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Understanding the role of rhythmic dynamics in normal and diseased brain function is an important

area of research in neural electrophysiology. Identifying and tracking changes in rhythms

associated with spike trains present an additional challenge, because standard approaches for

continuous-valued neural recordings—such as local field potential, magnetoencephalography, and

electroencephalography data—require assumptions that do not typically hold for point process data.

Additionally, subtle changes in the history dependent structure of a spike train have been shown to

lead to robust changes in rhythmic firing patterns. Here, we propose a point process modeling

framework to characterize the rhythmic spiking dynamics in spike trains, test for statistically

significant changes to those dynamics, and track the temporal evolution of such changes. We first

construct a two-state point process model incorporating spiking history and develop a likelihood ratio

test to detect changes in the firing structure. We then apply adaptive state-space filters and smoothers

to track these changes through time. We illustrate our approach with a simulation study as well as

with experimental data recorded in the subthalamic nucleus of Parkinson’s patients performing an

arm movement task. Our analyses show that during the arm movement task, neurons underwent a

complex pattern of modulation of spiking intensity characterized initially by a release of inhibitory

control at 20-40 ms after a spike, followed by a decrease in excitatory influence at 40-60 ms after a

spike. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818546]

Brain rhythms associated with neurological disease have

been attracting attention from both neuroscientists and

statisticians. Many methods have been proposed and

used to study rhythmic dynamics in continuous-valued

recordings, but models suitable for the discrete electrical

impulse data that are typically recorded from individual

neurons are still under active development to address

additional challenges. In this paper, we propose a statisti-

cal modeling approach that describes neural rhythms by

predicting the probability of an electrical impulse at any

instant, given the recent past history of impulses. We

allow these models to adapt in time in order to track

changes in rhythmic spiking dynamics. We apply these

methods to data examples obtained from deep brain

structures in Parkinson’s patients, which helps us under-

stand rhythmic dynamics associated with movement

planning and execution in the disease state.

I. INTRODUCTION

Over recent years, a great appreciation of brain rhythms

has emerged in the field of neurological disease. Gradual

shifts in lower frequency activity in alpha (7–12 Hz) and

beta (12–30 Hz) band oscillations are a well-known hallmark

of Alzheimer’s disease.1–6 Low frequency oscillations

(3–10 Hz) may contribute to Parkinsonian tremor, whereas

enhanced beta band oscillations in the basal ganglia and cor-

tex correlate to bradykinesia and rigidity in Parkinson’s dis-

ease (PD)7,8 and may result from amplification of normal

striatal network dynamics.9 Patients with schizophrenia have

shown a reduced amplitude of gamma (30–200 Hz) and theta

(4–7 Hz) oscillations in frontal regions.10–14

To study such rhythmic dynamics in patients with vari-

ous neurological diseases, a number of statistical data analy-

sis techniques are common, many of which focus on spectral

estimation methods, such as the periodogram or multi-taper

estimation, or on autoregressive modeling. However, this

wide array of signal processing tools is most appropriately

applied to continuous-valued recordings of electrophysiolog-

ical activities, such as magnetoencephalography (MEG),

scalp electroencephalography (EEG), surface electromyogra-

phy (EMG), and local field potentials (LFP),7,8,15–18 rather

than spike trains, which take on discrete values in time.

Similarly, deterministic computational modeling methods

for neural electrophysiological rhythms are often formulated

in terms of differential equations or difference equations,

which are more appropriate for continuous-valued signals.

