Table 2.
Organism | Gene locus | Enzyme role in metabolism | Substrates | Products | Sp act (μmol min−1 mg−1) | Apparent Km for acrylyl-CoA (μM) | Apparent Km for NADPH (μM) | Turnover no. per subunit (s−1) | Native mol mass (kDa) | Calculated monomeric mol mass (kDa) | Composition | Specificity (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDR012 family | ||||||||||||
Rhodobacter sphaeroides 2.4.1 | RSP_1434 (acuI) | 3-Hydroxypropionate assimilation | Acrylyl-CoA, NADPH, H+ | Propionyl-CoA, NADP+ | 130 ± 11 | ≤1.5 | 28 | 80 | 64 | 37 | Homodimer | Acrylyl-CoA, 100; crotonyl-CoA, <1; 3-OH–propionyl–CoA, <1; acrylate, <1; NADPH, 100; NADH, 7 |
Ruegeria pomeroyi DSS-3 | SPO_1914 | Dimethylsulfoniopropionate metabolismb | Acrylyl-CoA, NADPH, H+ | Propionyl-CoA, NADP+ | 96 ± 4 | ≤2.8 | 18 | 60 | 62 | 37 | Homodimer | Acrylyl-CoA, 100; crotonyl-CoA, <1; 3-OH–propionyl–CoA, <1; acrylate, <1; NADPH, 100; NADH, 2 |
Escherichia coli K-12 substrain MG1655 | yhdH | Unknown | Acrylyl-CoA, NADPH, H+ | Propionyl-CoA, NADP+ | 72 ± 6 | ≤1.1 | 33 | 45 | 56 | 37 | Homodimer | Acrylyl-CoA, 100; crotonyl-CoA, <1; 3-OH–propionyl–CoA, <1; acrylate, <1; NADPH, 100; NADH 10 |
Sulfolobus tokodaii | ST0480 | Autotrophic CO2 fixation | Acrylyl-CoA, NADPH, H+ | Propionyl-CoA, NADP+ | 18.7 | 3 | 36 | 13 | 43 | 36 | Monomer | Acrylyl-CoA, 100; crotonyl-CoA, <1; NADPH, 100; NADH, <1 |
Clostridium propionicum | Unidentified | Fermentation of alanine | Acrylyl-CoA, NADH, H+ | Propionyl-CoA, NAD+ | 0.79 | 2 ± 1 | ND, NADH, 8 μM | 4a | 600 ± 50 | 149c | Heterohexadecamer (α2βγ)4 | Acrylyl-CoA, 100; 3-buten–2-one, 0.7; crotonyl-CoA, <1 |
Turnover number per enzyme complex.
Physiological role of acrylyl-CoA reductase in Rg. pomeroyi DSS-3 was shown by Reisch et al. (21).
Experimentally derived molecular mass of α2βγ heterotetramer.