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Abstract

Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple 
classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in 
fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of 
specialized metabolism. To promote the production of specialized metabolites in tomato fruit, this work expressed 
under a fruit ripening-specific promoter, E8, a bacterial AroG gene encoding a 3-deoxy-d-arabino-heptulosonate 
7-phosphate synthase (DAHPS), which is feedback-insensitive to phenylalanine inhibition. DAHPS, the first enzyme 
of the shikimate pathway, links between the primary and specialized metabolism derived from aromatic amino acids. 
AroG expression influenced the levels of number of primary metabolites, such as shikimic acid and aromatic amino 
acids, as well as multiple volatile and non-volatile phenylpropanoids specialized metabolites and carotenoids. An 
organoleptic test, performed by trained panellists, suggested that the ripe AroG-expressing tomato fruits had a pre-
ferred floral aroma compare with fruits of the wild-type line. These results imply that fruit-specific manipulation of 
the conversion of primary to specialized metabolism is an attractive approach for improving fruit aroma and flavour 
qualities as well as discovering novel fruit-specialized metabolites.

Key words:  Aromatic amino acids, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, metabolism, shikimate pathway, 
tomato, volatiles.

Introduction

Diets rich in fruits and vegetables are shown to be associ-
ated with the reduced incidence of  chronic disease (Key 
et al., 2002). These findings have led several governments 
to recommend and encourage the consumption of  at least 
five portions of  fruits and vegetables per day (Cooper, 
2004). The health benefits conferred by certain fruits and 

vegetables have been generally attributed to the presence 
of  health-promoting phytochemicals with potent antioxi-
dant properties (also termed bioactives), such as carot-
enoids, phenylpropanoids, tocopherols and tocotrienols 
(vitamin E forms), and ascorbic acid (vitamin C). Ripe 
red tomato fruit contains significant amounts of  these 
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compounds and are the principal source of  the carot-
enoid lycopene in the human diet (Enfissi et  al., 2010). 
In addition, they contain an estimated 30 volatile com-
pounds that determine their flavour and aroma proper-
ties and are present in sufficient quantities to noticeably 
stimulate the olfactory system (Buttery and Ling, 1993; 
Ibdah et al., 2006; Klee, 2010; Dal Cin et al., 2011; Klee 
and Giovannoni, 2011). A significant part of  the volatile 
as well as non-volatile specialized metabolites produced 
in tomato fruit are synthesized from the aromatic amino 
acids phenylalanine (Phe) and tyrosine (Tyr). The synthe-
sis of  these metabolites is up-regulated during fruit ripen-
ing and they therefore contribute to the unique flavour of 
tomato fruit (Baldwin et al., 2000; White, 2002; Klee and 
Giovannoni, 2011).

To date, only limited amount of  studies described the elu-
cidation and manipulation of  metabolic regulatory bottle-
necks in the conversion of  primary metabolism into aromatic 
specialized metabolites, with major efforts being directed 
at the production of  Phe-derived volatiles (Dudareva and 
Pichersky, 2008). Examples of  these studies include the aro-
matic l-amino acid decarboxylases that catalyse the conver-
sion of  Phe to phenethylamine and Tyr to tyramine (Tieman 
et  al., 2006; Gutensohn et  al., 2011), phenylacetaldehyde 
synthase that functions in the formation of  phenylacetalde-
hyde, a constituent of  floral scent (Kaminaga et al., 2006), 
and isoeugenol synthase 1 that catalyses the formation of 
isoeugenol in petunia (Petunia hybrida) (Dexter et al., 2007). 
The co-regulation between pathways of  specialized metab-
olism precursors, as in the case of  aromatic amino acids, 
is also far from being understood (Doerfler et  al., 2013). 
Recently, several studies have elucidated this metabolic 
link: (i) a gene of  Phe biosynthesis, named arogenate dehy-
dratase1, was recently characterized in petunia petals and its 
suppression resulted in varying degrees of  reduction in the 
emission of  different phenylpropanoids/benzenoid volatiles 
(Maeda et al., 2010); and (ii) a number of  transcription fac-
tors have been identified that regulate the production of  vol-
atile and no-volatile specialized metabolites in various plant 
species, such as petunia flowers and tomato fruits (Verdonk 
et al., 2005; Dal Cin et al., 2011; Moyal Ben Zvi et al., 2012; 
Spitzer-Rimon et al., 2012).

To study the regulatory interaction between pathways 
of primary and specialized metabolism associated with the 
three aromatic amino acids [AAAs; Phe, Tyr, and trypto-
phan (Trp)], this work independently expressed in transgenic 
Arabidopsis (Arabidopsis thaliana) bacterial genes encoding: 
(i) a mutant feedback-insensitive chorismate mutase/prephen-
ate dehydretase, the product of a bacterial PheA, associated 
with the conversion of chorismate to phenylpyruvate and 
Phe (Tzin et  al., 2009); and (ii) a mutant feedback-insensi-
tive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, 
the product of a bacterial AroG, encoding DAHPS, the first 
enzyme of the shikimate pathway (Tzin et al., 2012; Fig. 1). 
Plants expressing these bacterial genes exhibited enhanced 
levels of a number of aromatic specialized metabolites in a 
manner that was specific to the bacterial enzyme (Tzin et al., 
2009, 2012).

