
Theoretical study on high order interior tomography

Jiansheng Yanga,*, Wenxiang Congb, Ming Jianga,b,c, and Ge Wangb

aLMAM, School of Mathematical Sciences, Peking University, Beijing, China
bBiomedical Imaging Division, VT-WFU School of Biomedical Engineering and Sciences, Virginia
Tech, Blacksburg, VA, USA
cBeijing International Center for Mathematical Research, Beijing, China

Abstract
In this paper, we study a new type of high order interior problems characterized by high order
differential phase shift measurement. This problem is encountered in local x-ray phase-contrast
tomography. Here we extend our previous theoretical framework from interior CT to interior
differential phase-contrast tomography, and establish the solution uniqueness in this context. We
employ the analytic continuation method and high order total variation minimization which we
developed in our previous work for interior CT, and prove that an image in a region of interest
(ROI) can be uniquely reconstructed from truncated high order differential projection data if the
image is known a priori in a sub-region of the ROI or the image is piecewise polynomial in the
ROI. Preliminary numerical experiments support the theoretical finding.
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1. Introduction
Since its invention in 1973, x-ray computed tomography (CT) has revolutionized medical
imaging and become a cornerstone of modern radiology. Improving image resolution and
reducing radiation dose are two critical issues in biomedical applications and remain the
focuses of CT research. In conventional x-ray imaging, image contrast arises from
attenuation discrepancy due to differences in composition, thickness and density within an
object. Attenuation-based imaging shows excellent contrast only when highly attenuating
structures are embedded in a weakly absorbing background [1]. However, biological soft
tissues consist mainly of light elements, such as hydrogen, carbon, nitrogen and oxygen, and
its elemental makeup is nearly uniform with little density variation. Hence, the attenuation
contrast is insufficient to extract structural features of soft tissues [2]. Many normal and
diseased tissues such as cancers display poor image contrast in current x-ray images as they
have very similar attenuation characteristics, especially attenuation-based imaging is
difficult to detect early-stage tumors [3].
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While the attenuation characteristics requires tradeoffs between contrast resolution and
radiation dose, x-ray phase-contrast imaging utilizes the diffraction properties of x-rays, and
reveals significant differences indistinguishable with attenuation-based imaging. The
propagation of x-rays in a medium is macroscopically characterized by the complex index of
refraction. In the x-ray spectrum, the index of refraction for biological tissues is n = 1−δ+iβ,
where n is approximately 1, δ and β quantify the phase distortion and magnitude attenuation
respectively [4]. At x-ray energies of 20–100 keV, δ is about three orders of magnitude
greater than β, depending on the x-ray wavelength and electron density [5]. Since the total
phase shift is a line integral along an x-ray path, x-ray phase-contrast imaging generates
projections of a refractive index distribution that can be inverted using x-ray CT techniques
[6,7]. Moreover, because the x-ray phase shift varies more slowly than the attenuation
counterpart at higher energies, x-ray phase-contrast imaging can be performed at an optimal
energy level to minimize radiation damage to animals or humans.

The use of x-ray phase shifts as a new contrast mechanism has generated a considerable
interest over the past decade [8–12]. In-line phase-contrast tomography is a computational
imaging technique that reconstructs a 3D refractive index distribution from the intensity
distributions of a coherent wave [13]. Mathematically, such an intensity distribution can be
approximately related to the Laplacian of the parallel-beam projection of a refractive index
distribution in an object. When an object is longitudinally homogeneous and the principal
axis of the object is perpendicular to the direction of a coherent radiation beam, the
Laplacian of the 2D parallel-beam projection is reduced to second derivative data of the 1D
refractive index projection. Actually, even if an object is just locally homogeneous along
one direction, the aforementioned second derivative data model can be still applied [13].

X-ray phase-contrast imaging can be also implemented using interferometry and
diffractometry to extract differential phase shift data which correspond to the first
derivatives of a refractive index projection. Because both interferometry and diffractometry
require monochromatic x-rays and high precision crystals, they are necessarily associated
with synchrotron radiation facilities [14]. Recently, Pfeiffer et al. [15,16] made a
breakthrough to x-ray Talbot grating imaging so that x-ray phase-contrast signals can be
generated using a regular x-ray tube. This grating-based approach suggests widespread
applications such as biomedical imaging, industrial nondestructive testing, and security
screening [15,17]. This approach defines small imaging apertures and produces individually
coherent secondary sources with a source grating in front of a hospital-grade x-ray tube.
Then, interference fringes are superimposed at a Talbot distance, and analyzed with phase-
stepping interferometry based on the Talbot effect, a periodic self-imaging phenomenon, to
extract the first derivative or differential data of a refractive index projection.

