
Skeletal Muscle Fascicle Arrangements Can Be
Reconstructed Using a Laplacian Vector Field Simulation
Hon Fai Choi1, Silvia S. Blemker1,2*

1 Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States of America, 2 Department of Biomedical Engineering,

University of Virginia, Charlottesville, Virginia, United States of America

Abstract

Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction
are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin
and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational
models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite
element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is
currently still challenging. This motivated the development of methods in previous studies to generate numerical
representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the
hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical
characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical
reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the
attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this
approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed
evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall
agreement with measurements from the literature. The utility and capability of the proposed method was further
demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment
morphologies.
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Introduction

Skeletal muscles have a wide range in anatomical architectures

that reflects their diversity in functions [1,2]. Because of their

complex organization, skeletal muscle shapes often display

heterogeneous curvatures, while the tendon and bone attachment

areas have varying morphologies, ranging from broad surfaces to

narrow central insertions. Inside each muscle, contraction and

mechanical force are generated by muscle fibers, which are

elongated contractile cells embedded in a matrix of connective

tissue. Although the fiber cells typically do not have the length to

span the entire muscle, they are grouped in parallel bundles called

fascicles, which run between the proximal and distal sites where

the muscle attaches to tendon structures or to bones. Hence, the

muscle shape and morphology of the attachments are important

determinants of the intramuscular arrangement of the fascicles.

Because the mechanical action of a skeletal muscle is

transmitted along the fascicle tracts, it is important to obtain an

adequate quantification of their trajectories when constructing

computational models of muscle mechanics. Skeletal muscles are

often modeled using a lumped-parameter approach that assumes a

simplified arrangement of fascicles and tendons, e.g. [3,4].

However, these simplified representations are not capable of

capturing the three-dimensional (3D) deformations of muscles

which have complex fascicle arrangements. For this purpose,

volumetric modeling based on continuum mechanics [5] is better

suited, in combination with the finite-element (FE) method to solve

the numerical equations [6].

Finite-element modeling of skeletal muscle is challenged by the

diversity of fascicle arrangements across all skeletal muscles. In

order to accurately capture the mechanics of the muscle, the

models’ representations of the shape and fascicle arrangement

must be anatomically realistic. However, fascicle trajectories are

difficult to measure experimentally. Measurements based on

dissection of cadaver specimens, e.g. [7–9], are mostly limited to

a few sparse locations in the muscle while only a few studies have

conducted a detailed dissection, e.g. [10,11]. Ultrasound imaging

is now frequently used for in vivo measurements because of its fast

acquisition time and accessibility, e.g. [12,13]. Despite these

advantages, current techniques are predominantly limited to the

visualization of the projected pennation angle in the two-

dimensional (2D) image plane (B-mode imaging), which cannot

image the whole muscle and is sensitive to the probe orientation

[14,15]. Diffusion tensor magnetic resonance imaging (DT-MRI)

is currently the only three-dimensional technique that is capable of

visualizing fascicle trajectories within any muscle in the body, e.g.
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[16–19]. However, the tracing algorithms that are used to

reconstruct the trajectories are not always robust because of the

noise in the acquired imaging data. Hence, tuning of constraint

parameters or post-processing based on additional exclusion

conditions is often necessary to remove tracts that are considered

to be erroneous, e.g. [16,18].

In order to circumvent the paucity of direct measurements of in

vivo fascicle trajectories, FE muscle models use a variety of

approaches to represent arrangements of fascicles. Blemker and

Delp [20] developed a method in which fascicle orientations are

numerically constructed based on fascicle map templates on a unit

cube FE mesh that is warped to fit the muscle geometry as

reconstructed from MRI data. The templates are created by

defining control points according to the morphology of the tendon

attachments, while a 3D spline interpolation gives the distribution

of fascicle orientations. This approach has been shown to be useful

for a range of muscle types but requires construction of multiple

templates depending on tendon morphology, e.g. [20,21]. Other

studies have also proposed spline-based methods, but using

reported measurements of superficial fibers as input for the

interpolation [22–24], while demonstration of feasibility was often

limited to a specific muscle. These previously proposed methods

contain procedures to tailor templates or interpolation parameters

for specific muscles, which can become impractical in concrete

applications and makes it difficult to reproduce the computational

model.

