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Abstract
Most biological processes involve multiple proteins interacting with each other. It has been
recently discovered that certain residues in these protein-protein interactions, which are called hot
spots, contribute more significantly to binding affinity than others. Hot spot residues have unique
and diverse energetic properties that make them challenging yet important targets in the
modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot
residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions.
Using biological methods to determine which residues are hot spots can be costly and time
consuming. Recent advances in computational approaches to predict hot spots have incorporated a
myriad of features, and have shown increasing predictive successes. Here we review the state of
knowledge around protein-protein interactions, hot spots, and give an overview of multiple in
silico prediction techniques of hot spot residues.
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Protein-Protein Interactions
Most cellular proteins do not act as isolated units; they often form complexes with other
proteins [1]. Formation of these protein complexes require specific interactions that become
the foundation for almost all biological processes, especially signal transduction. The
complexity of these protein-protein interactions (PPIs) is what primarily provides them with
their diversity in functions. From this complexity, distinctions can be made in the shape, size
and surface complementarity of protein-protein interactions [2–6]. These interactions can be
described as locally optimized, with the clustered, networked, densely packed residues
contributing mainly and cooperatively to the stability of the complex [7]. The sites by which
proteins interact with their partners are formed by surfaces with adequate electrostatic
complementarity and shape [8–11]. Other major factors that influence protein-protein
interactions are hydrophobicity [3, 12] and electrostatic interactions [10], and flexibility [8–
10]. While interfaces with an area as small as 1150–1200 Å2 have been described in low-
stability and short-lived complexes, “standard-size” interfaces [13] are roughly 1600 Å2 (+/−
400 Å2) and involve only small changes in conformation [6]. The “large” interfaces bury
2000 to 4660 Å2 and occur mostly between G-protein and other components of signal
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transducers, and between proteases and one class of their inhibitors [11, 13]. Understanding
the connection between structure and function of molecular systems can be achieved
through examination of the protein-protein associations, and enables the characterization of
their energetic properties [14, 15]. When one considers that there are over 45,000 protein-
protein pairs in yeasts, it is should become apparent that the number of potential, druggable
targets in humans is enormous [16].

Cellular dysfunctions from faulty protein-protein interactions are the underlying cause of a
variety of diseases, including cancer and neurological disorders [17, 18]. Despite the critical
importance and relative abundance of protein-protein interactions, very few small-molecule
PPI inhibitors have made the difficult transition from hits to marketed drugs. While peptide-
based inhibitors derived from 5–50 amino acids of a single member of an interacting protein
pair are easy to construct, conversion to of these peptides to “drug-like” molecules has
proved to be the biggest hurdle [19, 20]. One significant part of this problem is the nature of
the PPIs; classic protein inhibitors primarily target well -defined grooves and pockets [21,
22], whereas PPIs are usually large and relatively planar surfaces that were originally
considered not conducive to druggability by “drug-like” molecules [10, 23]. Advancements
in two areas: the understanding of the physical nature of PPIs as well as the increasing
diversity and quality of small, lead-like compounds have allowed PPIs into the realm of
valid targets, thereby greatly expanding the available target space for a plethora of diseases
[24, 25].

Protein Hot Spot Residues
It has been well established that for all proteins, the energy distribution is not uniform across
a given protein -protein interaction; that a small subset of residues will have a more
significant contribution to the binding free energy than other residues [7, 27–34]. Clackson
and Wells’ pioneering study of the binding of human growth hormone to its receptor
discovered these important residues and coined the term ‘hot spots’ [27]. Later work
revealed that hot spots occupy only a fraction of the larger interface area [28], and
proclaimed a more precise definition of a hot spot as a residue whose mutation to alanine
results in a decrease of at least 2.0 kcal/mol in binding free energy (ΔΔGbinding) [35].
Binding free energy, or ΔΔG, is defined as ΔGmut – ΔGwt, where ΔGwt and ΔGmut are the
binding free energies upon complex formation of the wild-type and alanine-mutated
proteins, respectively. It has been calculated that 9.5% of interfacial residues are hot spots
[36].

