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Autophagy is an important innate safeguard mechanism for protecting an organism against invasion by pathogens. We have
previously discovered that Kaposi’s sarcoma-associated herpesvirus (KSHV) evades this host defense through tight suppression
of autophagy by targeting multiple steps of autophagy signal transduction. Here, we report that KSHV K7 protein interacts with
Rubicon autophagy protein and inhibits the autophagosome maturation step by blocking Vps34 enzymatic activity, further
highlighting how KSHV deregulates autophagy-mediated host immunity for its life cycle.

Autophagy is an important homeostatic mechanism involving
the formation of double-membrane vesicles, called au-
tophagosomes, which sequester damaged cytoplasmic organ-
elles, protein aggregates, or invading intracellular pathogens for
degradation. Conserved from Saccharomyces cerevisiae to humans,
autophagy takes place through a series of steps that include vesicle
initiation, nucleation, and elongation, followed by vesicle fusion
with lysosomes for the cargo degradation (1). This intracellular
catabolic degradation system is tightly controlled by autophagy-
related genes (Atg), which can initiate or suppress steps in the
autophagy pathway in order to maintain cellular homeostasis (2).
The serine/threonine kinase mammalian target of rapamycin
(mTOR) is an important regulator of autophagy. Under normal
conditions, mTOR represses autophagy induction by phosphory-
lating Unc-like kinase 1 and 2 (ULK1/2) (3). Nutrient starvation
conditions or treatment with the mTOR inhibitor rapamycin im-
pedes mTOR kinase activity, leading to autophagy initiation and
nucleation of a phagophore membrane. During the initiation step
of autophagy, Beclin 1 forms a complex with Vps34, a class III
phosphoinositide 3-kinase (C3 PI 3-kinase), which contributes to
autophagosome nucleation (4). On the other hand, cellular Bcl-2
constitutively binds to Beclin 1 and blocks this autophagosome
nucleation (5). During the elongation step of autophagy, light
chain 3 (LC3-I) is proteolytically processed by Atg3/7 enzymes
and conjugated with a lipidated phosphatidylethanolamine (PE)
via a ubiquitin-like conjugation system. Lipidated LC3-II can
serve as a marker for autophagosome formation since LC3-1I is
embedded within the lumen of the autophagosome (6). As a reg-
ulatory mechanism, cellular FLIP targets Atg3 E2 enzyme to block
autophagosome elongation (7). Autophagosomes subsequently
undergo a maturation step by fusion with endosomes or lyso-
somes. The Beclin 1/Vps34/UVRAG complex positively contrib-
utes to autophagosome maturation (8) and endocytic trafficking
(9), while these processes are inhibited by Rubicon interaction
(10, 11). Finally, the acidic environment in autolysosomes ulti-
mately degrades the cargo by lysosomal hydrolysis.

Kaposi’s sarcoma-associated herpesvirus (KSHV; human her-
pesvirus 8 [HHV-8]) belongs to the gammaherpesvirus family,
which includes Epstein-Barr virus (EBV), herpesvirus saimiri
(HSV), and murine gammaherpesvirus 68 (MHV-68) (12). KSHV
is etiologically linked to Kaposi’s sarcoma (KS) as well as two rare
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B-cell proliferative diseases, primary effusion lymphoma (PEL)
and multicentric Castleman’s disease (MCD) (13). Recent studies
have broadened our understanding of the mechanisms by which
herpesviruses modulate autophagy machinery and cellular innate
immune responses (2, 14-19). For instance, vBcl-2 interacts with
Beclin 1 complex to downregulate autophagy at the vesicle nucle-
ation step (20), and VFLIP suppresses autophagy at the vesicle
elongation step by preventing Atg3 E2 enzyme from binding and
processing LC3 (7). To further explore how KSHV modulates cel-
lular autophagy machinery at the autophagosome maturation
step, we performed a yeast two-hybrid screen using the full-length
Rubicon autophagy maturation inhibitor protein as bait to screen
the KSHV ¢DNA library and found an interaction with KSHV K7
in yeast. KSHV K7 lytic protein has been shown to be able to
protect cells from apoptosis by various stimuli in vitro (21). K7
also suppresses endoplasmic reticulum (ER) stress-induced apop-
tosis by modulating intracellular calcium efflux (22). Coimmuno-
precipitation verified the efficient binding between K7 and
epitope-tagged Rubicon as well as between K7 and endogenous
Rubicon (Fig. 1A; see Fig. 3B). Rubicon contains an amino-termi-
nal RUN domain (RUN), a serine-rich region (SR-N), a central
coiled-coil domain (CCD), a second serine-rich region (SR-C), a
helix-coiled region (HC), and a carboxy-terminal cysteine-rich
region (CR) (Fig. 1B). We constructed a series of Rubicon trun-
cation mutants fused with mammalian glutathione S-transferase
(GST) to define the region responsible for the K7 interaction. GST
pulldown showed that the HC region of Rubicon was sufficient for
K7 association (Fig. 1C), and thus the deletion of the HC domain
abolished the K7 interaction (Fig. 1D). Furthermore, confocal
analysis revealed the substantial colocalization of Rubicon and K7
in HeLa cells (Fig. 1E). Altogether, these data indicated that Rubi-
con interacts with K7 through its HC domain.