Many standard analysis methods available for neural spike

train data assume that the firing structure is static in time,

limiting their ability to identify and track dynamic transi-

tions. Hence, there is a considerable need for dynamic statis-

tical methods explicitly designed to analyze neural spike

train data.19,20

The analysis of the dynamic properties of spike data

presents a number of critical statistical challenges. First,

as opposed to continuous-valued measurements, statistical
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estimation and inference procedures for neural spike train

data are most appropriately developed based on the theory of

point processes. Inferences based on standard methods

developed for continuous valued signals can lead to a reduc-

tion in the statistical power available in the data or to inap-

propriate or incorrect conclusions about associations in the

data. For example, spectral analysis methods applied to point

process data present particular issues not present for continu-

ous valued signals. An idealized spike contains power at all

frequencies,21 making it difficult to interpret the structure of

stochastic spiking properties from spectral estimates in a nar-

row frequency band. Often, analyses of spike train data using

spectral methods assume that the data arise from a Poisson

process, restricting the types of dynamics that can be cap-

tured, and often resulting in smaller than expected power in

the low frequencies.22,23 Such spectral distortion makes it

difficult to identify rhythms in the low frequencies.24

Additionally, neural spike train data exhibits a wide variety

of history dependent behaviors, such as refractoriness, burst-

ing, and intrinsic rhythms. It has been shown that the auto-

correlation function (ACF) of the high-frequency discharge

in globus pallidus cells contains many small peaks that do

not necessarily reflect bursting activity, and could be inap-

propriately interpreted as rhythmic spiking.25 However, the

majority of the continuous-valued data analysis methods,

such as tests based on spectral estimators, is performed under

an assumption of stationarity. Such assumptions are rarely

true of history-dependent point processes. The violation of

stationarity by history-dependent neural spike train data can

lead to false detections of changes in the rhythmic dynamics

or reduced power in classic testing methods.

Second, the probability of a neuron firing a spike in any

time interval is often influenced by many factors occurring

simultaneously. These can include influences from external

biological or behavioral signals, from the neuron’s past ac-

tivity, or from the activity of other interacting neurons.

Many data analysis techniques for spike train data, which

focus on the influence of a single factor without regard for

others, can lead to incorrect inferences. For example, the co-

herence between a spike train and an LFP is influenced by

the average firing intensity.26 An increase in neural firing

rate can also have the effect of increasing the maximum os-

cillatory frequency that can be transmitted by a neural spike

train, as observed in LFP recordings from the subthalamic

nucleus (STN) of Parkinson’s patients.8 Therefore, spike

trains in STN can form robust rhythms by modulating their

firing intensity by small amounts. This makes detecting and

tracking neural dynamics difficult.

To address these issues, we propose a state-space point

process approach for identifying and tracking changes in

rhythmic neural dynamics in spike train data. The approach

uses history dependent point process models, as rhythmic

spiking dynamics are closely related to the history-

dependent firing activity. In terms of the statistical point pro-

cess model, rhythmic neural activity related to physiological

oscillations is reflected as a structured history dependence

between past and current spiking. This is true for continuous

valued signals, such as LFPs, where spectral characteristics

are reflected in the autocovariance of past and current signal

values. Whereas the autocovariance function accounts for

history dependence in the signal at a single temporal lag, a

statistical model might account for such dependence across

multiply lags. Similarly, the point process model that we de-

velop here characterizes the rhythmic spiking activity in

terms of history dependence across a range of temporal lags.

Here, we fit rhythmic spiking in Parkinsonian STN neurons

to a point process model that captures the modulation of the

firing probability as a function of previous spiking across

multiple lags. We uncover a consistent dynamic pattern of

modulation that characterizes the structure of and suggests

potential mechanisms for beta frequency oscillations in the

spiking data.

The proposed approach is as follows: First, we construct

a point process model with two sets of parameters defining

the influence of past history in two distinct physiological

states. We estimate these parameters as well as the state tran-

sition times that maximize the likelihood of the observed

data. We then develop a maximum likelihood ratio test to

determine whether such a model provides a significant

improvement over one that has only a single set of history

parameters and no dynamical transitions. Then, if there

exists a statistically significant difference between the two

models, we apply a point process filtering and smoothing

algorithm to track the temporal dynamics of the transition

through time. This two-step approach is illustrated with

simulated data and with real spike train data recorded in the

STN of Parkinson’s patients performing a hand movement

task.

