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Abstract
The structures of membrane proteins are generally solved using samples dissolved in micelles,
bicelles, or occasionally phospholipid bilayers using X-ray diffraction or magnetic resonance.
Because these are less than perfect mimics of true biological membranes, the structures are often
confirmed by evaluating the effects of mutations on the properties of the protein in their native
cellular environments. Low-resolution structures are also sometimes generated from the results of
site-directed mutagenesis when other structural data are incomplete or not available. Here, we
describe a rapid and automated approach to determine structures from data on site-directed
mutants for the special case of homo-oligomeric helical bundles. The method uses as input an
experimental profile of the effects of mutations on some property of the protein. This profile is
then interpreted by assuming that positions that have large effects on structure/function when
mutated project toward the center of the oligomeric bundle. Model bundles are generated, and
correlation analysis is used to score which structures have inter-subunit Cβ distances between
adjoining monomers that best correlate with the experimental profile. These structures are then
clustered and refined using energy-based minimization methods. For a set of 10 homo-oligomeric
TM protein structures ranging from dimers to pentamers, we show that our method predicts
structures to within 1–2 Å backbone RMSD relative to X-ray and NMR structures. This level of
agreement approaches the precision of NMR structures solved in different membrane mimetics.
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Introduction
Helical transmembrane (TM) protein structure determination represents a significant
challenge. Fewer than 2% of all experimentally determined structures deposited in the
Protein Data Bank1 (PDB) are membrane proteins, yet 20–25% of open reading frames from
recently sequenced genomes encode for proteins that embed in the membrane.2,3 Even with
advances in conventional methods for protein structure determination such as X-ray
crystallography and NMR spectroscopy, the fundamental problems of obtaining diffraction-
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quality crystals, protein expression and purification, and protein-size limitations still remain.
Computational methods for modeling TM protein structure are becoming increasingly more
important if we hope to decrease the discrepancy in structural information between globular
and membrane proteins.

Depending on the scientific question being asked, the laborious (and sometimes
insurmountable) task of experimentally determining the structure of a membrane protein
using conventional methods may not be necessary. For example, Zhu et al. recently used
disulfide cross-linking information to build models for the helical TM dimers glycophorin A
(GpA) and integrin αIIβ3.4 The resulting models for GpA had a root-mean-square deviation
(RMSD) over the backbone atoms of 1–1.5 Å with the NMR structures. Metcalf et al. used
mutagenesis data and protein sequence variation to build models for the TM homo-dimers
GpA and BNIP3 apoptosis factor.5 The RMSD for the GpA model was 1.3 Å. We
hypothesize that other forms of low-resolution experimental data can potentially provide
sufficient information to accurately model other TM protein structures. Experimental data
from a variety of mutagenesis experiments are ideal for studying this possibility.

The earliest structural models by Treutlein et al. and Adams et al. for the TM region of GpA
were based solely on the energetics of interaction between helices.6,7 The resulting models
were compared against mutagenesis data showing the disruptive effects that nonpolar
mutations had on GpA’s ability to dimerize.8 The structural models agreed with the
mutagenesis data and showed that key residues oriented toward the helical interface were
sensitive to nonpolar mutations.

The approach of modeling helical TM regions using the energetics of interaction between
helices has been extended to larger homo-oligomers. Phospholamban is a TM homo-
pentamer that is important in calcium storage and release in cardiocytes. Mutagenesis
studies7,9 showed that mutations of key hydrophobic residues disrupted pentamer
oligomerization. A global search of conformational space revealed five low-energy helical
bundles,7 only one of which was found to be in agreement with an extensive set of
mutagenesis data,7,9 and ultimately the experimentally determined structures.10,11 This 5-
fold symmetrical structure has a left-handed twist; most critical residues lie at the helix/helix
interface and show large interaction energies. Interestingly, the lowest-energy conformer did
not agree with the experimental results, indicating that energy is a necessary—but
insufficient—criterion for assessing models.

Herzyk and Hubbard used a different approach to model helical TM homo-oligomers.12

Using a combination of Monte Carlo/simulated annealing (MCSA) and molecular dynamics/
simulated annealing along with a set of orientational restraints derived from published
mutagenesis data,7,9 Heryzk and Hubbard constructed models for GpA and phospholamban.
Unlike the modeling approach of Treutlin et al. and Adams et al. which made use of
mutagenesis data after the model was constructed, Herzyk and Hubbard used restraints
derived from mutagenesis data in their modeling procedure. The resulting model for GpA
had an RMSD to native of 0.9 Å over the backbone atoms. A comparison of the profile
between interaction energy and mutagenesis data revealed an excellent level of agreement
for phospholamban.

More recent approaches for modeling helix TM homo-oligomers fall into one of these two
categories: modeling methods based purely on energetics13–16 and those that use some
combination of energetics and low-resolution experimental data.4,5,17,18 The incorporation
of experimental data directly into the modeling process provides two obvious benefits. First,
the experimental data correct for inaccuracies in the force field and for approximations
regarding the environmental conditions. Second, through the use of experimental data
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directly in the modeling process, the conformational space that needs to be sampled can be
greatly reduced.