Because Rubicon inhibits the autophagosome maturation step
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FIG 1 KSHV K7 interacts with Rubicon. (A) Flag-Rubicon was transfected with vector or K7-V5 into HEK293T cells. Whole-cell lysates (WCL) were subjected
to immunoprecipitation (IP) with Flag or V5 antibodies, followed by immunoblotting (IB) with antibodies as indicated. (B) Rubicon structure and its binding
partners. (C) K7-V5 was transfected with vector or GST-tagged Rubicon mutants into HEK293T cells. WCL were subjected to GST pulldown (GST-PD),
followed by IB with indicated antibodies. (D) K7-V5 was transfected with Flag-Rubicon or an HC deletion mutant into HEK293T cells. WCL were subjected to
IP with anti-Flag antibody, followed by IB with Flag and V5 antibodies. (E) K7-V5 and Flag-Rubicon or the HC deletion mutant (AHC) were cotransfected into
HeLa cells. Cells were fixed and stained with Flag and V5 antibodies at 36 h posttransfection, followed by confocal microscopy.
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FIG 2 K7 inhibits autophagosome maturation. (A) HeLa cells were transfected with a pIRES-puro empty vector or a pIRES-K7-Flag-puro construct. Cells were
selected using 1.5 pwg/ml puromycin for 2 weeks and subjected to IP with Flag antibody, followed by IB with Flag and actin antibodies to confirm the stable
expression of K7. (B) HeLa-vector or HeLa-K7 stable cells were treated with 2 WM rapamycin, and WCL were collected at the indicated time points and subjected
to IB. (C) HeLa-vector or HeLa-K7 stable cells were transfected with a ptf-LC3 construct and treated with 2 WM rapamycin at 24 h posttransfection. Cells were
fixed after 4 h of rapamycin treatment and subjected to confocal microscopy analysis. A total of 100 cells were analyzed for quantification of autophagosomes
(yellow puncta) and autolysosomes (red puncta) per cell.
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FIG 3 K7 promotes Rubicon interactions with the Beclin 1/UVRAG/Vps34 complex. (A) HEK293T cells were cotransfected with K7-V5 with vector, Flag-Beclin
1, Flag-UVRAG, or Flag-Vps34. WCL were used for IP with Flag antibody, followed by IB with indicated antibodies. (B) WCL from HeLa-vector or HeLa-K7
stable cells were used for IP with Flag antibody, followed by IB with the indicated antibodies. (C) HEK293T cells were cotransfected with Rubicon-V5 and
K7-GFP, Flag-Beclin 1, Flag-UVRAG, or Flag-Vps34 combinations as indicated. WCL were used for IP with Flag antibody, followed by IB with the indicated
antibodies. (D) WCL from HeLa-vector or HeLa-K7 stable cells were used for IP with Rubicon antibody, followed by IB with the indicated antibodies.