II. METHODS

Experimental data were obtained from single neurons in

the STN of patients undergoing surgery for the treatment of

PD. Details of the patient selection, basic recording protocols

and behavioral paradigm, and previous analyses of this ex-

perimental data are discussed in Ref. 27 The patients viewed

a computer monitor and used a contralaterally mounted joy-

stick to perform a hand movement task. At the beginning of

each trial, a small fixation point appeared in the center of the

monitor. After a 200 ms delay, four small grey targets

appeared circularly around the fixation point. After another

300 ms delay, a randomly selected target turned green and a

small cursor appeared in the center of the monitor. The

patient then used the joystick to guide the cursor from the

center of the monitor toward the green target. The patient

typically reached the target within 1 s of the green cue.

Between trials, there was an interval of 1 s and the patients

were required to return the joystick to the center position.

Patients typically performed 12–24 correct trials in each

direction at a given site and 1–4 sites were recorded simulta-

neously. The initial recording run lasted about 3–5 min for

each trial, but in this study, we only used recordings of 1.6 s

before and after the start of hand movement, which was

determined by an initial 1 degree deflection of the joystick

(from a possible range of 18�). Spikes were sorted using a

template-matching algorithm refined by principal component

analysis and cluster cutting. Seventy percent of cells either

had clear single units or represented multiunit recordings
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that were dominated by a single cell. The remaining 30%

represented multiunit recordings that could not be refined

further. Because we expected to see history dependent struc-

tures reflected in both single unit and multiunit recordings,

we included both of the groups in our analyses.

While this movement task included trials in four differ-

ent directions, our interest here is in the transitions between

dynamic rhythmic states, which we posit to be similar for all

trials. We therefore pooled all of the trials across all direc-

tions, and examined the firing properties of each neuron rela-

tive to movement initiation.

For each neuron, we constructed raster plots, peri-

stimulus time histograms (PSTH), autocorrelation function

plots, and spectrograms (periodogram estimators over

100 ms sliding windows) for all trials. We proceeded to

examine 22 neurons that exhibited some degree of rhythmic

spiking dynamics based on preliminary results from these

standard feature detection methods.

A. Detecting changes in history-dependent firing
patterns

In this section, we introduce the statistical methods to

assess whether there has been a significant change in rhyth-

mic spiking dynamics. First, we formulated a point process

model with history dependent firing properties, under the

assumption that a sudden change in dynamic states occurs at

some unknown point in time during the observed spike train

time series, and then transitions back to the original dynamic

state back at some later time point. We call this a two-state

point process model. We used maximum likelihood methods

to estimate model parameters related to a background firing

rate, to the history dependent firing properties, and to the

time points of the transitions. We then performed a maxi-

mum likelihood ratio test to determine whether there was a

significant difference between this two-state model and a sin-

gle state model that assumes no change occurs in the neu-

ron’s firing properties.

In order to reduce the dimension of the statistical model,

both to explain the data parsimoniously and to limit the

chance of model overfitting, we developed a statistical model

that related the instantaneous probability of a spike at any

time point to the past spiking history using a set of cardinal

spline basis functions. Splines are locally defined third-order

polynomial functions that flexibly approximate arbitrary

smooth functions using a small number of basis functions.28

Because our study focused on rhythmic activity, we chose a

spline basis set that had been previously used to successfully

characterize the desired rhythms in neural spiking activity.29

In this previous study, we constructed a point process model

that assumed that the history dependent modulation was con-

stant over known time intervals for each trial. This previous

model was developed to visualize specific features of the his-

tory dependent structure, but not to determine whether the

modulation parameters underwent statistically significant

changes during movement or to fully characterize the time

course of these changes. In this study, we extended the previ-

ous model in two ways: first, we estimate the transitions

between the non-movement and movement state and use a

nested set of models to determine whether the data show stat-

istically significant changes in the modulation parameters;

second, we develop a state space model and a point process

filtering and smoothing algorithm to track the dynamic prop-

erties of changes in the modulation parameters through time.

