain only exhibited a very low-amplitude oscillation after
the light-to-dark transition, and there was little change in FRQ
phosphorylation after DD12 (Fig 2B; supplementary Fig S2A
online). Furthermore, we introduced a bioluminescence reporter
construct (frq-luc) [31], in which luciferase expression is
controlled by the frq promoter, into the mutant. As shown in
Fig 2C, a robust circadian rhythm of luciferase activity was
observed in the wild-type strain, but no rhythmic expression of
luciferase was observed in the mut10 strain, indicating that the
normal clock function is abolished in the mut10 strain.

CATP is an essential clock component
To identify the mutation responsible for the clock phenotype in the
mut10 strain, we crossed it with a Mauriceville strain and
performed race tube assays to examine the resulting progenies.
We then performed cleaved amplified polymorphic sequence
analyses utilizing the previously identified cleaved amplified
polymorphic sequence markers in the genome [32]. The
mutation was mapped to an B1-Mbp region in the right arm of
linkage group III. To identify the mutation, whole-genome
sequencing of the mut10 strain was performed. Comparison
of the genome sequence of a wild-type strain with that of
mut10 within the genetically mapped region revealed a single
nucleotide change within the open reading frame of NCU06484
(Fig 3A). This mutation results in a nonsense mutation that changes
Glu880 to a premature stop codon. The predicted protein product
of NCU06484 is highly conserved in eukaryotic genomes
from fungi to human and contains two ATPase domains and a
non-canonical bromodomain (Fig 3A). Because of its role in the
clock and its ATPase domains, this gene was named catp, for
Clock ATPase.

The premature stop codon in the mut10 mutant occurs
immediately after the first ATPase domain. Thus mut10 should
express a truncated CATP protein without the second ATPase
domain and the bromodomain. We generated an antibody against
amino terminus of CATP and examined CATP expression in wild-
type, mut10, and a catpKO strain was obtained from the
Neurospora crassa knockout library [33]. As shown in Fig 3B,
the CATP antibody recognized four high-molecular-weight bands
in the wild-type strain but not in the catpKO strain, indicating that
they are CATP protein products. In the mut10 mutant, the
wild-type CATP bands were absent and two main bands of lower
molecular weight were observed, indicating that the premature
stop codon resulted in truncated CATP products.

As shown in Fig 3C, the race tube phenotype of the catpKO

strain is very similar to that of the mut10 strain with the circadian
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conidiation rhythm abolished after 2 days in DD. Furthermore, the
circadian conidiation and slower growth phenotype of mut10 was
rescued by introduction of a construct in which wild-type capt
was expressed under the control of the quinic acid-inducible qa-2
promoter (Fig 3C). We tried to obtain the catpKO ras-1bd double
mutant and were not successful, suggesting that the catpKO

strain is sterile probably because of meiotic silencing. Together,
these results indicate that CATP is a critical component in the
Neurospora circadian clock.

CATP positively regulates frq expression
We compared FRQ expression in DD in the wild-type strain to
that in the catpKO strain (Fig 3D; supplementary Fig S2B online).
Unlike the robust oscillation of FRQ levels in the wild-type strain,
the catpKO strain had a very low-amplitude FRQ fluctuation
after the light-to-dark transition with no obvious changes in FRQ
phosphorylation profiles. In addition, the overall FRQ levels were
lower in the mutant. We next examined frq mRNA levels in DD by
quantitative reverse transcriptase polymerase chain reaction
analysis (Fig 3E). The catpKO strain exhibited lower frq mRNA

levels in DD than in the wild-type strain, as the FRQ protein.
These lower levels of frq mRNA in the catpKO strain are consistent
with the results of expression of luciferase from the frq promoter in
the mut10 strain (Fig 2C). These results indicate that CATP
positively regulates frq transcription.

We also checked the light-induced gene expression in the
catpKO strain and found that the light-induction of frq, al-1 and
vvd expression was near normal (supplementary Fig S3 online),
suggesting that the role of CATP is specific for circadian control of
gene expression.