The composition of hot spots is distinctive and not random, with tryptophan (21%), arginine
(13.3%), and tyrosine (12.3%) being the only three fundamental amino acids having more
than 10% frequency [28, 37]. The complex formed by human growth hormone and its
receptor is shown with its dominating tryptophan residues (Figure 1). Out of the 29
interfacial residues in this complex, only four hot spots have ΔΔGbinding higher than 4.5
kcal/mol, and two of them are tryptophan. Tryptophan’s unique function can be partially
explained by its large and aromatic p-interactive nature [38] as well as its large hydrophobic
surface and protective effects from water [39]. When the bulky tryptophan residue is
mutated to alanine, the difference in size generates a large cavity that creates a highly
complex destabilization [28].

Consideration of the structural aspects of hot spots [40, 41] reveals that they are cooperative
and structurally conserved [7, 30, 42, 43]. This structural conservation is also apparent when
examining the rate of mutation of surface residues; protein interfaces [44] and functional
sites [45] mutate at a relatively slower rate when compared to other surface residues.
Mutations of the interactions between proteins may occur largely by coevolution, where
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substitutions in one protein trigger reciprocal changes in the other protein [44]. Numerous
studies of protein-protein interfaces have revealed the presence of hot spots where binding
affinity and specificity can be resolved by an epitope that is consisting of only a small
portion of interfacial residues [28, 29, 46–48]. Clearly, the structural conservation of hot
spots and their correlating binding affinity make them attractive drug targets for small
molecule inhibition. It is not surprising then, that hot spots have been considered in the
design of small molecule inhibitors of unwanted protein-protein interactions, and several
potential drugs show great promise in targeting hot spots [18, 36, 49–57].

Hot spots can facilitate drug design in two ways. First, the binding site can be predicted by
the presence of hot spots, and this binding site can be considered a starting point to perform
docking and/or screening of ligands [58]. Second, rigid docking could exploit the relatively
less flexible hot spots, and improvements in protein docking would be achieved by choosing
dominant conformation of the hot spot side chains resulting from molecular dynamics (MD)
simulations rather than the unbound X-ray conformation [59, 60]. Initial studies have shown
that hot spots have physico-chemical properties that may be predictive [36, 46], and this
prediction goes a long way to decipher the functional mechanism of proteins. From the
mechanisms, valuable information can be used for a wide range of purposes: mutant proteins
can be designed that will validate the interactions, drugs can be developed that target the
protein-protein interactions, and molecular recognition can be expanded to help us
understand complex signaling pathways.

Experimental Prediction of Hot Spot Residues
Experimental identification of hot spot residues is primarily performed by alanine scanning.
This process involves mutation of a residue of interest to alanine, and recording the resulting
binding energy changes. If this mutation results in a marked drop in the binding constant
(typically tenfold or higher), the residue is considered a hot spot [46]. Substitution with
alanine removes all atoms in the side chain past the β-carbon. Alanine is used because of its
relatively inert methyl functional group without contributing additional flexibility [61–63].
Mutation to glycine would also remove the side chain, but is not used since it can introduce
unwanted conformational flexibility in the protein backbone [64].

In the context of protein folding, a mutation on a hot spot residue can be considered to
destabilize the bound ensemble state relative to the unbound one [65, 66]. It follows then
that alanine scanning determines the specific contribution of residues to the ensemble’s
stability, and resulting protein function. If we are to consider the plasticity of protein
interfaces, alanine scanning mutations affect free energy surfaces that can lead to differential
effects of the bound, unbound state, or both (Figure 2). It becomes advisable then to
interpret both the structure and energetic properties of each ensemble to rather than a
specific residue interactions [46]. Initially, alanine scanning was applied towards human
growth hormone and the growth hormone binding protein [27], and this technique has
proved invaluable in PPI analysis and hot spot detection [6, 28, 33, 46, 55]. The resulting
data from alanine scanning can be deposited in the Alanine Scanning Energetics Database
(ASEdb), and verified experimental hot spots from the literature are found in the Binding
Interface Database (BID) [35, 67]. These repositories, while useful, have two drawbacks.
First, hot spot information from experimental studies is limited to very few complexes.
Secondly, it is not recommended to interpret this data to specific residue interactions [46].