A statistical model for point process data is defined by a

conditional intensity function kðtjHtÞ, which characterizes

the instantaneous spiking probability at any time, t, as a

function of t, the past history of spiking Ht, and any other

factors that may influence spiking activity.30 In this case, the

conditional intensity model was defined as follows:

log kðtjHtÞ ¼ b0 þ c0 � IstateðtÞ þ
Xp

i¼1

bi � GiðHtÞ

þ
Xp

i¼1

ci � GiðHtÞ � IstateðtÞ; (1)

where Ht is the neuron’s spiking history going back 100 ms,

b0 relates to a background intensity of spiking, IstateðtÞ is the

binary indicator function that is equal to 0 during an initial

non-movement state, becomes equal to 1 when the neuron

transitions to a movement planning and execution state, and

returns to 0 when the neuron transitions back to the non-

movement state. bi is the parameter multiplying the spline

basis functions at the ith control point. When exponentiated,

ebi can be interpreted as modulation of the intensity due to a

previous spike at the specified lag during the non-movement

period. ci represents the baseline and history modulation

coefficients for this indicator function, p is the number of

spline control points, and Gi are a set of spline basis func-

tions at multiple selected temporal lags. Here, we assumed

the history-dependent spiking activity before and after the

movement planning and execution state was the same, thus

was expressed by the same set of model parameters, while

the rhythmic activity during the movement state is fitted with

a different set of parameters. Moreover, p was set to 10 based

on previous spline-based models developed with this data.29

If IstateðtÞ is known, this formula describes a generalized

linear model (GLM) for the spike train data.31 Such GLMs

have a number of nice properties, including convexity of the

likelihood surface and asymptotic normality of the parameter

estimates. However, there are two additional unknown pa-

rameters, the transition times into and back from the move-

ment state. We computed maximum likelihood estimators

for these parameters numerically by computing all model pa-

rameter estimates over a grid of possible values for these

transition times. The rows of the grid contained the possible

transition start times, which spanned a minimum value of

700 ms before movement onset to a maximum value of

500 ms before movement onset, with stepwise increments of

50 ms. The columns of the grid contained the possible transi-

tion end times, which spanned a minimum value of 800 ms

after movement onset to a maximum value of 1000 ms after

movement onset, with stepwise increments of 50 ms. At each

point in the grid, we calculated the log-likelihood of the cor-

responding transition start and end times, maximized over

the remaining baseline rate and modulation parameters. This

provides a log-likelihood surface for the transition times. We

identified the start and end transition times that maximized
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this log-likelihood surface and used those as point estimates

for the fit model. Confidence intervals were computed from

the estimated Fisher information for the baseline and history

modulation parameters and by computing a local quadratic

approximation of the log-likelihood surface for the transition

times.32,33 Using these maximum likelihood estimates to

identify the movement period, we compared the two differ-

ent sets of parameter estimates for history dependent modu-

lation of firing intensity in the movement and non-movement

states. In particular, we focused on changes in the back-

ground firing rate parameter, as well as changes of modula-

tion at time lags 2 ms, 30 ms, and 50 ms, which may relate to

bursting behavior and to rhythmic spiking in the beta fre-

quency band. We also computed the ratios of those parame-

ter estimates between the two states.