We have developed a novel approach for modeling helical TM homo-oligomers that
incorporates a variety of low-resolution mutagenesis data directly into the modeling process.
Our modeling approach consists of two phases. In the first phase, we use a symmetric rigid-
body search to generate an ensemble of models that is consistent with a given set of low-
resolution data. In the second phase, we cluster and then refine only the centroid models
using the CHARMM22 force field. At the heart of our rigid-body search is a simple scoring
function that restrains the conformational search by maximizing the correlation between
inter-subunit Cβ distance and experimental data while minimizing steric clashes between
helices. Our correlation term allows us to use a variety of low-resolution mutagenesis data
without the need for scaling the data or converting the data into distance restraints4 or
angular restraints.12 We demonstrate the accuracy of our modeling approach by using a
variety of low-resolution experimental data such as mutagenesis, ToxR, TOXCAT, ion
channel, and cross-linking data to model the TM regions of GpA, phospholamban, M2,
BM2, BNIP3, and the ephrin receptor tyrosine kinase (EphA1). The final models ranged in
RMSD from 0.6 Å to 2.1 Å when compared to the native structures. This approach to
modeling helical TM protein structure can be of enormous benefit when conventional
methods of protein structure determination fall short.

Results
Overview of modeling protocol

Our modeling protocol can be broken down into two phases. The first phase involves rigid-
body sampling (RBS) using an ideal or experimentally determined helix. The second phase
involves side-chain placement, clustering, and refinement of the models with a molecular
mechanics force field. We briefly describe the first phase here. A detailed description of the
second phase can be found in Materials and Methods. RBS begins with a helix that is
transformed to the global frame of reference so that the axis of the helix is coincident with
the global z-axis and its geometric center is at the origin. Four degrees of freedom are
required to define the relationship between monomers in a structure with exact rotational
symmetry. Here, we apply two rotations and two translations to define the location of the
helix in the unit cell. The individual steps in our modeling protocol are illustrated in Fig. 1.

At the heart of our RBS method is the use of the correlation coefficient (r) to evaluate the
degree to which experimental data correlate with the projection of the side chains in the
oligomer, as defined by the inter-subunit contact distance for each residue in the structure.
The inter-subunit contact distance is defined here as the distance between Cβ atoms on
identical residues of a homo-dimer, and this provides a quantitative measure that can be
correlated with the extent of perturbation or cross-linking associated at the same position in
the sequence. The correlation coefficient is a measure of the linear relationship between two
variables and ranges from a value of 1 for two perfectly correlated variables to a value of −1
for two perfectly anti-correlated variables. The correlation coefficient is used to restrain the
RBS protocol by incorporating it directly into a scoring function that is used to optimize
each pose (see Materials and Methods). In this study, we correlate inter-subunit Cβ distance
with the degree of experimental perturbation associated with mutations or the extent of
cross-linking in a Cys-scanning experiment to determine how well a given hypothetical
model agrees with experimental data. The extent of Cys cross-linking and the perturbational
effects of mutations generally increase with decreasing inter-subunit distance (negative
correlation). However, for simplicity, we refer to all correlations as positive for structures
that are in agreement with the expected experimental outcome.
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We demonstrate the utility of our RBS protocol by using it in three tests. In the first test, we
use it to search for a set of idealized helical conformations using native inter-subunit Cβ

distances as “experimental data.” The second test is similar to the first test but uses a set of
nine symmetric helical TM structures obtained from the PDB instead of idealized helical
arrangements. It should be noted that the first and second tests are used to determine how
well our search strategy works under the most ideal conditions (i.e., where experimental data
correlate perfectly with inter-subunit Cβ distances). In the third and final test, we model
these same nine structures using low-resolution experimental data to restrain the search. The
resulting ensembles of models from this test are clustered using a k-medoid clustering
algorithm.19 Side chains are then added to each of the centroid models using SCAP20

followed by all-atom refinement using the CHARMM22 force field implemented in the
Xplor-NIH package.21

Idealized hide-and-seek test
To test the RBS protocol, we constructed a set of 10 helix dimer conformations by randomly
choosing values for the four search parameters (Tx, Tz, θ, and ϕ). Each set of four
parameters is then used to position a 16-residue ideal poly-alanine helix in space. The
symmetry mate is generated by rotating a copy of the helix 180° about the global z-axis.
After construction of the 10 dimers, we determined the inter-subunit Cβ distances along the
length of the helices. These distances were used as simulated experimental data to restrain
the rigid-body search with the goal of recapitulating the original dimer conformation. In all
10 cases, the simple scoring function selects a model with an RMSD of 0.6 Å or less to the
starting conformation (see Supplementary Table 1).

Hide-and-seek test using TM structures from the PDB
The RBS protocol can generate the native pose with high accuracy for idealized cases. A
more challenging test would entail modeling actual helical structures from the PDB that may
not contain idealized geometry. We repeated the hide-and-seek test on a set of nine
symmetric helical TM structures from the PDB. Three of these structures are dimers, five
are tetramers, and one is a pentamer. For each test case, we determined the inter-subunit Cβ

distances from the first two chains of the native structure. If a glycine is present along the
protein sequence, we computed the distance between Cα atoms. For structures solved using
NMR, we use the average structure (see Materials and Methods) to obtain the native
distances.