Experimental mutagenesis of target proteins for elucidation of hot spots is not applicable on
a large scale since individual mutants must be purified and analyzed separately [46].
Systematic analysis requires each alanine-mutated protein to be constructed, placed in an
expression system sometimes refolded, then the resulting protein activity is assessed in an in
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vitro assay [64]. While techniques such as reflectometric interference spectroscopy [68] and
“shotgun scanning” [69] have alleviated some of the labor involved, experimental hot spot
analysis is still very time consuming and expensive. The theoretical and computational
prediction of hot spots has become one of the most attractive and challenging topics in
biochemistry, biophysics, and bioinformatics, and each of these disciplines offer unique
strategies to confront this challenge. Next, we will outline the methods and tools available
for computational hot spot prediction (Table 1).

Energy-based Computational Methods
Computational alanine scanning estimates the energetic contribution of each residue to the
total binding energy via virtual alanine scanning. The process for computational alanine
scanning is briefly described as follows: Using a side chain repacking algorithm, mutation of
each interface residue to alanine is performed. Then, a numeric energy function is used to
evaluate the bound and unbound states of the original and mutant proteins. Finally, the
change in the binding energy (ΔΔG) of each mutation is calculated thermodynamically. This
approach requires the complex structure as input and is best for providing an accurate
estimation of free energy charges [85].

One such algorithm is FOLDEF, available as the FoldX web server. It was developed by
Guerois et al., and was used to predict the energetic effect of mutations on protein
complexes. FOLDEF was built on the FoldX complex energy function, which systematically
truncates side chains between two proteins (or protein-peptide) to alanine, then calculates
change in the binding energy after relaxation [70]. The complex energy function contains
terms for: implicit and explicit desolvation, van der Walls forces, hydrogen bonding,
Coulombic electrostatics, changes in entropy, and dipole interactions. FOLDEF was trained
on a database of 339 mutants and gave a global correlation of 0.83 and a standard deviation
of 0.81 kcal/mol when tested on a database of 1030 mutants. FoldX predictions have a linear
correlation with experimental binding energies, and the standard deviation of predictions
from a linear regression of the data is 0.88 kcal/mol [86].

Similarly, Kortemme and Baker used a simple physical model (named Robetta) that includes
various parameters including: Lennard Jones interactions, solvation interactions, packing
interactions, implicit solvation and hydrogen bonding to calculate free energy [71]. Similar
to FoldX, the Robetta energy function was parameterized from protein stability data.
Robetta mutates side chains to alanine and locally repacks the structure within 5Å of the
mutant residue, while keeping the rest of the protein unchanged. The predicted changes in
binding energies form the basis for hot spot predictions [87]. When tested on a database of
743 mutations in the interface of each protein (from the ASEdb), Robetta was able to
correctly predict 79% of hot spot residues with a 1.0 kcal/mol cutoff, and an average error of
1.06 kcal/mol [87, 88]. The implicit solvation model has two potential errors: Robetta
cannot identify hot spots that are involved in water-mediated hydrogen bonds, and when
waters can compensate for a mutation, it will incorrectly predict mutations as hot spots.

Gao et al. developed a structure-based method, called PP_SITE, based only on three
properties: H-Bond, hydrophobic and van der Walls interactions. PP_SITE is developed
based on POCKET, which is a module of the multi-purpose program LigBuilder [89].
PP_SITE creates a box with regularly spaced grids to cover interfacial residues and uses
probes for each structural property to screen those grids. The probes include a positively
charged sp3 nitrogen (ammonium cation), a negatively charged sp2 oxygen (as in a carboxyl
group), and a neutral sp3 carbon atom (methane). For each grid, the scores are calculated and
a grid label is assigned to it. This method then offers the ability to analyze the
decomposition of the contributions of regions in the predicted hot spots, enabling
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comprehensive exploration of the properties of the protein-protein interface. PP_SITE was
tested on 13 complexes with 250 alanine mutations on interfacial residues. For the 75 hot
spot residues in this set, 66 were predicted correctly, giving an 88% success rate (ΔΔG > 1.5
kcal/mol) [72].