To assess whether the two states are significantly different,

we tested the hypothesis that the neurons go through a different

dynamic state during movement planning and execution than

before and after movement against the null hypothesis that

there is no transition of dynamic states throughout the experi-

ment. The hypotheses can be formulated as follows:

H0 : ci ¼ 0 for all i vs: HA : For at least some i; ci 6¼ 0:

(2)

Because the null model is nested under the proposed model,

we performed a maximum likelihood ratio test where the test

statistic is defined as follows:

K ¼ �2 log
LðkðtjHtÞjH0Þ
LðkðtjHtÞjHAÞ

¼ �2 logLðkðtjHtÞjH0Þ þ 2 logLðkðtjHtÞjHAÞ; (3)

where log LðkðtjHtÞjH0Þ is the log-likelihood for null model

and log LðkðtjHtÞjHAÞ is the log-likelihood for alternative

model. Here, the test statistic follows an asymptotic chi-

square distribution with 11 degrees of freedom.32,33

To assess goodness-of-fit of the two-state model, we

constructed Kolmogorov-Smirnov (K-S) plots of time-

rescaled inter-spike intervals (ISIs).34 The time-rescaling

theorem produces a set of rescaled ISIs that are independent

with an exponential distribution with mean 1 if the proposed

model accurately describes the structure in the observed

spiking activity. To construct the K-S plot, we plot the em-

pirical cumulative distribution of the rescaled ISIs against

the theoretical cumulative distribution of the Exponential(1)

distribution. The better the quality of the model fit, the closer

the K-S plot should be to a 45 degree line.35

In addition to the observed data, we also applied the two-

state model to simulated data. Two hundred spike trains were

simulated discretely from a Poisson process with unit rate and

then the spike times were rescaled according to a model con-

ditional intensity function.34 The parameters of this simulation

model were chosen to reflect features observed in the real

data. We then estimated the model parameters from the simu-

lated data, and compared these estimates to the known model

parameters used to generate the data.

Additionally, in order to study how large a change in

history dependent modulation can be detected by the

maximum likelihood ratio test procedure in Eqs. (2) and (3),

we conducted a power analysis using the simulated spike

train data. We sampled a variety of different values of modu-

lation parameters related to the beta rhythm (ci correspond-

ing to lag 30 ms and 50 ms) and in each case generated 40

simulations of 200 trials of spike trains. We then calculated

the proportion of simulations for which we were able to suc-

cessfully reject the null hypothesis.

B. State-space smoothing algorithm to track the
change through time

The two-state model described above assumes that the

transitions between dynamic states occur suddenly and at

identical times across all trials. To allow for more gradual

and trial dependent transitions between dynamic states, we

developed an alternate, adaptive model, where the modula-

tion parameters, bi, are allowed to change smoothly from

one time point to the next. That is, we assumed that the pa-

rameters responsible for the rhythmic spiking dynamics are

time-varying and we estimated the parameters at each point

in time. The conditional intensity function for this adaptive

model is

log kðtjHtÞ ¼ b0;t þ
Xp

i¼1

bi; t � GiðHtÞ: (4)

Here, the modulation parameters bi;t are time dependent. We

estimate the set of parameters at each time point on a milli-

second timescale using a stochastic state point process filter-

ing and smoothing algorithm.36 The algorithm recursively

estimates the parameters based on the previous estimates and

the instantaneous data at each time point. It can be broken

down into an initial filtering component,

htjt�1 ¼ ht�1jt�1; (5)

Wtjt�1 ¼ Wt�1jt�1 þ R; (6)

Wtjt ¼ W�1
tjt�1 þ

@2log k

@h@hT
ðDNt � ktDtÞ

�

þ @ log k
@h

� �T

ktDt
@ log k
@h

� ���1

; (7)

htjt ¼ htjt�1 þWtjt �
@ log k
@h

ðDNt � ktDtÞ; (8)

following by a smoothing component,

htjT ¼ htjt þWtjtW
�1
tþ1jtðhtþ1jT � htþ1jtÞ; (9)

WtjT ¼ Wtjt þWtjtW
�1
tþ1jtðWtþ1jT �Wtþ1jtÞW�1

tþ1jtWtjt; (10)

where ht1jt2 represents the estimated mean of the vector of bi

parameters at time t1 using all of the data up to time t2, and

Wt1jt2 represents the estimated covariance matrix of these pa-

rameter estimates at time t1 using all of the data up to time

t2. R represents a one-step covariance matrix that defines the

possible evolution of the modulation parameter vector from

one time step to the next. The first and second partial
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derivatives of log k with respect to the parameter vector h
are all evaluated at htjt�1. We initialized the algorithm by set-

ting h0j0 and W0j0 to be our estimates and covariance matrix

from the two-state model.