To elucidate the impact of the shikimate pathway on the pro-
duction of specialized metabolites in tomato fruits, this work 
expressed a bacterial Phe-feedback-insensitive AroG under a 
fruit-specific promoter in transgenic tomato plants. Fruits of 
these tomato plants exhibited altered levels of various primary 
metabolites as well as multiple volatile and non-volatile spe-
cialized metabolites, many of which are novel metabolites that 
have not yet been characterized and thus can serve as candi-
dates for future metabolite discoveries. The results imply that 
fruit-specific manipulation of a gene that encodes an enzyme 
controlling the conversion of primary to specialized metabo-
lism is an attractive tool for improving fruit aroma and flavour 
qualities. Such an approach may aid in overcoming the genetic 
linkage between long-shelf life and low flavour in tomato fruit, 
an issue that has so far been hard to solve by classical breeding.

Materials and methods

Plasmid construction

The truncated coding DNA sequence of Escherichia coli AroG  was 
amplified by PCR with the following oligonucleotides: forward 

Fig. 1.  Schematic diagram of the shikimate pathway aromatic 
amino acid biosynthesis in plants. Only some enzymes are 
illustrated. Dashed arrows represent several enzymic steps. 
ADT, arogenate dehydratase; CM, chorismate mutase; DAHPS, 
3-deoxy-d-arabino-2-heptulosonate 7-phosphate synthase; PDT, 
prephenate dehydretase.
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5′-CATGCATGCTGATGAATTATCAGAACGACGA-3′, 
which introduces a SphI restriction site (underlined); and 
reverse 5′-GGAATTCCCCGCGACGCGCTTTTACTG-3′, 
which introduces an EcoRI restriction site (underlined). 
Two point-mutation forms of AroG encoding to feedback-
insensitive proteins were constructed: AroG175 with a point 
mutation at position 524 (Leu175Glu) and AroG209 which 
has a point mutation at position 625-626 (Phe209Ala). 
The following PCR primers were used: AroG175 forward 
5′-GTGCACCGCGAACAGGCATCAGGGCTT-3′ and 
reverse 5′-AAGCCCTGATGCCTGTTCGCGGTGCAC-3′ 
and AroG209 forward 5′-GCGCCGCACTGCGCCCTG 
TCCGTAACG-3′ and reverse 5′-CGTTACGGACAGGGCG 
CAGTGCGGCGC-3′. The RUBISCO small subunit-3A plastid  
transit peptide used (Shaul and Galili, 1993) was fused in frame 
to the 5′-end of the open reading frame. The genes were fused to 
the E8 promoter, which is spatially and temporally regulated in 
mature tomato fruit (Solanum lycopersicum)(Zhao et al., 2009) 
and regulated by ethylene regulatory regions in a fruit-specific 
promoter (Deikman et al., 1992). The genes were fused to three 
copies of a HA epitope tag fused to an octopine synthase ter-
minator, and the entire fragment was subcloned into the Ti 
plasmid pART27 (Gleave, 1992). The chimeric genes were 
introduced into Agrobacterium tumefaciens EHA-105.

Tomato stable transformation

Wild-type (WT; M82 cultivar) tomato plants were inoculated 
by submerging cotyledons in the transformed A. tumefaciens 
culture as previously described (Fillati et al., 1987).

Tomato growth and sampling

Tomato transformation and genotyping performed by Hazera 
Genetics (www.hazera.co.il). Flowers of greenhouse-grown 
plants were marked at anthesis, and fruits were harvested 
according to appearance and days post anthesis (DPA): ~42 
DPA, mature green; ~44 DPA, breaker; and ~48 DPA, ripe red. 
Each biological repeat was a mixture of three to five individual 
fruits from the same stage of development. Immediately upon 
harvesting, peel and flesh (without the gel and seeds) were 
manually dissected and frozen in liquid nitrogen (Adato et al., 
2009).

Immunoblot analysis

Immunoblots were performed as previously described 
(Stepansky and Galili, 2003) using monoclonal anti-haemag-
glutinin antibodies (Sigma Aldrich).

Isoprenoid extraction and analysis

Isoprenoids were extracted from 100 mg fresh weight of fro-
zen tomato powder and analysed by HPLC with a photo 
diode array (Fraser et al., 2000) with several modifications as 
previously published (Adato et al., 2009).

Metabolomics analysis by the use of 
UPLC/qTOF-MS

Non-targeted metabolic analysis was performed with aerial 
tissues of tomato 500 mg peel or flesh extracted in 80% metha-
nol. Sample preparation and injection conditions were per-
formed as previously described (Mintz-Oron et al., 2008). The 
analysis of the raw UPLC/qTOF-MS data was done using 
the XCMS software that performs chromatogram alignment, 
mass signal detection, and peak integration (Smith et al., 2006) 
from the Bioconductor package version 2.1 for the R statisti-
cal language version 2.6.1. XCMS was used with the following 
parameters: fwhm = 10.8, step = 0.05, steps = 4, mzdiff = 0.07, 
snthresh = 8, max = 1000. Injections of samples in the posi-
tive and negative ionization modes were performed in separate 
injection sets and preprocessing was done for each ionization 
mode independently. Differential mass ions were determined 
using a Student’s t-test (JMP software).