FTMAP [73] is a recent approach that uses docking results of small organic probes to
discover hot spots. It was originally conceived as a computational equivalent of the
experimental multiple solvent crystal structures (MSCS) technique, where a target protein is
co-crystallized in the presence of a diverse set of organic solvent probe molecules. It has
been shown that molecular probe distribution on the protein surface allows for discovery and
characterization of potential ligand interaction sites [90]. The FTMAP algorithm samples
billions of positions from 16 small molecule probes (with varying hydrophobicity and
hydrogen-bonding capacity) globally across the total protein surface using a fast Fourier
transform correlation approach. The poses are evaluated with an empirical scoring function
that includes van der Waals terms, electrostatic interaction energy, a cavity term to represent
the effect of nonpolar enclosures, and a structure-based pair-wise interaction potential. The
2000 most favorable docked conformations are energetically minimized and clustered. The
lowest energy clusters from different and overlapping probe types are clustered again into
consensus sites; the largest consensus site is generally located at the most important sub-site
of the protein binding site. FTMAP is available as a publically-available server, where only
the PDB file or a PDB code of the protein is required. The output shows the six lowest
energy cluster representatives as well as the number of non-bonded and hydrogen bonds
between the probes and each residue in the protein (Figure 3).

Another recent method called PCRPi (Presaging Critical Residues in Protein interfaces) is
based on the integration of three main sources: energetic, structural, and evolutionary
determinants by using Bayesian networks to unify them into a common probabilistic
framework [74]. Specifically, the attributes are: interaction engagement index, topographical
index, four separate conservation indexes (ANCCON, ANC3DCON, CON, and 3DCON),
and the BE index. The BE index is an in silico alanine scan using FoldX [70]. This method
has been developed as a web server (called PCRPi-W) where users can enter a PDB code or
upload a complex, as well as select the type of Bayesian network architecture (naïve or
expert) [75]. Two different types of training sets are available for users: Ab+, which
contains entire dataset of 636 interface residues, including antigen-antibody complexes, and
Ab−, which does not include these antigen-antibody complexes. Using a BID dataset
derived in Tuncbag et al. [91], the PCRPi-W method recorded a precision of 0.79 and recall
of 0.64 when compared in a head-to-head comparison with other computational methods
[75]. Also of note, the PCRPi-DB is the result of annotating and archiving the entire Protein
DataBank [92] using PCRPi [93].

Finally, Guharoy and Chakrabarti used only the two criteria: hydrogen bonding across the
interface, and location in the interface core to predict more than 80% of hot spots with
experimental contribution of core residues to the energy of binding (ΔΔG > 2 kcal/mol) [76].
An experimental database of 462 mutants from 28 interfaces was used, out of which 143
form hydrogen bonds. The average unsigned error (calculated as | ΔΔGcalc − ΔΔGexp|) for all
mutations was 1.04 kcal/mol. This technique is computationally inexpensive due to its small
number of parameters, and is hence potentially applicable across a large set of complexes.
One limitation of this technique is that coupling and indirect effects cannot be considered
explicitly.
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Molecular Dynamics-based Methods
These types of methods are also energy-based, but use more intensive molecular dynamics
computations to provide an atomic level of hot spot prediction. Therefore we grouped them
separately. One particular study using MD techniques looked at anchor residues, which are
residues that have limited mobility and strongly correlate with conserved hot spot residues
[94]. The study of anchor residues was conducted by Rajamani et al. on 11 different proteins
and concluded that these residues have side chains that experience the largest decrease in
solvent-accessible surface area (>100 Å2) when in a complex [59]. From their analysis of 39
complexes, they concluded that anchor residues have high structural conservation across
different homologs. They also found that the anchor residue (primarily from the smaller of
the two proteins) binds to a structurally constrained binding groove of the other protein that
stabilizes the bound intermediate state, and the larger the buried surface area of the main
anchor residue, the fewer secondary anchors are required for complex formation [59]. This
work was based on another group’s nanosecond explicit solvent MD simulations of three
complexes and the observation that key side chains frequently display the rotamer
conformations of the complex before any receptor-ligand interaction [95].