Although interpolation methods offer a pragmatic solution to

obtain computational representations of fascicle arrangements,

they do not explicitly take into account common architectural

patterns as observed in many skeletal muscles. Incorporating these

typical characteristics by a mathematical description could offer a

theoretical alternative that can cover a wide variety of muscle types

and which can also be fine-tuned by matching with experimental

observations for a specific muscle. Therefore, we propose an

alternative physics based approach to construct distributions of

fascicle orientations in skeletal muscles. The method is based on

the observation that fascicle trajectories have the following

properties: (i) they are co-axially aligned and hence do not cross

each other, (ii) they do not branch, (iii) they will not reverse their

directions abruptly, and (iv) they must connect between the tendon

or bone attachments to convey mechanical action, which means

that they only originate or terminate in areas of origin (proximal)

and insertion (distal). Based on these observations, we hypothesize

that fascicle arrangements in skeletal muscles can be mathemat-

ically represented by a rotation and divergence free Laplacian

vector field. To address this hypothesis, we: 1) developed a

numerical framework to calculate fascicle trajectories based on the

Laplace equation, 2) evaluated the resulting fascicle trajectories in

a human tibialis anterior muscle through comparison with in vivo

DT-MRI data as reported in the literature, and 3) demonstrated

the general capability of the method in a number of examples of

upper- and lower-limb muscles with a diverse range of shapes and

attachment morphologies.

Materials and Methods

Theoretical foundation
The rotation free condition implies that the vector field

representing the fascicle orientations is conservative and as such

can be described as the gradient of a potential field w. To meet the

divergence free condition, w must be a solution of the Laplace

equation:

Dw~0: ð1Þ

Solutions of the Laplace equation are determined by the muscle

geometry and the boundary conditions that are imposed. In case

of standard Dirichlet and Neumann boundary conditions, it can

be shown that the solution is unique [25]. In Neumann conditions,

the potential gradient normal to the boundary surface or flux,

Lw=Ln, is imposed while this is the potential itself in Dirichlet

conditions. The boundary conditions imposed to calculate the

Laplacian vector field were defined as follows (Figure 1). Since

fascicle tracts can only originate and terminate at the origin and

insertion attachments, the potential gradient at the boundary

surface of the muscle belly, Lw=Lnð Þm, must be zero. At the

attachment surfaces with areas Ai, we hypothesize that a uniform

flux as boundary condition will result in realistic muscle fascicle

trajectories. Hereto, an inflow flux is defined at one tendon

attachment area, which is balanced by an outflow flux at the other

such that the mass equation is respected:

Lw

Ln

� �
in

Ain~
Lw

Ln

� �
out

Aout: ð2Þ

Since only the orientations of the vectors are relevant, the

magnitude of the boundary flux can be arbitrarily chosen. Because

the Laplace equation is linear, the solution will only be scaled by

the flux magnitude while reversing the boundary fluxes will only

change the direction but not the orientation of the vectors. This is

analogous to a steady potential flow in fluid dynamics, where the

potential and potential gradient represent the pressure and flow

velocity respectively.

Numerical workflow
Mesh construction. Three-dimensional muscle surface ge-

ometries were reconstructed by segmentation of static MR images

as described in [20]. The VTK (v5.6.0) library (www.vtk.org) was

used to extract the muscle surfaces as triangulated polygon meshes

in the STL format. For each muscle, the attachment areas were

identified and extracted as separate surfaces. Some minor regional

smoothing was also performed in the Meshlab (v1.3.1) software

(meshlab.sourceforge.net) to reduce artificial edges due to the

slicing in the MR images. The polygon surfaces describing the

muscle and attachment areas were used as input to construct

Figure 1. Overview illustrating the boundary conditions. The
Neumann boundary conditions imposed on the different regions of the
muscle surface to solve the Laplace equation (1) are shown. The full
lines represent the surface of the muscle belly, while the tendon
attachment regions are indicated by dashed lines. The potential
gradients normal to the surface are denoted by Lw=Lnð Þi , while Ai

indicates the area of the tendon attachment surfaces.
doi:10.1371/journal.pone.0077576.g001
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tetrahedral volume meshes using the Gmsh (v2.6.0) software [26]

with the following procedures. The STL surface triangulations

were compounded and remeshed using an algorithm based on

harmonic maps [27–29]. The muscle volume was subsequently

filled with linear tetrahedral elements using the MMG3D

anisotropic meshing algorithm [30]. A non-uniform element size

was defined such that elements were about a factor 2 to 3 smaller

at the attachment areas to reduce numerical noise in the fascicle

tracing as described below. The magnitude of the element size was

chosen such that the volume mesh contained roughly 300.000

linear elements.