GC-MS extraction, derivatizion, and 
profiling of polar non-volatile extracts

GC-MS analysis of  polar metabolites in the AroG209-9-
overexpressing and WT fruit tissues (n  =  5–6) were car-
ried out as previously described (Mintz-Oron et al., 2008). 
Xcalibur version 1.4 (Thermo Finnigan) was used for data 
analysis. Compounds were identified by comparison of 
their retention index and mass spectrum to those generated 
from authentic standards analysed on the same instrument. 
In cases when standards were not available, compounds 
were putatively identified by comparison of  their retention 
index and mass spectrum to those present in the mass spec-
tra library of  Max-Planck-Institute for Plant Physiology, 
Golm, Germany (Q_MSRI_ID) and the commercial mass 
spectra library NIST05 (www.nist.gov). The response val-
ues for metabolites resulting from the Xcalibur processing 
method were normalized to the ribitol (adonitol, Sigma 
Aldrich) internal standard. For principal components anal-
ysis (PCA), the data were pretreated as follows: missing val-
ues for metabolites in one of  the replicates were exchanged 
for the average between the replicates, zero values were 
replaced by a value 4-times lower than the minimal non-
zero value in the data set, data were normalized to the mean 
of  each metabolite across all samples and log-transformed 
(Tzin et al., 2009). For statistical analysis of  the whole data 
matrix, a two-way ANOVA test was performed with the 
two discriminating factors being line (WT or AroG209-9) and 
fruit developmental stage. Both PCA plots and the two-way 
ANOVA test were constructed with the TMEV software 
package (Saeed et al., 2003).

GC-MS extraction and profiling of volatile 
aroma compounds in tomato fruits

GC-MS analysis of polar volatile compounds in the AroG209-9- 
expressing and WT fruit tissues samples was carried out as 
previously described (Spitzer-Rimon et  al., 2010) with sev-
eral modifications: each biological replicate, consisting of 
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10 g tissue from a mix of 2–5 cut fruits, harvested at the ripen-
ing stage (flesh and peel) (n  =  4). Tissue was extracted with 
30 ml MTBE/hexane (1:1) containing 2μg isobutylbenzene 
as an internal standard. Following overnight incubation with 
shaking at 150 rpm, the extract was centrifuged at 10,500 g for 
10 min and the supernatant was passed through a 0.2 μm filter. 
Samples were evaporated, using liquid nitrogen, to a final vol-
ume of 200 μl before injection into a GC-MS instrument (Ben 
Zvi et al., 2012). Further identification of the compounds was 
based on a comparison of mass spectra and retention times 
with those of authentic standards (Sigma Aldrich) analysed 
under similar conditions (Davidovich-Rikanati et al., 2007).

Sensory panel and evaluation of samples

A panel of 10 trained flavour specialists evaluated the aroma 
of samples by smelling the fruits. Preliminary tests were car-
ried out to improve the ability of the assessors to recognize 
odour defects and consistently quantify sensory properties. 
The panellists had previously been trained in the quantitative 
description of tomato attributes according to selection tri-
als based on French norms (ISO8586-1, AFNOR V09-003). 
For each fruit sample, cut sections containing all fruit tissues 
were used for aroma evaluation by the panel. Several attributes 
were chosen: acidic, floral, fresh, green, metallic, musty, ripe, 
spicy, and sweet in addition to global aroma intensity. Values 
of individual fruits (n = 3–4) were ranked between 0 (none) to 
5 (very strong). When completed, the panel members discussed 
their scores and agreed on the final summarizing score of each 
aroma group.

Results

Generation of transgenic tomato plants expressing 
a bacterial feedback-insensitive 3-deoxy-d-arabino-
heptulosonate 7-phosphate

To evaluate the impact of  enhancing metabolic flow 
through the shikimate pathway on the accumulation of 
primary and specialized metabolites in tomato fruits, this 
work expressed two forms of  a bacterial gene encoding two 
variants of  a feedback-insensitive bacterial AroG enzyme, 
AroG175 or AroG209 (Tzin et al., 2012). These two variants 
were expressed under the control of  the fruit ripening-
specific E8 promoter which is induced by ethylene upon 
fruit maturation (Deikman et al., 1992; Zhao et al., 2009). 
The transgenic AroG175- and AroG209-expressing plants 
had comparable phenotypes to the WT plants and were 
fully fertile (data not shown). A schematic diagram of  the 
AroG constructs introduced to tomato plants and expres-
sion of  the AroG proteins in ripe red fruit are presented 
in Supplementary Fig. S1 (available at JXB online). Ripe 
fruit were harvested from five independently transformed 
AroG175 (two lines) and AroG209 lines (three lines) and WT 
plants, and were analysed by an established high-resolution 
LC-MS-based metabolomics platform (negative ion-mode; 
Rogachev and Aharoni, 2012). PCA of  whole ripe fruit 

extracts showed that the metabolic profile of  the WT dif-
fered from those of  the AroG175 and AroG209 lines (Fig. 2A). 
In addition, a clear difference was evident between the group 
of  independently transformed AroG175 lines (AroG175-6  
and AroG175-11) and AroG209 lines (AroG209-4, AroG209-8, and 
AroG209-9). This separation implied an influence of  both 
the different mutations within the AroG genes as well as 