tophagosome maturation (6). To monitor the effect of K7
expression on the conversion of LC3-I to LC3-II and p62 degra-
dation, we generated HeLa cell lines containing vector or stably
expressing K7 (Fig. 2A). To induce autophagy activation, HeLa
cells were treated with rapamycin and probed for LC3-1/LC3-1I
and p62 levels (Fig. 2B). Rapamycin treatment increased LC3-1I
levels and decreased p62 levels in vector-containing HeLa cells,
whereas it increased LC3-II levels without affecting p62 levels in
K7-expressing HeLa cells (Fig. 2B), indicating that K7 expression
has no effect on LC3 conversion (a marker for autophagosome
formation) but blocks p62 degradation (a marker for autophago-
some maturation). To further test whether K7 blocked the au-
tophagosome maturation step, we monitored the formation of
autophagosomes and autolysosomes using a fluorescent fusion
protein, mRFP-GFP-LC3 (ptf-LC3) (where mRFP and GFP are
monomeric red fluorescent protein and green fluorescent protein,
respectively). Because GFP is more sensitive than RFP to the acidic
environment of lysosomes, the tandem RFP-GFP-LC3 protein la-
bels autophagosomes as yellow (GFP/RFP) puncta and autolyso-
somes as red (RFP) puncta, and thus, quantifications of yellow
and red puncta represent the effect on autophagosome matura-
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tion (23). When this reporter was expressed in stable HeLa cell
lines, the numbers of red puncta decreased approximately 2-fold
in K7-expressing cells compared to those in vector control cells
(Fig. 2C), suggesting that K7 has a role as a negative regulator of
autophagosome maturation.

Rubicon is a subunit of the Beclin 1/UVRAG/Vps34 autophagy
complex (10, 11, 24). To investigate whether KSHV K7 blocks
autophagosome maturation through its interaction with Rubicon,
we examined the K7 interaction with the Rubicon/Beclin 1/Vps34
autophagy complex. K7 effectively bound to exogenously ex-
pressed Beclin 1, UVRAG, and Vps34 (Fig. 3A) as well as endog-
enous Rubicon, Beclin 1, and UVRAG (Fig. 3B). Because the in-
teraction of Rubicon with the Beclin 1/UVRAG/Vps34 autophagy
complex blocks Vps34 lipid kinase activity (24), we next deter-
mined whether K7 affected Rubicon interactions with the Beclin
1/UVRAG/Vps34 complex. Indeed, K7 expression led to in-
creased levels of Rubicon interactions with Beclin 1, UVRAG, and
Vps34 either in a transient expression (Fig. 3C) or in a stable
expression (Fig. 3D), indicating that KSHV K7 binds to Rubicon,
promoting Rubicon’s interactions with the Beclin 1/UVRAG/
Vps34 autophagy complex.
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FIG 4 K7 inhibits Vps34 enzymatic activity. (A) HeLa-vector or HeLa-K7
stable cells were transfected with the p40(phox) PX-eGFP construct (GFP-
p40phox). At 24 h posttransfection, cells were fixed, followed by confocal
microscopy analysis. A total of 100 cells were analyzed for quantification of the
p40(phox) PX puncta per cell. (B) Flag-Vps34 was coexpressed in HEK293T
cells with hemagglutinin (HA)-UVRAG, V5-Rubicon, and/or V5-K7. WCL
were subjected to IP with anti-Flag antibody and assayed for PI3K kinase
activity by in vitro kinase assay (Echelon Biosciences Inc., Salt Lake City, UT).
Vps34, UVRAG, Rubicon or K7 expressions were examined by IB with the
indicated antibodies.

As the PX domain of p40(phox) specifically binds to phospha-
tidylinositol 3-phosphate (PtdIns-3-P) produced by Vps34 lipid
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kinase, the p40(phox) PX-eGFP fusion protein (where eGFP is
enhanced GFP) was used as a noninvasive probe to measure in-
tracellular PtdIns-3-P levels and distributions (25). p40(phox)
PX-eGFP formed numerous punctate structures in HeLa-vector
cells that appeared to be the PtdIns-3-P-rich vesicles (Fig. 4A).
The intensity and number of p40(phox) PX-eGFP-stained vesicles
were considerably lower in K7-expressing HeLa cells than in vec-
tor-containing HeLa cells (Fig. 4A), suggesting that K7 inhibits
PtdIns-3-P production. To further confirm the K7-mediated in-
hibition of Vps34 enzymatic activity, we expressed K7 alone or K7
together with Rubicon and then measured the effects on Vps34
activity using an in vitro lipid kinase and PtdIns-3-P production
assay. As shown previously (24), UVRAG expression readily in-
creased Vps34 enzymatic activity (Fig. 4B). While individual ex-
pression of either Rubicon or K7 slightly reduced Vps34 activity,
coexpression of K7 and Rubicon efficiently suppressed Vps34 ac-
tivity (Fig. 4B), indicating that K7 interaction with Rubicon sup-
presses Vps34 kinase activity.