Huo et al. applied a MM-PBSA (molecular mechanics-Poisson-Boltzmann surface area)
approach to the human growth hormone-receptor complex (hGHpb). Here, protein-protein
interfaces are probed with explicit molecular mechanical energies, continuum implicit
solvation free energies, and approximations of vibrational entropy changes. All of these
terms are then averaged over each conformation provided by the MD simulation. Using free
energy calculations of snapshots equally spaced along a single dynamical trajectory, they
were able to predict the experimental ΔΔG of binding with an average error of ±1kcal/mol
for the alanine mutations of hydrophobic and polar/charged residues without buried salt
bridges [96]. The full structural and energetic consequences of a mutation of a bound and
unbound state can be adequately described when the proper thermodynamic cycle is
employed [96]. This comprehensive analysis requires repeated sampling of the mutant in
both bound and unbound forms, which is computationally expensive when compared to
other methods, especially on a large scale. To circumvent this potential computational
roadblock, approximations to generate the mutant ensembles can be used which simulate
first the un-mutated protein, then are post-processed to introduce mutations to alanine [58,
97].

Machine Learning-based Methods
The third method uses learning based methods (commonly called machine learning, or ML).
This method is very novel, considers a diverse series of factors, and will be used in future
drug discovery efforts. The KFC (Knowledge-based FADE and Contacts) uses a rule-based
model created by a machine learning algorithm to elucidate structural patterns that are
indicative of hot spots. The KFC model is actually a combination of two learned decision
tree models: K-FADE uses the residue size and radial distribution of shape specificity and
interface points calculated by Fast Atomic Density Evaluation (FADE) [98], and K-CON
uses the residue’s intermolecular atomic contacts, hydrogen bonds, interface points, and
chemical types [99]. These structural features return a binary answer as to whether a residue
is a hot spot or not, and a confidence score with each prediction. Alone KFC predicted 58%
of alanine scanning hot spots with precision of 49% and recall of 58% when a hot spot is
associated with ΔΔG > 2kcal/mol. When KFC was combined with Robetta’s computational
alanine scanning technique described previously, (the combined model called KFC
+Robetta-Ala, or KFCA) [87], the predictive accuracy jumps to 72%. The KFCA analysis
was applied to two complexes: the calmodulin (CaM)/smooth muscle myosin light chain
kinase (smMLCK) and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I
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(BMPR-IA) complex. Both complexes had strong correlation between KFC hot spot
predictions and experimental mutations, and in the case of BMP2, KFC was able to
highlight a region where alanine mutation of two key residues (Phe49 and Pro50) are more
disruptive than the sum of the individual mutations [100]. A more recent study also used the
KFC method in the study of the interaction of the antibody, called 19D9D6, and the hepatitis
C virus (HCV). Comparison of MD simulation results matched three residues that were
predicted as hot spots in KFC that are important for the interaction between the virus and
antibody [101]. The KFC method is now available via an interactive, public web server,
where users can submit complexes (via uploaded file, or providing the PDB code) and view
results for each job, as well as upload scores from Robetta’s alanine scanning, ConSurf
sequence conservation, or experimental data [99] (Figure 4).

The KFC method has been recently improved, with two new models trained using a support
vector machine (SVM) [102]: KFC2a and KFC2b. KFC2a is composed of eight features
primarily related to solvent accessibility, interface position, packing density, and local
plasticity. This KFC2a model showed a true positive rate of 0.85, outperforming HotPoint,
KFC, Robetta, and FOLDEF, despite having a slightly higher false positive rate than the
other models. KFC2b uses seven features (two of which are found in KFC2a), and boasts a
higher specificity [77].