Fig. 2.  Metabolic profiling of transgenic tomato plants expressing 
a bacterial feedback-insensitive AroG gene. Samples of T1-
generation ripe red tomato fruits were collected, extracted, and 
analysed using the high-resolution LC-MS metabolomics platform. 
The independent transgenic lines are AroG175-6, AroG175-11,  
AroG209-4, AroG209-8, and AroG209-9. (A) PCA plot of datasets was 
obtained from 3094 mass signals in the negative ionization mode; 
each data point represents an independent sample (n = 5 for each 
line); the first two components are given in this panel. (B) Relative  
levels of the three aromatic amino acids; asterisks indicate 
statistically significant differences between the AroG lines and 
the wild-type (WT), using ANOVA; bars indicate standard errors.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert250/-/DC1
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the level of  expression of  the same transgene in different 
transformed plants on the extent of  the metabolic changes. 
The levels of  all three AAAs were significantly increased 
in all five lines (Fig.  2B). Tyrosine level was also signifi-
cantly higher in the AroG175 lines and the highest in the 
AroG209 lines as compared to the WT. For further study, the 
homozygous AroG209-9 line, which contained a single inser-
tion, was selected.

Effect of AroG209-9 expression on the levels of 
non-volatile metabolites accumulating during fruit 
maturation

The fleshy fruit of  tomato develops in several marked 
stages, each possessing a characteristic metabolic profile 
(Carrari et  al., 2006). In view of  that, fruits were sepa-
rated into two tissues: (i) peel, which is typically composed 
of  multiple cell types, including epidermis, collenchyma, 
and some parenchyma, and (ii) flesh, which refers to the 
pericarp material from which the peel has been removed 
and therefore is predominantly composed of  parenchyma 
and collenchyma (Mintz-Oron et  al., 2008). Tomato fruit 
development can be divided into four main phases: cell 
differentiation, cell division, cell expansion, and ripening 
(Gillaspy et al., 1993). The E8 promoter used to direct the 
expression of  the AroG209-9 construct has been previously 
shown to direct a relatively minor expression starting at 
the mature green stage and become efficiently activated at 
the ripening stage (Lincoln and Fischer, 1988; Good et al., 
1994; Deikman et  al., 1998). Therefore, the current work 
examined the metabolic profiling of  fruits at three ripening 
stages, namely mature green, breaker, and ripe red stages. 
In order to profile polar compounds, in particular primary 
metabolites, the previously established GC-MS analysis of 
derivatized fruit extracts was used (Fernie et al., 2004). In 
tomato fruit, this technology allowed the monitoring of 
the levels of  64 metabolites, including amino acids, organic 
acids, sugar alcohols, tricarboxylic acid cycle intermedi-
ates, soluble sugars, sugar phosphates, and a few special-
ized metabolites (Supplementary Table S1). In addition, 
the developing tomato fruits were also subjected to high-
resolution LC-MS analysis in both electrospray ionization-
positive and -negative modes that covers mostly semi-polar, 
specialized metabolites (Supplementary Tables S2 and S3). 
This technology allowed the monitoring of  the levels of  63 
metabolites, including specialized metabolites derived from 
the phenylpropanoids, and steroidal alkaloids pathways as 
well as some primary metabolites. Finally, a stand-alone 
HPLC-PDA system coupled to UV and fluorescent detec-
tors was employed for targeted analysis of  nine isopre-
noids, including carotenoids, chlorophylls, and tocopherols 
(Supplementary Table S4).

To obtain a broad view of the differences in the metabo-
lites of fruit peel and flesh tissues, this study conducted PCA 
on the data sets derived from the metabolite profiling using 
GC-MS (Fig. 3A, C) and LC-MS (Fig. 3B, D). In these analy-
ses, the AroG209-9 line and the WT were essentially grouped 
together at the mature green and breaker stages, while they 

were clearly separated at the ripe red stage in both the peel 
and flesh tissues. More detailed analysis of the LC-MS results 
revealed many more putative metabolites (approximately 220 
in peel and 120 in flesh, with a mean of five mass signals per 
metabolite) whose levels were significantly different between 
fruits of the WT and the AroG209-9 line during the ripe red 
stage (for more details, see Venn diagram in Supplementary 
Fig. S2).

Subsequently, this work performed correlation coefficient 
analyses on 45 selected unknown mass signals whose levels 
were different between AroG209-9 and WT lines in the GC-MS 
and LC-MS analyses (Table 1). As shown in Supplementary 
Fig. S3, approximately 60 known metabolites and mass sig-
nals, including AAAs, shikimic acid, prephenic acid, oligo-
saccharides, and phenylpropanoids as well as an additional 
43 unknown mass signals were highly clustered. These results 
implied that AroG209-9 expression has a major influence on 
the accumulation of primary and specialized metabolites in 
both the peel and flesh of the ripe red tomato fruit. This work 
also performed correlation coefficient analyses of GC-MS 
and LC-MS-identified metabolites and mass signals, which 
are presented as heat maps in Supplementary Fig. S4. Three 
major groups of compounds were highly clustered: group 
I that includes 12 compounds, mostly amino acids and mon-
osaccharides; group II that includes 26 compounds, mostly 
organic acids, steroidal alkaloids and phenylpropanoids, and 

Fig. 3.  Metabolite profiles of developing tomato fruits of the 
AroG209-9 line and the wild type (WT). (A and C) PCA plots of 
metabolic profiles obtained by GC-MS analysis (125 detected 
metabolites) in peel (A) and flesh (C). (B and D) PCA plots of 
metabolic profiles obtained by LC-MS analysis in negative 
ion mode from 3931 mass signals in peel (B) and 1979 mass 
signals in flesh (D). T2-generation fruit were sampled in three 
developmental stages: mature green (MG, ~42 days post 
anthesis, DPA), breaker (BR, ~44 DPA), and Red (ripe red; ~48 
DPA), and separated to peel and flesh (n = 5–6 for each line and 
developing stage) (this figure is available in colour at JXB online).
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group III that includes 43 metabolites mostly AAAs, oligosac-
charides and phenylpropanoids. This suggested strong cross-
talk between the primary and the specialized metabolites.