Having demonstrated a negative effect of K7 on autophago-
some maturation, we next examined the role of K7 in KSHV lytic
replication. Because we failed to generate antibody to detect K7
expression in the context of the KSHV genome, we introduced the
3XFlag epitope tag into the K7 C terminus using the new KSHV
bacterial artificial chromosome BAC16 and were able to detect
expression of K7 during lytic replication and K7 interaction with
endogenous Rubicon (Fig. 5A and B). Next, we also introduced
specific point mutations into the K7 start codon to generate the K7
knockout (KO) BAC16-GFP virus and then examined the effect of
K7 on viral lytic replication (Fig. 5A). Wild-type (WT), K7-Flag,
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FIG 5 Recombinant K7 KSHV construction and K7 role in viral replication and autophagy. (A) BAC16-K7-Flag and BAC16-K7-KO were generated as previous
described (27). DNAs isolated from overnight culture were digested by Nhel and subjected to gel electrophoresis (left). The mutations of BAC16 clones were
confirmed by DNA sequencing (right). (B) HEK293T-BAC16 or HEK293T-BAC16-K7-Flag cells were induced by 12-O-tetradecanoylphorbol-13-acetate (TPA;
20 ng/ml) and sodium butyrate (0.3 mM) for 72 h, WCL were collected and used for IP and IB with the indicated antibodies. (C) iSLK-BAC16 (BAC16-WT),
iSLK-BAC16-K7-Flag, or iSLK-BAC16-K7-KO cells were induced by doxycycline (1 wg/ml) for 4 days, and the supernatants were harvested and used for
infection in HEK293A cells. At 24 h postinfection, cells were analyzed by fluorescence microscopy and the infectious units were quantified by FACS analysis. (D)
iSLK-BACI16 or iSLK-BAC16-K7 KO cells were induced by doxycycline and WCL were collected at 0, 12, 24, and 48 h postinduction and subjected to IB with the
indicated antibodies. (E) iSLK-BAC16 (WT) or iSLC-BAC16-K7 KO cells were complemented with empty vector or V5-tagged K7. At 36 h postcomplementa-
tion, these cells were induced by doxycycline and WCL were collected at 48 h postinduction and subjected to IB with the indicated antibodies. (F) Model of

KSHV-mediated modulation of autophagy pathway.
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and KO BACI16-GFP viruses were reconstituted in iSLK cells,
which contain a doxycycline-inducible RTA expression system
stably integrated in the cellular chromosome (26). Upon doxycy-
cline treatment, RTA expression is sufficient to initiate the lytic
replication phase and culminates in the release of infectious virion
particles from the cells. Following 4 days of doxycycline treatment,
cell-free supernatants of iSLK cells were transferred to 293A cells
and infectious virus was quantified by fluorescence-activated cell
sorter (FACS) analysis of GFP expression at 24 h postinfection
(Fig. 5C). The levels of infectious viruses for the WT and K7-Flag
derivative viruses were comparable, but the K7 KO virus showed a
slight reduction of GFP-positive numbers (Fig. 5C). When viral
protein expression levels were analyzed in iSLK cells by immuno-
blotting, the K7 KO virus-infected cells showed small reductions
of the K3 and K8 protein levels compared to the WT BAC16 virus-
infected cells, whereas these K3 and K8 protein levels were recov-
ered by the complementation of K7 in iSLK-BAC16-K7 KO cells
(Fig. 5D and E). However, as shown in Fig. 5D, the K7 KO virus-
infected cells showed a lower level of p62 during lytic replication
than the WT virus-infected cells. In summary, our results indicate
that the KSHV K7 interacts with Rubicon and this interaction
facilitates Rubicon function to block the autophagosome matura-
tion. However, since vBcl-2 and vFLIP effectively mitigate au-
tophagy-mediated innate immunity during the KSHV life cycle,
the absence of the K7 gene might lead to only a minor effect on
viral lytic replication and viral production in culture. Neverthe-
less, this indicates that KSHV has uniquely evolved to carry vBcl-2,
vFLIP, and K7 genes that inhibit various steps of the autophagy
pathway, ultimately contributing to the virus life cycle (Fig. 5F).
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