To evaluate the adaptive changes, we plotted the esti-

mates for the background firing rate and the estimates for the

modulations due to past spiking between 11 ms and 100 ms

in the past against time. In order to highlight statistically sig-

nificant features of these estimates, we compute point-wise

significance levels for the estimates of the modulation at

each lag and time point. These point-wise bounds are com-

puted by pre- and post-multiplying the posterior covariance

estimates, WtjT , with the matrix of spline basis functions, and

taking the diagonal elements. Note, since these are point-

wise estimates, a number of these will achieve significance

by chance alone. While one could develop more stringent

criteria to account for this multiplicity, here our goal is sim-

ply to highlight large statistically significant regions where

the modulation properties have undergone dynamic changes.

To quantify the uncertainty of the estimated parameter tran-

sitions, we also plotted the standard deviations of estimates

of background firing rate, and select history-dependent pa-

rameters at time lags of 2 ms, 30 ms, and 50 ms against time.

As with the two-state model, we used the resulting

model estimates to construct K-S plots of the time-rescaled

ISIs for the adaptive model, both for the real data, and for

simulated data from 200 simulated spike trains to illustrate

that the parameters of the adaptive model could be success-

fully recovered.

III. RESULTS

A. Preliminary analysis

Figure 1(a) shows a raster plot of the spiking activity

across all trials for an example neuron. Below these rasters is

a PSTH aligned to the onset of the joystick movement.

Visual inspection of the PSTH shows that the firing rate

increases slightly at about 600 ms before onset of hand

movement and then subsides back to its previous value about

600 ms after the onset. Changes in the rhythmic firing prop-

erties are not obvious, either in the individual rasters or in

the histograms averaged over trials.

Since it is difficult to visualize rhythmic activity in sin-

gle trials, we examined a variety of standard visualizations,

including trial-averaged autocorrelation plots and spectro-

grams averaged across all trials. Figure 1(b) displays the

ACF of the example neuron. The ACF shows a clear nega-

tive value at lag 1 ms, followed by a sequence of large posi-

tive values extending to 10 ms. The dip at lag 1 ms can be

explained by the refractory period of the neuron, and the fol-

lowing increased autocorrelation may correspond to a period

during which rapid bursts of spikes tend to appear. More

subtle fluctuations in the autocorrelation function are

observed for lags between 10 ms and 100 ms, which are asso-

ciated with spiking rhythms. The autocorrelation is signifi-

cantly positive for lags between 2–15 ms and 40–60 ms, and

is significantly negative for lags between 20 and 40 ms.

Figure 1(c) shows an estimated spectrogram of the spike

train as a function of time on the x-axis and frequency

between 0 and 100 Hz on the y-axis. There is clear beta band

activity, illustrated by the increased power between 10 and

30 Hz, which starts to diminish around 0.7 s before the onset

of the hand movement, and returns around 0.7 s after move-

ment initiation. Power in the gamma band, between 60 and

100 Hz, exhibits the opposite trend. It intensifies around 0.5 s

before movement onset and then recedes around 0.9 s after

movement onset. This high frequency behavior is not limited

to a narrow band of frequencies in the Gamma range but is

also present at higher frequencies up to the Nyquist cut-off

(500 Hz). This likely reflects, in part, an increase in the

expected firing rate during movement. Looking across time,

we can visually segment the activity into two seemingly dis-

tinct rhythmic states. One state is present during a short plan-

ning period before the movement onset and during the

movement, where the beta rhythm is diminished and high

frequency activity is present. The other state occurs before

the movement planning period and returns after movement.