Cho et al. applied a SVM that initially incorporates 54 multifaceted features from structure,
sequence, and molecular interaction. The model is named MINERVA, an acronym of
MINE, Residue VAlue. From these 54 features, decision tree selection is performed to
identify the best feature subset. Atomic packing density, relative surface area burial and
weighted hydrophobicity are the top three features for picking hot spots that were selected
from the decision tree, with the weighted atomic packing density displaying the highest
effectiveness [78]. Previous hot spot and conservation analysis has shown that local packing
density around conserved residues and hot spots is higher than anticipated, and a good
correlation exists between local packing density and experimental ΔΔG [103]. MINERVA
displays better sensitivity, specificity, precision and F1 score than Robetta, FOLDEF, and
KFC when tested on two different training sets; the best performance occurred when the
model was trained on the 2 kcal/mol set rather than the 1 kcal/mol set [78]. Their work also
revealed that residue conservation is not ideal for correctly identifying hot spots, and that hot
spots are closely related to π- π interactions.

Another group that has successfully used SVM is Lise et al., who previously described a
hybrid method in which energy terms are used as input features of a SVM classifier and is
called HSPred [79]. Their method considers basic energy terms (van der Waals, H-bond,
electrostatic and desolvation potentials, hydrogen bonds, and Coulomb electrostatics)
calculated from the complex structure. In a later study, this model was improved by 10% in
overall precision and recall by creating separate SVM classifier predictions specifically
optimized for arginine or glutamic acid residues, as these amino acid types did not perform
well in the original model [80]. The method is also available as a web server and is free to
non-commercial users [80].

A set of 43 structural and evolutionary parameters were used with an SVM classifier in the
work by Higa and Tozzi. These parameters can be grouped into the following types: amino
acid type, evolutionary profile, conservation score, surface area, solvation energy, and
geometry [81]. When using the dataset compiled by Darnell et al.[100], this method had a
performance of 60.4% (measured by F-Measure) that corresponded to a recall of 78.1% and
a precision of 49.5% [81]. This work is significant in that it does not require the complex; it
can be used with only knowledge of the monomer. As a result, this method can be used
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when the interface region is unknown, and can prove useful for discovery of novel protein
interfaces.

Another method that does not require prior knowledge of the complex structure is the work
from Grosdidier and Recio, whereby the analysis of rigid-body docking ensembles provides
normalized interface propensity (NIP) values. This NIP parameter is obtained from rigid-
body docking simulations and calculates the propensity of a given residue to be located at
the interface. It includes electrostatics and desolvation scoring in its calculations for
predictions [82]. The NIP method was developed from their previous findings that highly
populated low-energy regions consistently corresponded to proven binding sites [104]. Their
method has up to a 80% positive predictive value, but it is not exhaustive and will miss hot
spots that are not directly involved in the interface or arise from highly specific interactions
[82].

While machine learning methods hold great promise, it is worth mentioning that simple
empirical models can provide better predictive power. Tuncbag et al. presented a empirical
model based on conservation, accessible surface area (ASA), and knowledge-based pairwise
residue potentials of the interface residues This model provides 70% accuracy, higher than
machine learning based methods when using 150 residues from ASEdb as the training set
[91]. Later, this method was incorporated into a web server, called HotPoint, where users
can upload a protein complex and quickly visualize results [83] (Figure 5). The relative
residue solvent accessibilities are calculated in the complex and monomer states, and the
solvent mediated potentials are taken from Keskin et al [105]. If the following two
qualifications for a residue are met: the relative ASA in complex is less than or equal to
20%, and the total pair potential is greater or equal to 18.0, then that residue is labeled a hot
spot [83]. Change of solvent accessible surface area (ΔASA) upon the formation of a
complex is strongly related to the solvation energy, which has been shown previously to be
one of the most significant factors involved in protein-protein binding [106]. This technique
was also used to correctly identify the hot spots on Mdm2. Another database named
HotSprint was developed by the same group. It was the first database to exploit sequence
conservation and incorporates solvent accessibility of residues. This method gives an
accuracy of 76% that performs better than several machine-learning based methods [84].