We use three separate measures of RMSD in assessing the performance of the RBS protocol
on experimentally determined structures. The first measure, RMSDScore, denotes the RMSD
between the best-scoring model in the ensemble and the native structure. The second
measure, RMSDMin, denotes the smallest RMSD in the ensemble. The third measure,
RMSDNative, denotes the RMSD of the best-scoring model when the native helix is used in
place of the ideal helix in the rigid-body search. As shown in Table 1, all nine cases have an
RMSDScore of 2.9 Å or less. The dimer BNIP3 gives the best results with an RMSDScore of
0.9 Å. The worst-performing case, phospholamban, gives an RMSDScore of 2.9 Å. The
remaining cases yield RMSDScore values between 1.2 and 2.0 Å. While our scoring function
does not select the lowest RMSD model in the ensemble, it does perform reasonably well at
generating low-RMSD models (Fig. 2). With the exception of the BM2 case, a sizable
population of models with RMSDs below 1.5 Å is always generated. Producing an ensemble
of models with relatively low RMSD to native is critical for two reasons. First, models that
are near native will generally yield more favorable scores in the refinement stage. Second,
clustering will be more effective at assigning near-native models as centroids.
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We suspected that our sampling algorithm could generate a larger population of near-native
models if we introduced natural curvature into the starting helix. Superimposing an ideal
helix onto the corresponding native helix gives an RMSD that is larger than 1.0 Å for GpA,
BM2, and all of the M2 structures. To better assess how this deviation from ideality
influences the final result, we carried out the same search using the native helix in place of
the ideal helix. The resulting RMSDNative values are 0.6 Å or less for all cases with the
exception of the M2(xtal) case (Table 1). However, we note the existence of models with
RMSDNative values of 0.6 Å or less for all of the ensembles generated using a native helix
(Fig. 2).

Restrained sampling using low-resolution experimental data
The first two tests show that when sufficient information between monomers is given in the
form of native distances, our RBS protocol can generate models with RMSDMin values
between 0.9 and 1.6 Å. However, in a practical situation, exact distance information will
likely be unavailable. Therefore, to assess the ability of the sampling protocol to perform
similarly in a practical situation, we used low-resolution experimental data to restrain the
search. Besides being the most stringent test thus far, given the inherent noise present in
low-resolution experimental data, this test will provide a meaningful benchmark in terms of
the practicality of our method. A description of the low-resolution experimental data is
provided in Materials and Methods.

Before carrying out the search, we wanted to test our hypothesis that inter-subunit Cβ

distance correlates with low-resolution experimental data. To do this, we determined the
correlation coefficient and the associated p values between the inter-subunit Cβ distance data
obtained from each native structure and the corresponding set of experimental data (see
Supplementary Tables 2–8 for the experimental data). Phospholamban has the strongest
correlation with |r|=0.91 (p=4.6E-7). The dimer GpA has roughly the same |r| value of 0.78
(with an approximate p value of 5.0-E-6) for both the cross-linking and mutagenesis data.
The dimer EphA1 has |r|=0.76 (p= 3.2E-3). The M2 cases have roughly the same |r|=0.72
(with a p value of about 3.7E-4). BNIP3 and BM2 have the weakest correlations with |r|
=0.44 (p= 5.7E-2) and |r|=0.58 (p= 4.7E-3), respectively. For all but one of the cases, the p
value for the correlation between experimental data and inter-subunit Cβ distance is less than
0.05, indicating that the correlation is unlikely due to chance. Based on the |r| values and
associated p values obtained for the native structures, it would seem that correlating inter-
subunit Cβ distance with low-resolution experimental data can provide a useful filter when
modeling TM homo-oligomers (Fig. 3).

Using the low-resolution experimental data to generate TM bundles, we obtained an
RMSDScore of 2.1 Å or less for 8 out of 10 cases (Table 2). BNIP3 and phospholamban are
the largest outliers with RMSDScore values of 3.0 Å. For BNIP3, it is not surprising that the
RMSDScore is so large given the weak correlation between inter-subunit Cβ distance and the
experimental data. For phospholamban, we noticed that the bundle radius for the top-scoring
model is about 1.0 Å smaller than in the native structure. A more important measure of
performance of the sampling protocol is how close to native conformation our sampling can
reach. Clearly, if the sampling protocol cannot generate a sufficient number of models that
are close to native, it is likely that all-atom refinement will be of little value in generating
good models. The RMSDMin value is 1.6 Å or less for 9 out of 10 cases (Table 2). With the
exception of BM2, the sampling protocol generates ensembles with a significant fraction of
models with less than 2.0 Å RMSD to native (Fig. 4). Based on these results, it appears that
when inter-subunit Cβ distance data correlate strongly with mutational data, RBS alone can
be used to generate reasonable starting conformations that can be further refined. However,
since our scoring function is designed as a filter, it may not select the most energetically
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favorable conformation in the ensemble of models. For this, we use a more detailed all-atom
scoring function.