Effect of AroG209-9 expression on the levels of 
non-volatile metabolites in peel tissue during fruit 
development

Table  1 presents a list of annotated metabolites that were 
detected by the GC-MS, LC-MS, and HPLC-PDA analyses 
and possessed significantly altered levels in the AroG209-9 line 
compared to the WT in one or more stages of fruit develop-
ment in peel. The major metabolic changes that were detected 
in the peel tissue at the ripe red stage included increased levels 

of primary metabolites associated with the shikimate pathway 
and AAA biosynthesis, including prephenic acid, shikimic 
acid, and the three AAAs. In addition, the levels of the three 
oligosaccharides cellobiose, raffinose, and trehalose as well 
as the nucleoside guanosine were increased in the AroG209-9 
compared to the WT. The levels of several phenylpropanoids 
were higher in ripe red fruits of the AroG209-9 line including 
3-caffeoylquinic acid, 4-caffeoylquinic acid, tricaffeoylquinic 
acid, coumaric acid, coumaric acid hexose I, naringenin chal-
cone hexose IV, and quercetin-hexose-deoxyhexose-pentose-
p-coumaric acid. However, in the ripe red stage, the levels of 
only four metabolites were reduced including the polyamine 
putrescine and the carotenoids phytoene, phytofluene, and 
a lycopene-like metabolite. To summarize, levels of various 

Table 1.   Metabolites accumulating in the peel of developing tomato fruits expressing AroG209-9

Metabolites Peel

Mature green Breaker Ripe red

Amino acids
  Phe (G) 1.01 ± 0.22 4.74 ± 0.69a 88.95 ± 8.88a

  Tyr (G) 1.61 ± 0.42 2.38 ± 0.30 171.95 ± 42.80a

  Trp (G) 0.64 ± 0.15 2.16 ± 0.27 4.12 ± 0.26a

  Asn (G) 0.41 ± 0.05a 0.52 ± 0.11 0.51 ± 0.07
  Gln (G) 0.02 ± 0.01a 0.02 ± 0.01 0.39 ± 0.05
  Gly (G) 0.50 ± 0.06a 1.30 ± 0.23 1.69 ± 0.25
  N-acetyl-Glu (G) 0.03 ± 0.00a 0.20 ± 0.10 0.39 ± 0.05
  Thr (G) 0.47 ± 0.05a 1.02 ± 0.22 1.08 ± 0.09
Organic acids
  Fumaric acid (G) 1.45 ± 0.13 1.81 ± 0.29 2.48 ± 0.32a

  Prephenic acid (G) 7.6 ± 1.2a 354.3 ± 119.9a 604.8 ± 97.9a

  Shikimic acid (G) 2.28 ± 0.44 2.52 ± 0.26a 17.43 ± 0.83a

Sugars
  Cellobiose (G) 0.93 ± 0.09 1.28 ± 0.10 7.99 ± 0.81a

  Fructose (G) 1.74 ± 0.10a 0.99 ± 0.07 1.05 ± 0.13
  Fructose-6-P (G) 0.48 ± 0.02a 0.83 ± 0.07 0.91 ± 0.13
  Mannose (G) 1.69 ± 0.13a 1.19 ± 0.17 1.17 ± 0.15
  Raffinose (G) 1.24 ± 0.25 2.00 ± 0.21 103.1 ± 17.2a

  Trehalose (G) 0.54 ± 0.09 0.67 ± 0.18 73.6 ± 6.1a

Polyamines
  Putrescine (G) 1.06 ± 0.07 0.58 ± 0.02 0.34 ± 0.03a

Nucleosides
  Guanosine (G) 0.82 ± 0.28 0.93 ± 0.20 1.90 ± 0.14a

  Phenylpropanoids
  3-Caffeoylquinic acid (G) 0.89 ± 0.18 1.30 ± 0.21 2.86 ± 0.24a

  4-Caffeoylquinic acid (G) 0.67 ± 0.11 0.98 ± 0.25 2.14 ± 0.09a

  Coumaric acid (G) 0.70 ± 0.10 2.66 ± 0.62 164.8 ± 18.4a

  Coumaric acid-hexose I (L) 0.80 ± 0.19 0.56 ± 0.12 15.28 ± 3.98a

  Naringenin chalcone-hexose IV (L) 0.83 ± 0.09 0.72 ± 0.10 5.22 ± 0.70a

  Quercetin (L) 0.39 ± 0.06a 0.69 ± 0.13 2.60 ± 0.89
  Quercetin-hexose-deoxyhexose-pentose-p-coumaric acid (L) 0.99 ± 0.11 1.09 ± 0.32 3.85 ± 0.30a