Commonly, for spike train data analysis, the spectrogram is

used as a descriptive technique to visualize rhythmic data

rather than as the basis for statistical inference. However,

statistical significance of spectral estimators can be evaluated

in a number of ways, including using short sliding windows

on surrogate data.37,38 We do note that inferential procedures

based on spectral estimators of spiking data raise a number

of issues as discussed in Jarvis and Mitra.39 Here, our goal is

instead to develop a model based approach to characterize

the influence of past history on the firing intensity directly.

To address this question, we developed a statistical test

based on a two-state point-process model, whose application

we illustrate both in simulation and to the STN data.

B. Identifying significant changes in spiking
dynamics—Simulation study

In order to characterize the properties of the parameter

estimation and hypothesis test based on the two-state point

process model, we performed a simulation study by generat-

ing spike train data from the model with parameter values that

capture expected history dependent structure and that undergo

different amounts of change between the two dynamic states.

For each parameter set, we simulated 200 spike trains of

length 3.2 s using the time-rescaling algorithm described in

Sec. II. We chose the start and end points of the movement

state to be from 400 ms before to 400 ms after movement ini-

tiation, and we chose the baseline firing rate to be a constant

50 spikes per second. Both the non-movement and move-

ment states included identical parameters for the first 10 ms

of history dependence, which were designed to capture a re-

fractory period and bursting activity typical of these neurons.

For the movement state, the remaining history parameters

were set to 0, indicating no modulation of intensity based on

previous spiking at these lags. For the non-movement state,

the modulation parameter at 30 ms lag was set to e�a and the

modulation parameter at 50 ms lag was set to ea, for different

values of a, indicating beta frequency modulation of the sort

observed previously in the STN.29

From the simulated spike trains, we estimated the pa-

rameters for the start and end points of the transition between
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the states as well as all of the model parameters for the con-

ditional intensity function in Eq. (1). Figure 2(a) shows esti-

mates and confidence bounds for the transition points

between the states for four simulation examples where the

parameter a was set to 0.1. This represents a maximum mod-

ulation at lags above 30 ms of 10.5% above the baseline fir-

ing intensity. In each case, the true transition times of

�400 ms and þ400 ms were accurately captured by the 95%

confidence intervals. However, the confidence bounds are

quite large, spanning periods from �600 ms to �200 ms for

the transition to the movement state, and �50 ms to 750 ms

for transitions from the movement state. This suggests that

estimation of sharp transitions between dynamic states can

be inaccurate, even with a large amount of data.

Figure 2(b) shows a comparison between the true history

dependent modulation function of firing intensity and the

estimated modulation function with 95% confidence bounds

for a single simulated neuron. The cyan dashed line repre-

sents true modulation during non-movement state and the

magenta dotted line represents true modulation during move-

ment state. The cyan transparent region represents 95% con-

fidence bounds for the estimated modulation during the non-

movement state and the magenta transparent region repre-

sents 95% confidence bounds for the estimated modulation

during the movement state. The estimates tend to follow the

true parameter values closely, and as opposed to the esti-

mates of the transition times between states, the confidence

intervals for the actual history dynamics are very narrow.

Figure 2(c) shows a K-S plot of the rescaled ISIs for the

estimated point process model. The K-S plot follows the 45�

line closely, with the largest deviation coming from the small-

est rescaled ISIs. This could indicate some minor model misfit

associated with the refractoriness and bursting. Indeed, when

simulated at a temporal rate higher than 1 ms, the deviations

at lower rescaled ISIs disappeared (not shown).

Running the maximum likelihood ratio test on the data

from this simulation example gives a test statistic of

K ¼ 123. If the null hypothesis of no difference between the

movement and non-movement states was true, we would

expect the value of this test statistic to come from an approx-

imate Chi-square distribution with 11 degrees of freedom.