CATP is essential for the nucleosome occupancy rhythm
Yta7, the yeast homologue of CATP, is thought to function at the
boundary of silent and active chromatin states and interacts with
histones as well as histone chaperones [34,35]. To understand the
role of CATP, we examined nucleosome occupancy of the frq
c-box in the catpKO strain. In contrast to the rhythmic H3
occupancy in the wild-type strain, the H3 occupancy level in the
catpKO strain was arrhythmic and constantly high in DD (Fig 4A).
The biggest difference in nucleosome occupancy between the two
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strains was observed at DD14, a time point when frq transcription
peaks in the wild-type strain.

A ChIP assay using a WC-2 antibody showed that WCC-binding
rhythm at the frq c-box was abolished and remained low
throughout DD in the catpKO strain (Fig 4B). In addition, ChIP
assays using an antibody specific for the phosphorylated Ser5
of the carboxy-terminal domain of the largest subunit of RNA
polymerase II (pol II) showed that levels of the phosphorylated pol II
were significantly reduced in the frq open reading frame in the
catpKO strain compared with those in the wild-type strain (Fig 4C).

Because pol II Ser5 phosphorylation is a marker for the completion
of transcriptional initiation [36], this result indicates that CATP
promotes transcription initiation of frq. It was previously shown that
histone H3 acetylation, a marker for active chromatin, fluctuates
at the frq locus [10]. As shown in Fig 4D, the rhythmic histone H3
Lys14 acetylation was abolished and the level of H3 Lys14
acetylation was reduced in the catpKO strain. Together, these
results indicate that CATP regulates the rhythmic frq transcription
by controlling nucleosome occupancy and chromatin structure to
allow rhythmic activation and repression of frq transcription.
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To examine whether CATP functions in the same pathway as
CSW-1 and CHD1 to regulate frq transcription, we examined the
histone occupancy at the frq promoter in the csw-1 and chd1
knockout strains. As shown in Fig 4E, the H3 occupancy levels
were similar in the wild-type strain and these two mutant
strains, indicating that the role of CATP in regulating histone
occupancy at the frq promoter is independent of these two
chromatin-remodelling enzymes.

CATP associates with chromatin at the frq locus
ChIP assays using both the Myc-tagged CATP and the antibody
against endogenous CATP showed that it binds to the frq promoter
and open reading frame regions (Fig 5A; supplementary Fig S4A
online). These results indicate that CATP associates with
chromatin at the frq locus, probably by interacting with the
histones [34,37]. In addition, these results indicate that the role of
CATP in regulating frq transcription is specific and is not because
of a nonspecific effect of CATP on general transcription.

We then examined whether CATP also acts on other WCC
target genes. hsf-2, csp-1 and adv-1 are directly regulated by
WCC [38]. In contrast, frh expression is not influenced by
WCC [15]. Myc-tagged CATP showed nonspecific binding to the
tubulin gene (Fig 5A), so it was used as the internal negative
control for the ChIP assays (supplementary Figs S4A and S5B
online). As shown in Fig 5B, there was significant CATP binding in
the promoter regions of hsf-2 and csp-1 but not at the adv-1 and
frh loci. Consistent with this result, histone H3 ChIP showed that
the nucleosome occupancy at the hsf-2 and csp-1 loci, but not at
adv-1 and frh loci, were significantly higher in the catpKO strain than
in the wild-type strain (Fig 5C; supplementary Fig S4B online).
Furthermore, quantitative reverse transcriptase polymerase chain
reaction analyses showed that the mRNA levels of hsf-2 and csp-1
but not if adv-1 and frh, were downregulated in the catpKO strain
(Fig 5D; supplementary Fig S4C online). Together, these results
indicate that, in addition to frq, CATP affects the chromatin structures
to regulate transcription of some WC target genes.
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Conserved domains of CATP required for its function
The ATPase domains and the non-canonical bromodomain
are conserved in all CATP eukaryotic homologues. We
generated Myc-tagged CATP constructs that contain point
mutations in the ATPase domain or bromodomain (CATPATPase

and CATPbromo). Although the wild-type CATP construct could
rescue the circadian conidiation phenotype of the mut10
strain, the mutant CATP constructs could not (Fig 5E). H3 ChIP
assays showed that the nucleosome occupancy at the frq c-box

was significantly reduced in the wild-type CATP strain but
remained at high levels in the CATPATPase and CATPbromo

strains (Fig 5F). These results demonstrate that the ATPase
domain and the bromodomain of CATP are essential for its
function in the clock.