Case study of hot spot prediction methods: TRAF6/RANK complex
In order to validate the various web-based hot spot prediction methods, we used a target
with available known hot spots on a novel target, the TRAF6/RANK interaction site. Tumor
necrosis factor (TNF) receptor associated factor 6 (TRAF6) is a vital signaling molecule
involved in adaptive immunity, innate immunity, and bone homeostasis. TRAF6 is unique in
its signaling in the TNFR, IL-1 and TLR superfamily [107–109]. The formation of the
complex consisting of receptor activator of nuclear factor-kappa B (RANK) with its ligand
(RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP
kinase pathways [110–112]. The interaction between TRAF6 and the Pro-X-Glu-X-X-(Ar/
Ac) (aromatic/acidic residue) consensus sequence motif is responsible for signal
transduction, and there are three residues that completely abolished binding when mutated to
alanine: Arg392, Phe471 and Tyr473 [113]. To see which of the web-based programs can
successfully predict the known hot spots, we submitted the TRAF6/RANK complex (PDB
1LB5) to Robetta, KFC2, and HotPoint and will briefly discuss the results.

Robetta provided a very accurate prediction of the TRAF6 hot spot residues, with only the
three experimental hot spot residues having a predicted ΔΔG greater than 1 kcal/mol (Table
2). Positive values for the ΔΔG of the complex indicate that replacement by alanine is
predicted to destabilize the complex; negative values predict a stabilizing effect. Robetta’s
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prediction indicates that while there are a good number of residues that destabilize the
complex, none are as significant as the three that were correctly identified as hot spots. The
only other residue that comes close to the 1.0 kcal/mol energy is Phe410, with a ΔΔG of 0.76
kcal/mol.

KFC2, while correctly labeling Arg392 and Phe471 as hot spots, incorrectly labeled two
residues as hot spots (Phe410 and His412) and missed Tyr473. KFC2 labels a residue a hot
spot if the confidence of either method is greater than zero (Table 3). It is interesting that
despite KFC2a’s higher reported sensitivity and accuracy when compared to KFC2b, no hot
spots were predicted for this particular complex with KFC2a. Hotpoint had similar results to
KFC2, predicting Arg392 and Phe471 correctly, but missing Tyr473 and incorrectly
predicting Phe410 as a hot spot (Table 4). Both KFC2 and Hotpoint did not predict Phe417
as a hot spot, even though it is clear to see that in both methods, it was calculated as very
close to the cutoff values for a hot spot prediction: Tyr473’s confidence in the KFC2b model
was the closest to being greater than zero than all other residues, and Hotpoint did not label
Tyr473 a hot spot only because the potential was not greater than 18.0. Hotpoint’s false
positives (Phe410 and Met450) exist only from the high potential of those residues, not from
the ASA factors. Both Phe410 and Met450 were experimentally shown not to be hot spot
residues [113]. It is interesting to note that Phe410 was scored highly in each of the
programs listed here, which indicates that its mutation to alanine in TRAF6 will likely
destabilize the complex, but likely not enough for it to affect the binding affinity to RANK.

Conclusion and Perspective
Successful identification of hot spots involved in protein interfaces is crucial in determining
potential active sites, and the corresponding druggability of a protein target. It is only after
the completion of this step that rational, structural based drug design can begin. Systematic
mutagenesis of protein-protein interactions has yielded a wealth of information on the hot
spots themselves, but there are significant inroads that can be made as to the general nature
of these hot spots. Unfortunately, no general patterns of shape, charge or hydrophobicity
exist that can be used to predict which residues form hot spots [6, 10]. Additionally, residue
conservation is rarely sufficient for accurate prediction of protein interfaces [43]. Further
potential pitfalls become apparent when considering the inherent plasticity and expansive
diversity of PPIs.