Refinement using Xplor-NIH
The resolution of our simple scoring function does not capture detailed energetic
interactions such as van der Waals packing and Coulombic interactions. These interactions
are important for obtaining optimal packing between helices. To capture these important
interactions, we first cluster the ensemble of models generated using our RBS protocol, add
side chains to all centroids, and then subject them to all-atom refinement using the
CHARMM22 force field in Xplor-NIH.21 The most favorable scoring model according to
XPLOR is deemed our best prediction.

Refinement of the centroids gives an RMSDScore of 2.1 Å or better for all 10 cases (Fig. 5).
For the dimers GpA, GpA(Cross-linking), EphA1, and BNIP3, the RMSDScore is 1.4 Å or
less. Results for larger homo-oligomeric states are equally as impressive with RMSDScore
ranging in value from 1.1 to 2.1 Å. Given the spread in RMSD values between individual
models in the native NMR ensembles, which can be as large as 0.9 Å for some of the
structures considered here, our results would indicate that the RBS protocol coupled to
clustering and refinement with Xplor-NIH has the potential to generate models comparable
in accuracy to those obtained using medium-resolution NMR. The importance of using a
detailed all-atom scoring function is clearly illustrated for the case of BNIP3. Using our
simple scoring function to select a model from the ensemble will give an RMSD to native of
3.0 Å. If we refine all of the models in the ensemble and then select the most favorable
scoring model according to CHARMM22, we obtain an RMSD to native of 0.6 Å. Clearly,
refining the entire ensemble of 1000 models would be a time-consuming task, and so we
cluster the ensemble of models first and then refine only the centroids. Using this approach,
we also obtain a model with an RMSD to native of 0.6 Å but do so in a fraction of the time it
would take to refine the entire ensemble of models. The r value between the experimental
data and the inter-subunit Cβ distance for the refined models either remained the same or
improved when compared with the corresponding value for native.

As a control, we applied the same Xplor-NIH refinement protocol to all the native
structures. This involved refinement of all the individual models in each NMR ensemble and
not the average model. We expect the experimentally determined structures after refinement
to have scores that are similar to or more favorable than the scores of our centroid models.
We observe this trend for all cases with the exception of BM2 (Fig. 6). We find that the
refined native models for BM2 are about 100 XPLOR energy units less favorable than our
best-scoring model. This seems to imply that the native BM2 bundle may not be tightly
packed, which ultimately leads to a less favorable van der Waals score. For most cases,
refinement with Xplor-NIH does not significantly perturb the native structure. The RMSD
between the unrefined and refined native models is on average less than 1.0 Å (represented
as blue circles in Fig. 6). For phospholamban and BM2, refinement perturbs the native
conformation to a larger extent. In particular, the RMSD after refinement of the native BM2
ensemble resulted in two models having RMSDs larger than 1.7 Å.

Discussion
We have presented a method for modeling helical TM homo-oligomers that uses a
rotationally symmetric rigid-body search followed by clustering and energy refinement
using the CHARMM22 force field in Xplor-NIH. At the heart of our modeling procedure is
a simple scoring function composed of a VDW clash term and a correlation coefficient
between mutational data and inter-subunit Cβ distance. The simple scoring function is
optimized to obtain maximal agreement with experimental data while avoiding clashes
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between helices. The novelty of our method is in its ability to directly restrain the search
using low-resolution experimental data. This prevents the search from needlessly
meandering through space and focuses the sampling to give the best agreement with
experimental data.

Our method performs best when the experimental data correlate with |r|>0.5 with the native
inter-subunit Cβ distance. In these cases, the rigid-body search does a reasonable job at
generating near-native backbone conformations. As the correlation becomes weaker, so does
the structural similarity between the native structure and the best-scoring model. The
combination of clustering, all-atom refinement, and ranking with the Xplor-NIH scoring
function improves the RMSD value to native. In 7 of the 10 cases, the RMSD to native is 1.6
Å or less.

Modeling TM homo-dimers
As a prerequisite for addressing the general TM homo-oligomer problem, we first applied
our modeling approach to the homo-dimer GpA using two sets of mutational data. One set
of data is from a fairly recent study and is composed of cross-linking efficiency.4 Another
data set consists of dimer disruption data and has been used extensively by others to propose
different methods for modeling the TM region of GpA.5,12–14 Through the use of either a
combination of energetics and restraints derived from mutational data or energetics alone, all
of these methods generate models for the TM region of GpA with RMSDs to native in the
range of 0.7–1.5 Å. Through the use of either set of low-resolution experimental data, our
modeling approach achieves a similar level of accuracy for GpA.