Calculation Laplacian field. The Laplace equation (1) was

solved by means of the finite-volume (FV) method. In this method,

a solution is found for the potential field through iterative

approximations of flux values across the mesh element faces,

which must be balanced by the Laplacian of the potential w in the

elements [31]. The finite-volume calculations were performed

using the benchmarked OpenFOAM (v2.1.0) software (www.

openfoam.org) which was combined with the pythonFlu (v2.1.0)

wrapper software (pythonflu.wikidot.com) to allow for interactive

scripting of the OpenFOAM algorithms in Python. The muscle

meshes created in Gmsh were converted into native OpenFOAM

mesh files which were combined with the default input files of the

potentialFoam solver. The Neumann boundary conditions were

imposed on the boundary faces of the muscle mesh. Since only the

potential gradient was defined in the boundary conditions, the

potential was set to an arbitrary value in a randomly chosen mesh

element for numerical consistency. In the potentialFoam solver,

the linear system of the discretized Laplace equation was solved by

means of a preconditioned conjugate gradient (PCG) method

combined with a symmetric diagonal incomplete Cholesky (DIC)

preconditioner. The relative tolerance of the PCG algorithm was

set to 1e-8, while the algorithm was iterated to correct for the non-

orthogonality of the flux approximations until the two-norm of the

residual vector dropped below 1e-8. The potential gradient

representing the fascicle orientation vectors are calculated from

the flux and potential field solutions in a post-processing step in the

potentialFoam solver. The computation time on a standard

desktop computer was estimated to be 500 seconds on average

for the meshes considered.

Fascicle tracing. Muscle fascicle tracts were traced in the

flux field by applying a streamline tracing method for divergence

free flow fields as described by Klausen et al. [32]. In this

approach, barycentric coordinates are used for an element-wise

tracing which is controlled by the given flux values at the faces of

each element. Because a divergence free flow field is incompress-

ible, the sum of the fluxes f is zero in each element and it can be

shown that in linear tetrahedral elements, the constant velocity

vector (or potential gradient representing the fascicle orientation

vector) v can be uniquely expressed in barycentric coordinates as:

v̂~{f=(nV ), ð3Þ

with n the number of dimensions and V the element volume. The

element intersection time ti for each barycentric coordinate xi is

given by:

ti~{xi=v̂vi: ð4Þ

The time of flight tf to traverse the element is given by the

minimum non-negative intersection time. Hence, if the bary-

centric coordinates of the entry point is given by x0, the exit point

is calculated as:

xe~x0ztf v̂: ð5Þ

In this way, the path followed by the fascicle trajectory in each

element can be determined from the time of flight tf . A more

detailed description can be found in [32]. Because the tracing is

performed element by element and is consistent with the given flux

values, this method is very robust such that invalid terminations

inside the muscle volume or at the muscle surface are avoided.

However, the resulting fascicle tracts are locally non-smooth

because of the linear discretization. Hence, the fascicle tracts were

subsampled and a piecewise parametric spline smoothing was

applied which was followed by a resampling to obtain 100

equidistant points for each fascicle tract.

The algorithms were implemented in Python (v2.7) (www.

python.org) using the NumPy (v1.6.1) and SciPy (v0.9.0) numerical

libraries (www.numpy.org). The correctness of implementations

was verified by solving the Laplace equation in a parallelepipedon

with boundary conditions as described above. Three-dimensional

visualization was performed in MayaVi (v4.2.0) (Enthought Inc.,

Austin), while two-dimensional examples were visualized in

Matplotlib (v1.1.0) (www.matplotlib.org).