Despite these challenges, the increasing use of computational methods holds high potential
to provide accurate analysis in prediction of hot spots at a fraction of the time and cost for
conventional, experimental techniques. Advancement in both hardware processing power as
well as software predictive models will increase the speed and the accuracy of hot spot
predictions. The increasing rate of both crystallographically resolved protein-protein
complexes as well as experimental alanine mutagenesis studies will provide a more
comprehensive dataset from which to further increase the accuracy of computational
prediction of hot spots. Composite approaches that incorporate initial computational
predictions, and are then validated against experimental means provide the most
comprehensive understanding of the nature of hot spots. These validations will vastly
improve the predictive power of in silico techniques by continually evolving from the
increasing pool of data from which they are built upon.
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Figure 1.
Human growth hormone and its receptor (PDB Code 1a22). Three of the four hot spot
residues are represented in sticks, hydrogen bonds are shown in dashes. This result was
displayed using PyMol [26].
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Figure 2.
Mutations from alanine scanning can affect free energies of bound and unbound states.
Mutant A is an ideal result where only the complex is destabilized, and the binding free
energy with respect to the wildtype (ΔΔG) can be attributed to specific changes in the PPI
contacts. Mutant C affects both states simultaneously. The measured binding free energy
difference from B and C mutants must be interpreted cautiously. (Figure adapted from [46]).
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Figure 3.
FTMAP results for carbonic anhydrase I (PDB 2CAB) displayed in PyMol. The pocket
nearest to the center contains 19 docked probes, and is the binding site for drugs
acetazolamide, methazolamide, and foscarnet.
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Figure 4.
KFC2 output viewer. Using Jmol, users can visualize residues, display select residues, and
save view settings. Here, hot spots for erythropoietin receptor and its mimetic peptide (PDB
1ebp) were all correctly predicted by KFC2 but not by KFC.
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Figure 5.
Output of HotPoint prediction of erythropoietin receptor and erythropoietin mimetic peptide
(PBD 1EBP). Interface residues of this complex are presented in table with hot spot
predictions: 1.) Coordinates of interface residues can be downloaded; 2.) Results are
downloadable; 3.) Interface residues can be visualized by Jmol.
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Table 1

Summary of hot spot prediction methods.

Hotspot prediction Properties Used Availability Technique Reference

FoldX Energy-based Tool & Server Computational alanine scanning [70]

Robetta Energy-based Server Computational alanine scanning [71]

PP_Site Energy, structure-based Tool Simple algorithm [72]

FTMAP Energy –based Tool & Server Probe based rigid body docking with
fast Fourier transform correlation [73]

PCRPi, PCRPi-W Energy, structure, evolutionary Tool & Server Bayesian Network [74,75]

Guhary & Chakrabarti H-bonding, interface location Tool Simple algorithm [76]

KFC2 ASA, various structural features Server Support Vector Machine (SVM) [77]

MINERVA Structure, sequence, molecular
interaction Tool Descision Tree, SVM [78]

HSPred Energy-based Tool SVM (Residue specific) [79, 80]

Rajamani Side chain ΔASA Tool Molecular Dynamics [59]

Higa & Tozzi Structural, evolutionary Tool SVM [81]

Grosdidier & Recio Energy-based (Docking) Tool Normalized interface propensity [82]

HotPoint HotSprint Conservation, accessibility, residue
propensity Server & Database Empirical formula [83, 84]
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Table 2

TRAF6 results from Robetta.

Num Residue int_id ΔΔG(complex) ΔG(partner)

374 Val 1 0.36 1.04

376 His 1 0.44 0.32

392 Arg 1 3.76 1.51

410 Phe 1 0.76 3.21

412 His 1 0.4 2.61

448 Glu 0 −0.03 −0.12

450 Met 1 0.13 2.38

453 Lys 0 −0.12 0.08

456 Leu 1 0.48 1.34

466 Arg 1 0.07 0.94

469 Lys 1 0.62 −0.14

471 Phe 1 2.05 1.65

473 Tyr 1 1.73 1.8

474 Val 0 0.07 0.43

Note: Residues are considered hot spots when ΔΔG(complex) is greater than 1.0 (kcal/mol). The columns contain the following information:
(Column 3) int_id: Measure of whether a residue side chain atom is within 4 Å of an atom on the other partner (1) or not contacting directly, but
buried upon binding (0); (Column 4) ΔΔG(complex): Predicted change in binding free energy upon alanine mutation; and (Column 5) ΔG(partner):
Predicted change in protein stability of the mutated complex partner upon alanine mutation.
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