Concluding remarks
In this study, we identified CATP as the critical clock component
that regulates the nucleosome occupancy at the frq locus. Our
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results indicate that the nucleosome occupancy rhythm is
important for clock function. They indicate that CATP promotes
the removal of nucleosomes at the frq locus to enhance WCC
binding. In contrast, FRQ promotes an increase of nucleosome
occupancy at the c-box. Although the expression of CATP is not
circadian (supplementary Fig S5 online), the counter balance of
these two effects, therefore, results in rhythmic nucleosome
occupancy at the frq promoter, which allows rhythmic binding
of the WCC and rhythmic activation and repression of frq
transcription. The regulation of nucleosome occupancy at the
frq locus is, thus, part of the circadian negative feedback process
that permits rhythmic transcription.

CATP specifically associates with the frq locus, suggesting that
CATP regulates nucleosome occupancy directly on chromatin. In
addition, CATP also associates with the WCC target genes, hsf-2
and csp-1 [38], and modulates the histone occupancy at these
loci. Thus, CATP also participates in the circadian output
pathway, but it remains to be demonstrated whether CATP acts
directly or indirectly on nucleosomes.

Two chromatin remodelers, CSW-1 and CHD1, were previously
shown to affect clock function by regulating the chromatin
structure at the frq locus [10,27]. CHD1 appears to affect the
frq chromatin structure near the 30 UTR region, and DNA
methylation at the frq locus is altered in the chd1 mutant. On
the other hand, micrococcal nuclease I assays showed that there is
a rhythm of nuclease sensitivity near the c-box region of the frq
promoter and CSW-1 appeared to promote the nuclease resistance
in this region [10]. However, as the nuclease accessibility rhythms
were present in both the wild-type and the csw-1KOstrains, an
additional chromatin-remodelling factor is likely involved in
regulating nucleosome occupancy at the frq promoter [10].
Interestingly, using ChIP assays, we found that the H3
occupancy at the frq c-box region is not altered in either csw-1
or chd1 mutants, suggesting that CATP acts differently from
CSW-1 and CHD1. The difference between our results and the
earlier findings might be because of the use of different assays.
Nonetheless, the combination of these results indicates that CATP,
CSW-1 and CHD1 act together to maintain the normal chromatin
structure at the frq locus. In addition, we showed that histone
H3K14 acetylation is also reduced in the catp mutant
(Fig 4D), suggesting that changes in nucleosome occupancy and
histone modifications act together to regulate the chromatin state
of the frq locus.

The mammalian homologue of CATP, ANCCA, is required for
the chromatin association of transcriptional activators [39,40].
Mutations in the yeast homologue of CATP, yta7, further result in
increased nucleosome occupancy at some genetic loci [41]. These
results indicate that the role of CATP homologues in regulating
nucleosome occupancy to permit transcription factor binding is
conserved. How CATP and its homologues regulate nucleosome
occupancy is not clear. It is possible that its non-canonical
bromodomain interacts with histones and the ATPase domains
generate energy to promote removal or degradation of nucleo-
somes. Consistent with this model, both Yta7 and ANCCA
associate with histones [35,40]. The conservation of circadian
clock mechanisms from Neurospora to animals suggests that
the circadian control of histone occupancy by CATP homologues
might also be a critical process of circadian process in
other organisms.

METHODS
Luciferase reporter assay. pfrq-luc-I (a generous gift from Dr Jay
Dunlap) was transformed into wild-type and mut10 strains at the
his-3 locus. The luciferase assay was performed and analysed as
previously described [31,42].
ChIP assays. ChIP assays were performed as previously
described [22]. Bound DNA was eluted using Chelex 100 resin
(Bio-Rad) and subjected to quantitative reverse transcriptase
polymerase chain reaction. Occupancies were normalized by
the ratio of ChIP to input (histone H3 ChIP assays) or the relative
binding to b-tubulin gene (internal negative control for WC-2 and
CATP ChIP assays).
Construction of point mutations of CATP. To generate mutant
constructs of CATP, site-directed mutagenesis was carried out as
previously described [43]. The mutated residues 700GTGKT704 in
CATPATPase were changed to ATAEA; in CATPbromo,1226DPNF1229

was mutated to AAAA. The constructs were transformed into a
mut10, his-3 strain at the his-3 locus.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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