In this paper, we study high order interior tomography, which is to reconstruct an image in a
region of interest (ROI) from the m-th order differential projection data associated with the
ROI. In the context of x-ray differential phase-contrast imaging, we have m = 1 or m = 2 as
the most common examples. High order interior tomography will allow us to use smaller
and finer detectors and/or gratings for more imaging flexibility, better image quality and
lower system cost. In the next section, we present our analytical results on the uniqueness of
the solution to the high order interior problem. In the third section, we report our numerical
simulation results. In the last section, we discuss relevant issues and conclude the paper.

2. High order interior problem and solution uniqueness
Without loss of generality, we assume the following conditions throughout this paper:
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Condition (1) An object image f0(x) is compactly supported on a disc

, where A is a positive constant.
Furthermore, f0 ∈ Cm(ΩA), where m ≥ 1 is a constant integer;

Condition (2)
An internal ROI is a smaller disc , as
shown in Fig. 1, where a is a positive constant and a < A;

Condition (3) m is a positive integer, the m-th order differential projections of f0
through the ROI

(1)

are available, where

The high order interior problem is to find an image f(x) from the truncated m-th order
differential projection data such that

Condition (4) f(x) is compactly supported on the disc ΩA and f ∈ Cm(ΩA);

Condition (5)  −a < s < a, θ ∈ S1.

In the following, we will establish a theoretical framework similar to [18,19]. It is well
known that under Conditions (4) and (5) the interior problem with truncated projection data
(m = 0) does not have a unique solution in an unconstrained setting [20,21]. Evidently, the
high order interior problem has no unique solution either in an unconstrained setting. The
following theorem characterizes the structure of solutions to the high order interior problem.

Theorem 1. Any image f(x) satisfying Conditions (4) and (5) can be written as f(x) = f0(x) +
u(x) for , where u(x) is an analytic function in the disc Ωa, and

We call such an image f(x) a candidate image, and correspondingly u(x) an ambiguity
image.

Proof: Let u(x) = f(x) − f0(x). Clearly, u(x) is compactly supported on ΩA, u ∈ Cm(ΩA), and

(2)

By the Radon inversion formula, we have

(3)

where
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(4)

(5)

and u1(x) is analytic in Ωa [19]. To deal with u2(x), we perform the Taylor expansion of
∂sRu(s, θ) with variable s:

(6)

Inserting Eq. (6) into Eq. (5), we have

(7)

The Taylor expansion of ln  is

(8)

Inserting Eq. (8) into Eq. (7), we have

(9)

Clearly, u2(x) is analytic in Ωa. Hence, u(x) is analytic in Ωa.

Basing on Theorem 1, we can obtain the unique solution to the high order interior problem
under some practical constrains.
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First, if an image in a sub-region of the ROI is known a priori, then the image in the entire
ROI can be uniquely determined.

Theorem 2. Let f(x) be a candidate image. If f(x) = f0(x) in a sub-region Ωsmall (as shown in
Fig. 2) of an ROI Ωa, then f(x) = f0(x) in Ωa.

Proof: From Theorem 1, we have f(x) = f0(x) + u(x), where u(x) is analytic in Ωa. Since f(x)
= f0(x) holds in Ωsmall, we have u(x) = 0 in Ωsmall, which means u(x) = 0 in the entire Ωa in
light of the property of an analytic function, that is, f(x) = f0(x) in Ωa.

Next, let us prove that an ambiguity image cannot be polynomial in the ROI unless it is
identically zero. Then, we prove that the ROI image can be uniquely reconstructed via high
order total variation minimization under the assumption that the image is piecewise
polynomial in some sub-regions within the ROI.

Lemma 1 [19]. Suppose that a is a positive constant. If

(a) g(z) is analytic in ;

(b) p(x) is a polynomial;

(c)
, for x ∈ (−a, a),

then , for x ∈ (−∞, −a) ∪ (a, +∞).

Lemma 2. Suppose that a and A are positive constants with a < A. If a function v(x)
satisfies

(d) v(x) is bounded with supp v ⊆ [−A, A];

(e) v(x) = p(x) for x ∈ (−a, a), where p(x) is polynomial;

(f) Hv(x = q(x), for x ∈ (−a, a), where Hv(x) is the Hilbert transform of v(x); that is,

and q(x) is a polynomial,

then v(x) = 0 for x ∈ (−∞,∞).

Proof: The function (see Corollary 4.1.2 on page 40 in [22])

(10)

is analytic on , and

(11)

for x ∈ (−∞, −a) ∪ (a, ∞) almost everywhere [19].