Earlier work in our group made use of an MCSA protocol to propose a model for the TM
region of BNIP3.5 The MCSA method used two energy terms that would penalize both
neutral and disruptive mutations. The method we propose here is different in two ways.
First, we do not use a stochastic approach for sampling conformational space. Second, the
present method does not rely solely on the energy to decide on the plausibility of a model
but instead also relies on how well the inter-subunit Cβ distance correlates with mutational
data. While both methods manage to accurately model the backbone of BNIP3, only the
MCSA protocol correctly models the hydrogen bond between Nε2 of His173 and Oγ from
Ser172 reported by Sulistijo and Mackenzie.22 Since our refinement protocol in Xplor-NIH
does not incorporate side-chain rotamer sampling, we could not optimize hydrogen bond
interactions between side chains. This prompted us to see if we could model this hydrogen
bond by simply changing the rotameric state of His173 and Ser172 in our best-scoring
model. Changing the rotameric states results in a new model that scores better than our
original model. This suggests that the hydrogen bond may not be absolutely necessary for
dimerization of the helices (our best-refined model did not have this hydrogen bond) but, if
formed, produces a slightly more stable complex conferring specificity to the dimer as
pointed out in the recent work of Lawrie et al.23

Modeling larger TM homo-oligomeric complexes
Our modeling protocol performed well on larger TM homo-oligomeric complexes. The
largest complex we considered is the pentamer phospholam-ban. Similar to the case for
GpA, the mutagenesis data for phospholamban have been used extensively in proposing a
model for the TM region.7,12,14 It is difficult to compare our results directly with earlier
studies since they were carried out before publication of the NMR structure for
phospholamban. However, a plot of the inter-helical van der Waals energy per residue for
phospholamban reveals a similar periodic pattern observed in plots from earlier studies
(Supplementary Fig. 1). A salient feature of using inter-subunit Cβ distance over interaction
energy when constructing a profile is that the former descriptor is less sensitive to force field
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effects. We note that our model for phospholamban has a smaller radius than what is seen in
the NMR structure. However, since our modeling protocol does not account for the
membrane environment or make use of experimentally derived distance information (i.e.,
intermonomer nuclear Overhauser enhancements), the effect of the non-bonded forces from
the molecular mechanics force field dominates, resulting in tightly packed helices.

We also applied our modeling approach to the influenza proton transporters M2 and BM2.
Our modeling protocol generates models for M2 with an RMSD of 1.7 Å to the high-
resolution X-ray structure. When compared to the NMR model of M2, our protocol achieves
an RMSD of about 1.0 Å. Our automated method provides predictions for M2 that are better
than earlier predictions that relied heavily on the expertise and intuition of the
investigators.24 We also applied our modeling protocol to the recent solid-state NMR
structures of Sharma et al.25 and Cady et al.26 Our best-scoring models have RMSDs of 1.8
Å and 1.6 Å, respectively, to these solid-state structures. As a point of comparison, the NMR
(solution and solid state) and the high-resolution X-ray structures show a spread in RMSD
between 0.8 and 1.6 Å.

In an earlier study, we also made use of correlation analysis in modeling the BM2 proton
transporter.18 In our previous approach, we adopted a less efficient method that included the
generation of a large ensemble of sterically feasible helical bundles (both ideal and coiled
helices). The ensemble was scored using the correlation coefficient between the pertubility
index (PI) and an estimate of the phase angle for the helix. The surviving models were
subjected to refinement and then clustered. Two out of eight proposed models from our
earlier study are within 1.0 Å of our current best-scoring model. It should be noted that all of
the models from our previous study exhibit a weaker correlation with the experimental data
than the model we propose here. The current study along with our earlier study shows the
generality of the use of the correlation approach in modeling TM homo-oligomers; different
geometric descriptors between helices can be used in modeling TM homo-oligomers.

Two clear strengths with our modeling protocol are speed (~8 min on a single 2.40-GHz
processor) and the ability to use data directly from experiments conducted in native cellular
membranes. This is in contrast to previous methods that often require the conversion of
experimental data into distance restraints,4,27 angular restraints,12 or pseudo-energy terms.5

A potential downside of these approaches is their reliance on setting thresholds a priori. In
contrast, we use experimental data directly to correlate against geometric descriptors
between helices. We feel that this makes for a simpler protocol and allows us to avoid
choosing “optimal” values through an intermediate training step. Moreover, since our
method relies heavily on the correlation value, data from a variety of different experimental
contexts can be used without the need for scaling. Other approaches need to determine
different thresholds and penalty functions for different sets of experimental data, which can
make them difficult to apply.

One potential drawback of our modeling protocol is the requirement of both neutral and
destabilizing mutations. If a mutagenesis experiment is carried out only on residues at the
dimer interface, our correlation approach will fail due to its reliance upon detectable
differences between residues close to the dimer interface and those farther away. Put another
way, if all the values for a particular mutagenesis experiment are identical, the correlation
value would be undefined since the difference between each experimental value would be
identical with the mean value. Alternative approaches do not have the same constraint.
However, we anticipate that most mutagenesis experiments would involve mutations at a
number of consecutive residues to determine which residues are located at the interface.
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A second potential drawback of our method is the use of an “ideal” helix during the rigid-
body search. This drawback has been discussed by Kim et al. who note that experimentally
determined helices can contain large deviations from ideal geometry that result in significant
kinks or curvature.14 The importance of accounting for curvature as seen in experimentally
determined helices was demonstrated by performing a hide-and-seek test using the low-
resolution data; carrying out the search using the native helix yielded an RMSDMin in the
range 0.3–1.1 Å, while using an ideal helix yields an RMSDMin in the range 1.1–1.8 Å. One
way of incorporating experimentally determined helices into our modeling protocol is
through the use of helical protein structures deposited in the PDB. Initial tests using
experimentally derived helices extracted from the PDB reveal significant improvements in
RMSDMin when compared to the case of using an ideal helix. Using the native helix from
each target in Table 2, we searched the PDB using a rapid distance-matrix structure search
method28 and extracted all helices below an RMSD of 0.5 Å to the native helix. The helix
with the smallest RMSD to the native helix was used to carry out a rigid-body search using
the low-resolution experimental data. The RMSDMin value when using the PDB-derived
helices range from 0.5 to 1.3 Å, which is not significantly different from the case of using
the native helix. However, these PDB-derived helices were obtained using the native helix,
which will likely be unavailable in a practical modeling situation. It is clear that devising a
way to incorporate structural information from the PDB into our modeling protocol would
provide substantial enrichment of near-native conformations.