Case studies
First, the concept of the proposed method was demonstrated in

synthetic 2D geometries which were constructed to represent a

wide variety of typical skeletal muscle architectures. Second,

anatomical 3D geometries were considered for examples of human

muscles with a diverse range in architecture: tibialis anterior,

Iliacus, gluteus maximus, adductor magnus, rectus femoris, vastus

lateralis and deltoid. For the tibialis anterior example, fascicle

lengths and pennation angles were compared with reported values

in the literature. Hereto, fascicle length was calculated as the sum

of Euclidean distances between fascicle tract points, while the

procedure as described by Heemskerk et al. [18] was used to

calculate a pennation angle on the surface of the distal tendon

attachment. In this approach, the angle between the tangent plane

in the seed points and vectors formed by the seed point and five

consecutive tract points (which constitutes 5% of the fascicle

length) was calculated. These five angles were subsequently

averaged to obtain a measure of the pennation angle. The tangent

plane in each seed point was determined by the average normal

vector of the mesh face containing the seed point and its

neighboring faces.

Results

The calculated fascicle trajectories in the synthetic 2D examples

(Figure 2) are representative of the diversity in complexity and

asymmetry that can be expected in skeletal muscle architectures.

The morphologies of the origin and insertion attachments of a

same muscle are often very different, posing a substantial challenge

to construct a fascicle arrangement that has a natural distribution

but still follows the shape of the muscle. Therefore, the 2D

examples were constructed to test the proposed method under

these challenging conditions. The results show that the generated

fascicle trajectories have a plausible distribution even for these

non-trivial geometries (Figure 2). Moreover, the method also

allowed for generation of fascicle trajectories in muscles with a

radial fascicle arrangement as for example in the pectoral

diaphragm (Figure 2e).

Skeletal Muscle Fascicles Based on Laplacian Field

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e77576



The fascicle trajectories determined for the tibialis anterior

muscle (Figure 3) display a good overall agreement with the

measurements reported in the DT-MRI study by Heemskerk et al.

[17]. They have found average pennation angles ranging between

6 and 220 with higher values in the superficial than in the deep

compartment and with a general trend to increase in the distal-to-

proximal direction. Their reported average fascicle lengths ranged

between 50 and 160 mm and were greater in the deep than in the

superficial compartment, increasing in the proximal-to-distal

direction and decreasing in the anterior-to-posterior direction. A

similar range in pennation angle was obtained in this study

(Figure 3), with also higher values in the superficial than in the

deep compartment although this difference is less pronounced

than reported in [17]. However, at the distal end, higher

pennation angles were obtained in the deep compartment. The

fascicle lengths obtained in this study showed similar variations on

the insertion tendon surfaces as reported in [17], although the

range in values was larger while fascicle lengths were greater in the

superficial than in the deep compartment.

The 3D results (Figure 4) demonstrate the potential of the

proposed method to generate fascicle trajectories for a variety of

skeletal muscles, despite the high level of architectural complex-

ities, confirming the test results from the 2D examples. These

anatomical examples encompass the following complexities: broad

shape and attachments (iliacus and gluteus maximus), fanned

shape (adductor magnus), fusiform with a long narrow tendon and

broad attachment (rectus femoris) and wrapped shape (deltoid and

vastus lateralis). Typical surface fascicle patterns as described in

anatomical reference works, e.g. [1,2], were obtained for each of

the muscles: curved in the iliacus and in the gluteus maximus,

fanned in the adductor magnus, bipennate in the rectus femoris,

fanned and curved in the deltoid and oblique in the vastus

lateralis.

Discussion

The goal of this study was to develop and evaluate a

computational methodology to generate representations of fascicle

arrangements in skeletal muscle models that reflect observed

physical characteristics of fascicle trajectories. To achieve this goal,

a numerical approach based on the Laplace equation with

standard Neumann boundary conditions was proposed and tested

with a range of 2D and 3D examples illustrating a wide variety of

muscle shapes and fascicle arrangements. The results support the

idea that fascicle trajectories generally follow a Laplacian field and

that the proposed method can provide a useful general method for

defining fascicle trajectories for a wide range of skeletal muscles.