  Tricaffeoylquinic acid (L) 0.94 ± 0.16 0.69 ± 0.18 2.33 ± 0.18a

Carotenoids
  Phytoene (H) ND ND 0.21 ± 0.09a

  Phytofluene (H) ND ND 0.08 ± 0.05a

  Lycopene-like (H) ND ND 0.29 ± 0.19a

Tomato fruits from T3 generation were used. Metabolite levels are presented as fold-change (AroG209-9/WT) in each developing stage: mean ± SE. 
aP < 0.05 (false discovery rate) as analysed by two-way ANOVA and a Student t-test. G, GC-MS (n = 6); H, HPLC-PDA (n = 4); L, UPLC/qTOF-MS 
(n = 5); ND, not detected.
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known metabolites, particularly AAAs, organic acids, and 
phenylpropanoids, were increased in peel tissue during 
AroG209-9 fruit development.

Effect of AroG209-9 expression on the levels of 
non-volatile metabolites in flesh tissue during fruit 
development

Table 2 presents the metabolites whose levels were significantly 
altered in the AroG209-9 line compared with the WT in the flesh 
tissue. The major metabolic changes detected in the flesh tis-
sue of the ripe red stage AroG209-9 fruits included significantly 
increased levels of the primary metabolites prephenic acid, 
shikimic acid, Phe, and Tyr. In addition, the levels of three 
oligosaccharides—cellobiose, raffinose, and trehalose—were 
increased. In contrast, the levels of putrescine and three carote-
noid compounds—phytoene, phytofluene and lycopene-like—
were significantly decreased in the AroG209-9 fruits compared 
to the WT. Several flesh specific phenylpropanoids were 
increased in the ripe red stage, which includes coumaric acid, 
coumaric acid hexoside or derivative and kaempferol-glucose-
rhamnose. Naringenin chalcone, a common flavanone in 
tomato, was significantly increased only in the breaker stage. 
In summary, the levels of several primary metabolites, Phe, 
Tyr, two organic acids associated with the shikimate pathway 
as well as multiple phenylpropanoids were higher in the flesh 

tissue along AroG209-9 fruit development compared to WT 
(total 19 compounds). There was also a considerable similar-
ity in the metabolites whose levels were altered in both flesh 
and peel of the AroG209-9 fruit (total 14 compounds; Tables 1 
and 2).

Effect of AroG209 expression on aroma-associated 
volatile metabolites and aroma in ripe red fruit

In order to analyse the levels of volatiles in ripe red fruits of 
AroG209-9-expressing tomato plants, volatile metabolites were 
detected using GC-MS. The levels of the Phe-derived vola-
tiles (benzaldehyde, phenylacetaldehyde, 2-phenylethanol, 
and phenylacetic acid) were higher in the ripe red fruits of the 
AroG209-9 line compared to the WT (Fig. 4A), while the levels 
of eugenol (a catabolic product of p-coumaric acid) and three 
terpenoids (geranylacetone, β-ionone, and limonene) were 
lower in the ripe red fruits of the AroG209-9 line compared 
to the WT (Fig. 4B). Based on these results, ripe red fruits 
of the AroG209-9 line were subjected further to an organolep-
tic test to test the impact of the metabolic changes on fruit 
aroma characteristics. The choice of an organoleptic test was 
because chemical analysis of flavour compounds provides rel-
atively little insight into the actual flavour experience, while 
sensory attributes, preferences, and decisions can be statisti-
cally related to chemical components in foods (Martens et al., 

Table 2.    Metabolites accumulating in the flesh of developing tomato fruits expressing AroG209-9

Metabolites Flesh

Mature green Breaker Ripe red

Amino acids
  Phe (G) 0.88 ± 0.10 2.41 ± 0.26a 22.08 ± 3.22a

  Tyr (G) 0.87 ± 0.12 2.69 ± 0.38 15.27 ± 3.19a

  Asn (G) 0.60 ± 0.06 0.94 ± 0.12 0.49 ± 0.06a

  Ile (G) 1.03 ± 0.14 1.08 ± 0.12 1.97 ± 0.11a

Organic acids
  Prephenic acid (G) 3.4 ± 0.4a 276.3 ± 90.9a 235.9 ± 31.3a

  Shikimic acid (G) 1.13 ± 0.13 2.53 ± 0.55 62.93 ± 11.69a

Sugars
  Cellobiose (G) 0.96 ± 0.07 1.15 ± 0.05 22.0 ± 3.1a

  Maltose (G) 1.23 ± 0.11 0.95 ± 0.05 1.54 ± 0.08a

  Raffinose (G) 0.38 ± 0.09 2.79 ± 0.56 92.3 ± 15.4a

  Trehalose (G) 1.76 ± 0.33 0.91 ± 0.16 5.31 ± 0.88a

Polyamines
  Putrescine (G) 0.83 ± 0.06 0.79 ± 0.11 0.16 ± 0.01a

Phenylpropanoids
  Coumaric acid (G) 0.35 ± 0.05 2.62 ± 0.68 613.6 ± 54.2a

  Coumaric acid hexoside or derivative (L) 1.07 ± 0.18 1.84 ± 0.29 114.5 ± 15.27a

  Kaempferol-glucose-rhamnose (L) 1.09 ± 0.10 0.92 ± 0.04 108.6 ± 27.70a

  Naringenin chalcone (L) 0.51 ± 0.14 10.08 ± 2.91a 1.78 ± 0.42
  Quercetin (L) 0.23 ± 0.03a 0.72 ± 0.14 1.13 ± 0.19
Carotenoids
  Phytoene (H) ND ND >0.001a