The ultimate utility of our method to experimental biologists would be to avoid performing
exhaustive mutagenesis experiments when attempting to model homo-oligomeric helical TM
structure. Earlier work in our group used phylogeny information along with lattice models to
determine how much experimental information is needed to make reasonable predictions.29

For the method developed in our current study, we find that the more experimental data
points provided as input, the more accurate the final predictions will be. However, a
judicious choice of sequence region to target for carrying out the mutagenesis experiments
can yield accurate results with far fewer experimental data points. We find that, for GpA,
eight contiguous experimental data points are sufficient to generate predictions that are
within 1 Å RMSD to native (Supplementary Table 9). Selecting 8 contiguous experimental
data points from the N-terminal, center, or C-terminal regions of the TM sequence produces
results that are similar to what is obtained using the full set of 23 experimental data points.
Splitting the eight contiguous experimental data points into four contiguous experimental
data points at both N-terminal and C-terminal ends of the TM sequence for GpA yields a
prediction that is also near 1 Å RMSD to native. We find a similar result for the
phospholamban case when using four contiguous experimental data points at both the N-
terminal and C-terminal ends.

Future improvements to our method will include adding additional terms to our simple two-
term scoring function. One possibility would be to include knowledge-based terms to
improve the packing between helices. Work by Harrington and Ben-Tal.30 shows that five
types of chemical interactions common to TM helices could be used to essentially generate
sub-angstrom predictions. It would be interesting to see if these five types of chemical
interactions could be used to complement our current scoring function to filter out
conformations that do not exhibit structural determinants common to TM helices. Such an
approach would incur minimal computational cost while enriching the ensemble with more
native-like models.

While the manuscript was in review, a refined structure for phospholamban was published
by Verardi et al.11 Comparing our prediction for phospholamban to this new structure (PDB
ID: 2KYV) gives a final prediction of 0.8 Å. Using four contiguous experimental data points
at both the N-terminal and C-terminal ends also gives a prediction around 0.8 Å.
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Conclusion
In summary, we have developed a tool for rapidly modeling helical TM homo-oligomers
that uses low-resolution experimental data directly in the modeling process. At the heart of
our modeling protocol is the use of a correlation term that restrains the RBS and avoids
costly searches in regions of conformational space that do not correlate with experimental
information. We show that correlating mutagenesis, cross-linking, and ion channel data with
inter-subunit Cβ distance data followed by refinement provides accurate models for helical
TM proteins exhibiting exact rotational symmetry. One area where our modeling approach is
likely to have a significant impact is in situations where it is either too difficult or time
consuming to obtain a complete set of NMR data.

Materials and Methods
Details regarding the low-resolution experimental data

At the core of our sampling methodology is the use of experimental information in the form
of mutagenesis data, cross-linking data, and TOXCAT and TOXR data. We provide a short
description of the data below. All of the experimental data used in this study can be found in
Supplementary Tables 2–8.

Phospholamban—Phospholamban is a homo-pentameric bundle located in the
sarcoplasmic reticulum of cardiocytes and is responsible for calcium transport. The
mutagenesis data for phospholamban were taken from Table 2 of Simmer-man et al.9 The
data from this table show the extent of pentamer formation following mutation to either an
alanine or a phenylalanine along the TM region. For this study, we used the alanine
mutational data only.

M2 and BM2—Both M2 (A/M2) and BM2 are homo-tetrameric TM proton transporters
belonging to different types of influenza viruses. These proton transporters are responsible
for acidifying the interior of the virus, which ultimately leads to virion uncoating in the
endosomes. For both M2 and BM2, we used PI, which is a combination of reversal potential,
current and specific activity data (see Pinto et al.24 for details). PI data for M2 from were
obtained from Fig. 1 of Pinto et al.24 PI data for BM2 were obtained from Fig. 3 of Ma et
al.18

GpA—GpA is homo-dimeric sialoglycoprotein from erythrocyte cells. Two sets of data for
the TM region of of GpA were used. The first set of data was obtained from Fig. 5 of
Lemmon et al. and shows the relative degree of disruption of the GpA dimer by mutation of
the native sequence with a nonpolar residue.8 The degree of disruption of the dimer interface
uses a scale of 0 (no effect on dimer formation) to 3 (no dimer formation). The second set of
data was taken from Supplementary Tables of Zhu et al. and shows the percentage of cross-
linking between residues in the TM region of the αIIbβ3/GpA chimera.4 For this study, we
considered only symmetric cross-linking data between residues.