By Condition (f), we have
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(12)

Therefore, by analytic continuation, F (z) can be split into the following two terms

(13)

where

By Lemma 1, we obtain

(14)

Therefore,

(15)

Combining Eqs (11), (14) and Condition (e), we have

(16)

Condition (d) and Eq. (16) imply p(x) ≡ 0. Hence, v(x) = 0 for a.e. x ∈ (−∞, ∞), which
completes the proof.

Theorem 3. If an ambiguity image u(x) satisfies

(g) u(x) = p(x) for x ∈ Ωa, where p(x) is a 2-D polynomial function;

(h) , for s ∈ (−a, a), θ ∈ S1,

then u(x) = 0.

Proof: As illustrated in Fig. 3, for an arbitrary α0 ∈ [0, π), let Lα0 denote the line through
the origin and tilted by θ0 = (cos α0, sin α0). When u(x) is restricted to the line Lα0, it can be
expressed as

(17)

By the relationship between the differentiated backprojection of projection data and the
Hilbert transform of an image [23,24], we have

(18)

where
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(19)

Performing the Taylor expansion of ∂sRu(s, θ) with respect to s, we have

(20)

Inserting Eq. (20) into Eq. (18), we have

(21)

where

(22)

By Condition (g) and Eq. (17), we have

(23)

where p(t(cos α0, sin α0)) is a polynomial function with respect to t. Applying Lemma 2 to
vα0(t), we have

(24)

which implies that

Now, let us analyze a candidate image under the assumption that f0(x) is a piecewise
polynomial function in Ωa.

Theorem 4. Suppose that an object image f0(x) is a piecewise polynomial in Ωa. If some
candidate image f(x) is also a piecewise polynomial in Ωa, then f(x) = f0(x).

Proof: By Theorem 1, we have that f(x) = f0(x) + u(x), where u(x) is an analytic function in
Ωa. On the other hand, by the assumption of Theorem 4, u(x) = f(x) − f0(x) is also a
piecewise polynomial in Ωa. Combining these two facts, u(x) must be a polynomial in Ωa.
By Theorem 3, we have u(x) = 0.

Theorem 5. If there exist finitely many sub-regions Ωi (as shown in Fig. 4) in an ROI Ωa, 1
≤ i ≤ L, such that Ωi ∩ Ωj = ∅ for 1 ≤ i < j ≤ L and

(25)

where pi(x) is a n-th polynomial function. For any candidate image f(x), let us define the n +
1-th high order total variation HOTn+1(f) by
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(26)

If , then h(x) = f0(x) for x ∈ Ωa.

Proof: Since

(27)

the condition

leads to HOTn+1(h) = 0. Therefore, we have

(28)

It means

(29)

where qi(x) is a n-th polynomial function. Combining Eqs (25) and (29), we have

(30)

On the other hand, by Theorem 1, u(x) is analytic in Ωa. Hence, u(x) is a n-th polynomial
function in Ωa. By Theorem 3, u(x) = 0 for x ∈ Ωa; that is, h(x) = f0(x) for x ∈ Ωa.

Remark: If we define HOTn+1(f) by ,
Theorem 5 still holds.

3. Numerical simulation
3.1. Forbild numerical phantom

A numerical phantom was employed to evaluate the proposed interior tomography approach
that deals with truncated second derivative data directly. The phantom consisted of 20 disks
with different sizes in a background. Each disk was set to a constant refractive index in the
range of [1.1×10−7, 1.6×10−7] to mimic biological tissues. An ROI was specified in the
phantom, as shown in Fig. 5(a). We used a parallel-beam imaging geometry consistent to the
x-ray phase-contrast imaging mode. The detector array had 368 elements to collect x-ray
phase shift data through the ROI. Equi-angularly, 361 projections over an 180° range were
used for interior reconstruction. The second-order differential phase shift data were
computed using the numerical difference method from the projection data of the phantom,
and corrupted by Gaussian noise to yield a signal-to-noise ratio of 40 dB.
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The phase shift Φ(s, θ) can be expressed as a projection of the refractive indices along the x-
ray direction. The refractive index distribution can be expressed as a linear system of
equations in terms of measured two-order differential phase shift [25,26],

(31)

where mθ is the discrete Fourier transform of the measured differential phase shifts

, Aθ is a system matrix at a projection angle φ, which accounts for the imaging
geometry, and δ is a discretized refractive index distribution to be reconstructed. Equation
(31) can be solved using a classical iterative method, such as the algebraic reconstruction
technique (ART). Furthermore, compressive sensing techniques can be applied for high
quality image reconstruction from far less measurements than that required by the Nyquist
criterion [27].