  Phytofluene (H) ND ND >0.001a

  Lycopene-like (H) ND ND 0.55 ± 0.10a

Tomato fruits from T3 generation were used. Metabolite levels are presented as fold-change (AroG209-9/WT) in each developing stage: mean ± 
SE. aP < 0.05 (false discovery rate) as analysed by two-way ANOVA and a Student t-test. G, GC-MS (n = 6); H, HPLC-PDA (n = 4); L, UPLC/
qTOF-MS (n = 5); ND, not detected.
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1994). Correlation of physical measurements with sensory 
analysis also provides some meaning to instrumental data, as 
was shown with apple and tomato (Baldwin et al., 1998). The 
organoleptic test was performed by a dedicated panel of pro-
fessionals trained in the quantitative description of tomato 
attributes according to selection trials, based on their own 
designated protocol. Whole ripe red fruits from each line were 
cut into two slices and evaluated by the various panel mem-
bers through sniffing the samples (n = 3–4 biological repeats). 
Several professional attributes were considered, namely 
acidic, floral, fresh, green, metallic, musty, ripe, spicy, and 
sweet in addition to global aroma intensity. Taken together, 
the organoleptic panel suggested that the fruit of the AroG209-

9 line possessed more ‘floral’ aroma properties than the fruit 
of the WT tomato line (Fig. 5).

Discussion

Expression of a bacterial feedback-insensitive 
AroG enzyme leads to large metabolic changes in 
tomato fruit

Ripe red tomato fruits contain hundreds of  volatile and 
non-volatile specialized metabolites, particularly phenylpro-
panoids and carotenoids, which determine their flavour and 
nutritional qualities (Enfissi et al., 2010). Phenylpropanoids 
represent a major class of  specialized metabolites accumu-
lating in tomato fruit, which are produced via the shikimate 
and AAA biosynthesis pathways. The carotenoids and vari-
ous volatile compounds derived from them are synthesized 
by a different metabolic pathway that may compete with 
the shikimate pathway on the glycolysis-associated metabo-
lite phosphoenolpyruvate (PEP) (Negre-Zakharov et  al., 
2009). The current work found that AroG gene expression, 
specifically in the ripe red tomato fruits, triggers significant 
increases in the levels of  two primary metabolites of  the shi-
kimate pathway (shikimic acid and prephenic acid) and all 
three AAAs (Fig. 6). An analogous effect of  the bacterial 
AroG on the levels of  shikimate pathway metabolites had 
also been observed previously in Arabidopsis plants (Tzin 
et al., 2012). Taken together, these results thus indicate regu-
lation of  the entire shikimate pathway. An example illustrat-
ing the complexity of  the shikimate pathway was previously 
reported by Ding et  al. (2007) who functionally analysed 
the impact of  suppressed expression of  the tobacco shiki-
mate-pathway enzyme 3-dehydroquinate dehydratase/shiki-
mate dehydrogenase in transgenic plants. They found that 
suppressing the level of  this enzyme caused an unexpected 
increase, rather than decrease, in the level of  shikimate, a 
metabolite downstream to that produced by the 3-dehydro-
quinate dehydratase/shikimate dehydrogenase enzyme.

In addition to shikimate, tomato fruits expressing the 
AroG209-9 gene possessed altered levels of  other primary 
metabolites, namely sugars such as oligosaccharides (i.e. 

Fig. 4.  Internal pools of volatile compounds altered in ripe red 
tomato fruits expressing AroG209-9. Volatile levels increased (A) 
and decreased (B) in the AroG209-9-expressing line. Asterisks 
indicate statistically significant differences between the AroG209-9 
line and the wild type (WT), using Student’s t-test. Bars indicate 
standard errors (n = 4). Tomato fruits from T3 generation were used.

Fig. 5.  A sensory profile of red ripe tomatoes expressing the 
AroG209-9 gene. Each descriptor was scored on a 0 to 5 point 
scale. Tomato fruits from T3 generation were used.
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cellobiose, raffinose, and trehalose) and monosaccharides 
(i.e. fructose, fructose-6-phosphate, maltose, and man-
nose), nucleoside (guanosine) which degraded to d-ribose, 
which is one of  the pentose phosphate pathway inter-
mediates. Evidence from radiolabelling work in tomato 
fruit suggested that gluconeogenesis does occur during 
ripening stages, when sugars are accumulating rapidly 
(Farineau and Lavalmartin, 1977; Halinska and Frenkel, 
1991; Osorio et al., 2013). This may cause an increase in 
the oligosucchride levels in the AroG209-9 line. The levels of 
several amino acids, namely Phe, Tyr, Trp, Asn, Gln, Gly, 
Ile, N-acetyl-Glu, and Thr as well as the polyamine putres-
cine and the tricarboxylic acid cycle metabolite fumaric 
acid were also altered in the AroG209-9 line, compared to 
the control. These observations suggest the existence of  a 
metabolic cross-interaction of  the shikimate pathway with 