BNIP3—BNIP3 is a homo-dimer and a member of the Bcl-2 homology domain-3 subfamily
of proapoptotic Bcl-2 proteins. BNIP3 is associated with apoptotic response in the
myocardium. Mutational data for the TM region of BNIP3 dimer come from Fig. 7 of
Lawrie et al. and represent a combination of TOXCAT and SDS-PAGE page phenotype
scores based on percentage dimer disruption.23 The “unified score” gives the average
disruptive effect of different amino acid substitution along the protein sequence of the TM
helix. The unified scale ranges in value from 0 (no dimer formation) to 10 (strong
dimerization). We used all the phenotype scores from the alanine mutations.
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EphA1—Ephrin receptor A1 is part of a receptor tyrosine kinase and is involved in animal
development and certain cancers. ToxR data were taken from Table 3 of Volynsky et al.15 It
should be noted that the ToxR data from Volynsky et al. do not consider every possible
residue along the TM region. For our purposes, the mutations to glutamine and serine were
not as informative, since mutation to a polar residue in the membrane could cause the dimer
to be disrupted even when the residue is not along the dimer interface. Similarly, glycine
mutations may cause a structural change in the helices despite not residing at the oligomer
interface. Therefore, we concentrated on only the hydrophobic mutations (i.e., the
isoleucine, alanine, and valine mutations).

Generation of the homo-oligomeric models
Generation of the oligomer begins with the construction of an ideal helix using
CHARMM22 internal geometry with ϕ and Ψ dihedral angles set to –60° and –40°,
respectively. Modeling was carried out only for the TM region that had experimental data.
As such, the sequence length of the helix was dependent on the available experimental data.

The sampling procedure begins with an ideal helix containing the native sequence. Side
chains were not considered at this stage, but all residues (with the exception of glycine)
contained a Cβ atom. The individual steps used to position the helix in space are depicted in
cartoon form in Fig. 1. Each search for the best dimer configuration begins with a set of
initial parameters for the four variables Tx, Tz, θ, and ϕ that were applied to an ideal helix
centered at the origin of the global frame of reference. To maximize the correlation of
experimental data with inter-subunit Cβ distance while maintaining a sterically feasible
distance between helices, we optimized the scoring function below using the Nelder–Mead
simplex algorithm from the Gnu Scientific Library31

The weighting parameters C1 (kcal/mol Å2) and C2 (kcal/mol) were set to 75 and 100,
respectively. The scale variable S is used to soften the van der Waal’s radii. For the study

carried out here, S was set to 0.80.  is the sum of the van der Waal’s radii of two atoms
ij (the radii for different atoms were taken directly from the XPLOR manual32). The
distance between two atoms is denoted as “R(Tx, Tz,θ,φ)ij” and is a function of the four
search parameters Tx, Tz, θ, and Φ. The “corr” term is the correlation between the inter-
subunit Cβ distances and the corresponding experimental data. The experimental data
(denoted “y” in the above equation) denote the same residue on symmetric helices and are
correlated with the distance between these residues. The variable M represents all the atoms
from each helix, while the variable N represents only the Cβ atoms.

Initial values for the sampling parameters were obtained by coarse enumeration between a
suitable set of numerical boundaries and were subject to the three following conditions: (1)
the bundle radius Tx for a dimer must lie between 2 and 4 Å. For oligomeric states larger
than 2, the bundle radius should be restrained between 6 and 9 Å. (2) The tilt angle θ must
lie in the range of –30° to 30°. (3) The translation along the z-axis, Tz, measured from the
geometric center of the helix lies in the range of −10 to 10 Å. To avoid a combinatorial
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explosion of values for the parameters, we capped the maximum number of initial values to
1000. Only models with a Score less than 50 were retained for the refinement phase.

Clustering
Models were clustered using a k-medoid algorithm from the C clustering library.19 The
number of initial clustering attempts was set to 100. The model with smallest RMSD to all
other models in the cluster was selected as the centroid model.

Side-chain placement
Side chains were added to all the centroid models using the side-chain prediction program
SCAP.20 Default options were used with SCAP.

Refinement with Xplor-NIH
After side-chain addition, all of the centroid models from the first phase were subjected to
100 steps of rigid-body minimization using Xplor-NIH with the CHARMM22 force field.
The goal of this step in the refinement procedure is to enforce proper packing between
helices while removing any steric clashes that arise as a result of having used a reduced
representation for the side chain during the generation of the oligomer in the first phase. The
rigid-body minimization step is then followed by two thousand steps of Powell
minimization. The dielectric constant was set to 4, and the nonbonded cutoff distance was
set to 12.0 Å. All other options were left at their default values.