The ordered-subset simultaneous algebraic reconstruction technique (OSSART) coupled
with total variation (TV) regularization was implemented to reconstruct the refractive index
image. This iterative method consists of two key steps. In the first step, OSSART was used
to reconstruct a refractive index image based on the truncated second-order differential
projections. In the second step, the total variation was minimized using the standard steepest
descent method. These two steps were iteratively performed in an alternating manner. We
performed 50 iterations, and found that the reconstructed image in the ROI was in excellent
agreement with the truth inside the ROI, as shown in Figs 5(a), (b), 6(a) and 6(b).
Comparatively, we performed a locally adapted filtered backprojection (FBP) reconstruction
from the truncated differential phase shift data. The adapted FBP formula for second-order
differential phase shift data can be formulated as

(32)

where  is the Fourier transform of measured second-order differential projection
data. Applying Eq. (32) to the truncated data, we obtained the refractive index image on
ROI. It can be seen that the structure of the reconstructed refractive index image from FBP
contained a bias and more noise, as shown in Fig. 5(c).

3.2. Human chest numerical phantom
Because a commonly encountered function can be well approximated by a piecewise
polynomial function, a refractive index distribution of biological tissues over an ROI can be
considered as a piecewise polynomial function approximately. In this sense, although
biological tissues are highly heterogeneous, the refractive index image of biological tissues
can be well reconstructed using the proposed method. Here, we conducted a numerical
experiment with a realistic phantom to demonstrate the feasibility of the proposed approach.
The phantom was produced by a human chest CT slice image with 442×442 pixels, as
shown in Fig. 7(a). The attenuation values of CT image were converted to a refractive index
distribution. We used parallel-beam geometry to simulate the x-ray phase-contrast imaging
mode, and equi-angularly acquired 361 projections over an 180° range. An ROI in the
phantom was selected to contain 128×128 pixels, which occupies only 8% of the global
area, as shown in Fig. 8(a). The truncated high-order differential phase shift data were
computed and corrupted by Gaussian noise with a signal-to-noise ratio of 15 dB, as shown
in Fig. 7(b). The OSSART with 2nd total variation regularization was implemented to
reconstruct the refractive index image from the truncated 2nd differential phase shift data.
The reconstructed image was in excellent agreement with the truth inside the ROI, and the
detailed features in the ROI are quantitatively accurate, as shown in Fig. 8(b).
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4. Discussion and conclusion
As mentioned in the beginning, the availability of second derivative data is based on our
assumption that a sample is longitudinally homogeneous. While this assumption gives us an
initial mathematical model of practical significance and has led to good results, a general
model should assume a heterogeneous sample. In that case, data measured using the in-line
holographic imaging system would be the output of the Laplacian operator acted on a frame
of projection data. Then, the high order interior problem becomes 3-D and more interesting.
Our pilot data suggest that it seems feasible to obtain a good solution to this 3-D high order
interior problem. We are actively working along this direction.

In conclusion, our newly-defined high order interior problem has a strong background of
local x-ray differential phase-contrast tomography, and we have demonstrated that the high
order interior problem has a unique solution within the class of piecewise polynomial
functions. Furthermore, an accurate interior reconstruction can be achieved via high order
TV minimization from truncated high order differential projection data through an ROI. We
have developed an effective iterative algorithm dedicated to solve this problem, inspired by
compressive sensing. Our proposed high order interior problem solving approach can be
potentially applied to x-ray phase-contrast local imaging of biological soft tissues, and other
similar applications.
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Fig. 1.
Object with a compact support and a region-of-interest (ROI) in the support.
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Fig. 2.
Known sub-region in the ROI.
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Fig. 3.
Radial line through the origin.
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Fig. 4.
Sub-regions in the ROI.
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Fig. 5.
Interior reconstruction of a numerical phantom. (a) The phantom with an ROI in a yellow
circle, (b) the image reconstructed using our proposed interior tomography algorithm, and
(c) the image reconstructed using the adapted FBP method.
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Fig. 6.
Profile comparison of the interior reconstructions. (a) and (b) The profiles along the
horizontal and vertical middle lines respectively in the original phantom and the image
reconstructed using our proposed interior tomography method.
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Fig. 7.
Human chest numerical phantom. (a) The original CT image, and (b) the sinogram of the 2nd

order differential phase projection data.
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Fig. 8.
Interior reconstruction of a human chest numerical phantom. (a) The ROI in the original
image, and (b) the image reconstructed using our proposed interior tomography algorithm.
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