The concept of the proposed method was demonstrated in 2D

examples with synthetic geometries that contain asymmetries

between origin and insertion attachment shapes often found in

skeletal muscles (Figure 2).

A further evaluation was performed using a 3D anatomical

surface reconstruction of the in vivo human tibialis anterior muscle

as test case. To allow for a volumetric comparison, we compared

calculated values with DT-MRI measurements, which are three-

dimensional and give a detailed distribution of values in the in vivo

muscle volume, contrary to the average or sparse measurements as

usually obtained in dissection and ultrasound studies. The

comparison of the results in the human tibialis anterior example

with experimental data from [17] showed that the proposed

method generates physiologically realistic fascicle trajectories (see

Figure 3) that were generally similar to DT-MRI results. While

overall our tibialis anterior results were similar to those reported

by Heemskerk et al. [17], a few subtle differences did exist, which

could be due to a number of factors. First, the DT-MRI tracking

algorithm used by Heemskerk et al. [17] was unable to produce

correct traces in the outermost distal region, which was therefore

not considered in their analysis; whereas our approach recon-

structed fascicle trajectories in the entire muscle volume. Second,

the calculation of the pennation angle is sensitive to the normal

vector on the tendon surface and positions of the sampled trace

points, which are quantified differently in our tibialis anterior

model. Third, variations in anatomy between the data sets could

contribute to differences in muscle lengths and fascicle lengths.

Fourth, user defined length and curvature based stop criteria were

used in the DT-MRI fiber tracking in [17], whereas all fascicles

traverse the entire muscle volume from origin to insertion in our

method.

Our proposed method was further investigated in other

anatomical examples of human muscles with a large variety of

complex muscle shapes and attachment morphologies to demon-

strate its utility and robustness. Unfortunately, there is a paucity of

experimental measurements of volumetric in vivo 3D fascicle

trajectories in the literature, as the majority of DT-MRI studies of

skeletal muscles focus on the analysis of imaging parameters such

as fractional anisotropy or diffusion coefficient, while tractography

results were mostly shown for visual appreciation only, e.g.

[16,33]. Our results rendered plausible fascicle trajectories in all

muscle examples that were considered, which demonstrates

promise of the broad applicability of the technique.

The results of our study demonstrate that in the case of the

tibialis anterior muscle, the proposed Laplacian approach can

generate a fascicle arrangement that agree well with physiological

observations based on DT-MRI measurements, despite the

challenging morphology of the attachments in this muscle. The

study by Heemskerk et al. [17] shows that the trends in observed

spatial characteristics can be reproducibly detected. Given that the

main characteristics of the shape and attachment structures

Figure 2. 2D examples of calculated fascicle trajectories. These
results obtained in 2D synthetic muscle geometries demonstrate the
feasibility for complex shapes that are representative for anatomical
muscle architectures: a simple pennate structure (a), long and narrow
attachment as in the rectus femoris muscle (b), asymmetric broad
attachments as in the biceps femoris muscle (c), a deltoid-like
architecture (d) and a representation of the pectoral diaphragm (e).
doi:10.1371/journal.pone.0077576.g002
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(proximally broad, distally narrow central tendon) in the tibialis

anterior are similar between individuals, it can be expected that

the Laplacian field representation will give similar agreements in

models of other subjects. For purpose of a subject-specific

biomechanical analysis for which models would be created from

in-vivo MRI data, DT-MRI measurements of fascicle orientations

is the most complementary source that gives volumetric data

without the need of invasive manipulation which can influence the

measurements. This allowed for a thorough comparison of the

spatial distributions of fascicle properties in our model of the

tibialis anterior muscle. The results for the other examples that we

have considered were not verified in as much detail, but illustrates

that a Laplacian based approach can offer a common theoretical

basis to capture the general characteristics of fascicle arrangements

in other muscles, especially when experimental data is not

available. Further validation would be required to confirm these

initial results, which can be obtained through comparison with

detailed in vivo DT-MRI measurements that quantify volumetric

fascicle orientations, lengths and pennation angles in a diversity of

skeletal muscles. In addition, detailed dissection studies in

cadaveric specimens such as [11] can also be used for this purpose

to verify the agreement between both data sources.