Correlation versus anti-correlation
It should be noted that while some experimental data will correlate positively with inter-
subunit Cβ distance, some data will correlate negatively with inter-subunit Cβ distance. This
can be understood by considering the case for cross-linked residues. If two corresponding
residues in a homo-dimer are close in space, the distance between the Cβ atoms will be
small. In this scenario, the Cβ atoms should cross-link strongly. The data would then be anti-
correlated with a maximal value of −1 since a small distance yields a stronger (large
magnitude) cross-linking signal. The statistical significance attributed to r is the probability
of arriving at the current value if the correlation coefficient were in fact actually 0 (the null
hypothesis). For the purposes of this study, r is considered statistically significant if the
associated p value is less than 5% (p<0.05). Correlation coefficients and their respective p
values were calculated in Matlab. The p values are one sided and represent the probability
that two uncorrelated sequences of the given length would have a correlation value as good
as the calculated correlation by chance.

RMSD calculations
The RMSD is computed by optimally superimposing N, Cα, C, and O atoms from a model
onto the native structure. For the purposes of comparing our best prediction with an NMR
models, we used the average model computed from all the individual models in the NMR
ensemble. For the results involving refinement of the native models, we superimposed the
refined native model onto the unrefined native model to determine the RMSD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
An illustration of the steps used to model a TM oligomer with exact rotational symmetry.
Step 1 starts with an ideal helix transformed to the global frame of reference such that the
geometric center of the helix is positioned at the origin. Step 2 involves rotation about the
global z-axis and determines which residues will form the interface of the dimer (denoted by
the variable Φ). Step 3 is a translation along the global z-axis and will affect the point of
closest approach (denoted by the variable Tz). Step 4 is a translation along the global x- axis
and will affect the radius of the bundle (denoted by the variable Tx). Step 5 is a rotation
about the global x-axis and will affect the tilt of the bundle with respect to the global z-axis
(denoted by the variable θ). Step 6 is a rotation about the global z-axis used to generate the
symmetry mate followed by optimization between experimental data and inter-subunit Cβ

distance (see Materials and Methods for a description of the two-term scoring function used
in the optimization step). Once an ensemble of 1000 poses has been generated, the ensemble
is clustered, and side chains are added to the centroid models. The centroid models are then
refined using Xplor-NIH. The spheres on the end of the helices denote the N-terminus (blue)
and C-terminus (red). The individual axes on the global frame are color coded as follows:
red denotes the positive x-axis, green denotes the positive y-axis, and blue denotes the
positive z-axis.
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Fig. 2.
RMSD distributions for models generated using native inter-subunit Cβ distances. Each
panel consists of two distributions. The distribution on the left was generated using an ideal
helix. The distribution on the right was generated using the native helix. The RMSD value is
between each model in the generated ensemble and the native structure. The distributions
are: (a) GpA, (b) EphA1, (c) BNIP3, (d) phospholamban, (e) M2(xtal), (f) M2(NMR), (g)
M2(ssNMR1), (h) M2(ssNMR2), and (i) BM2.
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Fig. 3.
PI versus inter-subunit Cβ distance profiles for (a) native M2(NMR) structure and (b) our
best-scoring model after refinement with Xplor-NIH. A superimposition of our best-scoring
model and the native M2(NMR) structure is shown on the right.
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Fig. 4.
RMSD distributions for models generated using low-resolution experimental data. Each
panel consists of a single distribution that was generated using an ideal helix. The RMSD
value is obtained between each model in the ensemble and the native structure. The
distributions are as follows: (a) GpA, (b) GpA(Cross-linking), (c) BNIP3, (d) EphA1, (e)
BM2, (f) M2(xtal), (g) M2(NMR), (h) M2(ssNMR1), (i) M2 (ssNMR2), and (j)
phospholamban.
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Fig. 5.
A comparison between the backbone of the native structure (shown in blue) and best-scoring
model (shown in red) after refinement.
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Fig. 6.
Energy profiles versus RMSD to native after refinement with Xplor-NIH. Blue circles show
the RMSD between the starting native model (from the NMR ensemble) and the native
model after refinement with Xplor-NIH. Red circles show the RMSD between each of the
centroids and the corresponding native structure. The filled green circles represent the most
favorable scoring model among the 20 centroid models. Only models with RMSD values
below 2.5 Å are displayed on the graph. The panels are labeled as follows: (a) GpA, (b)
GpA(Cross-linking), (c) EphA1, (d) BNIP3, (e) M2(xtal), (f) M2(NMR), (g) BM2, (h)
phospholamban, (i) M2(ssNMR1), and (j) M2(ssNMR2).
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Table 2

Application of the sampling method using low-resolution experimental data

Name Type of data RMSDScore RMSDMin

GpA Mutagenesis 1.4 1.4

GpA(Cross-linking) Cross-linking 1.6 1.4

EphA1 TOXCAT 1.6 1.4

BNIP3 TOXCAT/mutagenesis 3.0 1.6

M2(xtal) Ion conductance 1.9 1.5

M2(NMR) Ion conductance 1.4 1.3

M2(ssNMR1) Ion conductance 1.6 1.5

M2(ssNMR2) Ion conductance 1.7 1.3

BM2 Ion conductance 2.1 1.8

Phospholamban Mutagenesis 3.0 1.0
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