other pathways of  primary metabolism in tomato fruits. 
The existence of  a cross-regulation between different meta-
bolic pathways in ripe red tomato fruits has been previ-
ously reported to occur between carotenoids and sugars 
(i.e. sucrose, glucose, and fructose) (Fraser et  al., 2007); 
polyamines and amino acids (Mattoo et  al., 2010); tri-
carboxylic acid cycle metabolites malate, starch, and sug-
ars (Centeno et  al., 2011; Osorio et  al., 2013); as well as 
between fruit-surface cuticular lipids and the phenylpro-
panoids (Adato et al., 2009). The major metabolic changes 
occur in the ripe red stage and this is apparently due to 
use of  the E8 promoter, which is most active during the 
ripening stage (Good et al., 1994), with slight expression 
initiating at the mature green stage and increasing expres-
sion during ripening (Lincoln and Fischer, 1988; Deikman 
et al., 1998). This work thus suggests that the reduction in 

Fig. 6.  A metabolic pathway scheme summarizing the metabolic changes in ripe red tomato fruits expressing the AroG209-9 gene. 
Metabolites whose levels significantly increased or decreased in the transgenic fruits (peel and flesh), compared to the WT, are marked 
in red (fold-increased) or blue (fold-decreased). Circles mark the volatiles that were detected only in the ripe red developing stage. 
Broken arrows represent several consecutive enzymic steps.
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the levels of  substrates of  carotenoid biosynthesis result-
ing from AroG expression may be due to a metabolic shift 
channelling acetyl-CoA towards gluconeogenesis (for oli-
gosaccharides production) and PEP (for the shikimate 
pathway and phenylpropanoids).

Phenylpropanoids are a dominant class of specialized 
metabolites that are differentially produced in the peel 
and flesh of tomato fruits

Tomato is a model system for plants bearing fleshy fruits, 
whose metabolic status varies between different stages of 
fruit development and between different tissues (Carrari 
et al., 2006; Osorio et al., 2013). In mature red fruits, there 
were major metabolic changes in the peel and flesh of  the 
AroG209-9 line compared with the WT. The main changes 
occurring in these two tissues were in primary metabo-
lites, particularly AAAs, organic acids, oligosaccharides, 
and putrescine. However, major changes in the levels of 
diverse specialized metabolites, mostly phenylpropanoids, 
occurred in the peel. Naringenin chalcone-hexose, for 
instance, was detected only in the peel and highly accumu-
lated during the ripe red stage. Previous reports showed 
that the peel of  tomato fruits is enriched in a variety of 
phenylpropanoids metabolites compared to the flesh 
(Mintz-Oron et  al., 2008; Mounet et  al., 2009; Ballester 
et al., 2010). While the secondary metabolites present in 
the peel can protect against changing environmental con-
ditions and aid in deterring pathogens, they could also play 
a role in attracting seed-dispersing herbivores. Naringenin 
chalcone, accumulating in the fruit peel, could serve in the 
protection against UV radiation and in the attraction of 
herbivores by its intense pigmentation (Bovy et al., 2002; 
Whitney, 2005) and could also serve as a structural ele-
ment of  the cuticle (Mintz-Oron et al., 2008).

AroG209-9 expression expands tomato fruit aroma

Tomato fruits contain a complex mixture of volatile and non-
volatile compounds that contribute to the overall aroma and 
taste of the fruit. The volatile aroma compounds are essential 
for good tomato flavour (Baldwin et  al., 2000). These sec-
ondary metabolites are derived from a range of precursors, 
including carotenoids, lipids, and amino acids (Klee, 2010). 
Biosynthesis of volatile organic compounds depends on the 
availability of carbon, nitrogen, and sulphur as well as energy 
provided by primary metabolism (Dudareva et al., 2013). The 
current results exposed several metabolic links between vola-
tile and non-volatile compounds. For instance: reduction of 
the β-ionone and geranylacetone might be due to the reduc-
tion in the carotenoid levels detected (Simkin et al., 2004), and 
the increase in Phe-derived volatiles (benzaldehyde, phenylac-
etaldehyde, 2-phenylethanol, and phenylacetic acid) might be 
due to an increase in Phe (Figs. 4 and 6). The metabolite anal-
ysis were supported by the human olfactory analysis. Since 
tomato fruit flavour involves an integration of sugars, acids, 
and a set of 30 or more key volatile chemicals (Klee, 2010), it 
is tempting to speculate that the increased levels of volatiles 

in the fruits of the AroG209-9 line is responsible for the altered 
aroma characteristic. 2-Phenylethanol, which was higher in 
the AroG209-9 line, is known to provide a sweet and fruity per-
ception (Togari et al., 1995; Zanor et al., 2009) and may con-
tribute to the ‘floral’ aroma. The reduction in the levels of the 
polyamine putrescine, which known to provides unpleasant 
aroma, may contribute for the better floral aroma.

In conclusion, this study provides new information on the 
regulation of the channelling of primary metabolism to spe-
cialized metabolism as well as the cross-interaction of the 
shikimate pathway with other metabolic pathways in tomato 
fruit. This research opens a new avenue to improve tomato 
fruit flavour without negatively influencing fruit shelf life, an 
issue that has so far been difficult to solve by classical breeding.
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