Solving the differential Laplace equation (1) to generate fascicle

orientations requires a definition of the boundary conditions at the

attachment areas (as illustrated in Figure 1). In this study, it was

assumed that a uniform flux as boundary condition at the

attachment areas was a suitable choice. This approach allowed for

a simple matching of the inflow and outflow fluxes as described by

equation (2), which can be easily imposed in standard solvers such

as OpenFOAM. Alternatively, non-uniform flux distributions can

be used as boundary conditions at the attachment areas to match

measurement data of pennation angle or fascicle lengths. This

requires a parametrical description of the flux distributions of

which the parameters can be determined through an iterative

optimization routine based on a best-fit criterion. Implementation

would be achieved by an optimization approach in which the

Laplace equation (1) is solved repeatedly in the iteration steps. The

use of the Laplace equation has been recently considered in a

similar application context. Levin et al. [34] designed an algorithm

to denoise DT-MRI data based on a Helmholtz-Hodge decom-

position of the muscle fiber vector field which also imposes the

divergence and rotation free constraints, resulting in the Laplace

equation as a penalty function. However, the behavior of the fiber

vectors at the attachment areas were not defined by boundary

conditions but by adding a non-zero divergence term in the vector

field decomposition. They have visually demonstrated good results

based on a DT-MRI data set of the forearm, which supports the

concept of using the Laplace equation as a basis to generate

representations of fascicle arrangements in skeletal muscles.

The Laplace based approach described in this study has several

unique advantages. A computational representation of fascicle

arrangements can be constructed when direct measurements are

Figure 3. Results for the 3D anatomical example of the human tibialis anterior muscle. The muscle in this example is located in the lower
left leg, anterior to the tibia and fibula. On the left, a sampling of the generated fascicle tracts is shown in an anterior view of the muscle. The origin
(proximal) and insertion (distal) attachments are indicated in green and blue respectively. The insertion tendon (blue) divides the muscle in a deep
and superficial compartment, of which the fascicle tracts are shown in red and yellow color tones respectively. The color tones are only used for
purpose of enhancing the visual contrast. The fascicle tracts are shown in an anterolateral view for the two compartments separately in the middle
column. On the right, the distributions of the calculated pennation angles and fascicle tract lengths are shown on the opposing sides of the insertion
tendon surface in a similar fashion as in [17]. The upper and lower rows show the results for the superficial and deep compartments respectively. The
anatomical orientations (ant = anterior, post = posterior, dist = distal, prox = proximal) are indicated for the superficial surface in the upper row and are
the same for the deep surface.
doi:10.1371/journal.pone.0077576.g003
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absent or unfeasible, but can be adapted through optimization to

match with volumetric or sparse measurement data. The same

approach can be applied to muscles with different architectures, as

illustrated in Figure 4. Moreover, it is capable of generating

fascicle trajectories for multiple tendon attachment sites as

demonstrated in the adductor magnus and deltoid examples (see

Figure 4). Hence, the need to modify templates or interpolation

functions for specific muscles as in other methods [20,22–24] is

avoided, which incites computational reproducibility. It should be

noted that few muscles such as the pectoralis major are

characterized by twisting fascicles [28], which are most likely

unfeasible to reproduce based on the Laplace equation because of

the rotation free condition. However, we believe that the fascicle

arrangements in the majority of skeletal muscles will follow the

Laplacian conditions.

In conclusion, we have presented and evaluated an alternative

approach to computationally model fascicle trajectories in skeletal

muscles as divergence and rotation free Laplacian vector fields.

Application in an example of the human tibialis anterior muscle

showed an overall agreement with in-vivo DT-MRI measure-

ments. In addition, feasibility and robustness of the method was

demonstrated in examples of several skeletal muscles with a diverse

range in anatomical architectures. The proposed approach offers

the possibility to model fascicle arrangements in skeletal muscles

with complex geometries and multiple attachment sites based on

the differential Laplace equation. Further refinement and optimi-

zation of boundary conditions need to be investigated, as well as

the feasibility for muscles with complex attachment morphologies

such as the soleus muscle [24]. Future studies that extend the

conceptual ideas presented in this paper can make use of the

shared code and models that we have posted on ‘‘simtk’’ (https://

simtk.org/home/musclefib).
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