The p-value for the observed test statistic is extremely small

(10�8), indicating that there is considerable evidence of a

real change in the history dependent spiking dynamics in this

FIG. 1. (a) Raster and PSTH of 3.2 s recordings from a single neuron before and after onset of hand movement (time 0) for all trials. (b) Trial-averaged auto-

correlation functions. The red lines denote pointwise 95% significance bounds. (c) Trial-averaged spectrograms of spike trains as a function of time relative to

movement onset on the x-axis and frequency between 0 and 100 Hz on the y-axis.
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data. This is not surprising, given the difference in the esti-

mates and the high degree of confidence in the history de-

pendent parameters between the two states.

Figure 2(d) shows the power of the test procedure as a

function of the amount of modulation in the history parame-

ters related to the beta rhythm between the two states

(achieved by varying the a parameter). In each case, 40 sim-

ulations of 200 trials were used to perform the test. The

x-axis indicates the modulation level at the 30 and 50 ms his-

tory parameters in the non-movement state and the y-axis

indicates the proportion of tests that were able to success-

fully reject the null hypothesis. It is evident that even for

small value of the modulation parameters (2.4%), we are

very likely to identify actual changes in rhythmic dynamics,

with the amount of data we recorded for this task.

C. Identifying significant changes in spiking
dynamics—STN data

Next, we applied the two-state model to our observed

spike train data. Once again, we used maximum likelihood

to estimate all of the model parameters and obtain confi-

dence bounds on those estimates. For the transition times

between states, we estimated the maximum likelihood values

numerically and used a local quadratic approximation to the

log likelihood to estimate the Fisher information and confi-

dence bounds, as described in Sec. II.

The estimated transition points for the start and end of

the movement periods for a set of four representative cell are

shown in Figure 3(a) along with 95% confidence bounds.

These estimated values and confidence levels are fairly con-

sistent across all of the neurons we analyzed. The confidence

intervals for the transition points are all relatively large,

spanning about 200 ms for the transition to the movement

state and about 300 ms for transitions back. This could arise

for multiple reasons, including variability in the transition

times between trials or a slow rather than sudden change in

the firing properties. We will explore the latter possibility in

Secs. III D and III E below. However, it is noteworthy that

the size of these confidence bounds is not larger than those

estimated in the simulation study, where the transitions were

instantaneous and consistent across trials. This suggests

FIG. 2. (a) Estimates and 95% confidence bounds for estimated transition times for the start and end points of the movement spiking state for simulated spike

trains of four neurons under the two-state model. Actual transions occurred at �400 ms and 400 ms for start and end transitions, respectively. (b) 95% confi-

dence bounds for the estimated history dependent modulation parameters as a function of lag and the true parameter values for simulated spike data from a sin-

gle neuron. Cyan dashed line and magenta dotted line represent true modulation during non-movement state and during movement state, respectively. The

transparent regions in cyan and magenta correspond to the estimated 95% confidence regions. These regions are narrow and tend to contain the true value at ev-

ery lag. (c) K-S plot comparing empirical and model CDFs of rescaled simulated ISIs from estimated point process model. (d) Power of the maximum likeli-

hood ratio test as a function of the modulation of the history parameters at 30 ms and 50 ms lags between the non-movement and movement states. The test

detects as little as 2.4% modulation in these parameters with 82.5% probability.
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another possibility—that the state changes associated with

altered spiking history dependence are simply difficult to

estimate accurately with the amount of data collected in this

experiment.

Though the confidence intervals are relatively large for

the transition points, the confidence intervals on the model

parameters reflecting history dependent dynamics are much

smaller and illustrate a clear change between the movement

and non-movement states. Figure 3(b) shows the estimated

modulation of the firing rate on the y-axis based on a previ-

ous spike at any time lag on the x-axis. The estimated modu-

lation during the non-movement state is shown as a cyan

dashed line, and the 95% confidence levels are illustrated by

the surrounding transparent cyan region. For the movement

state, the estimated parameters are given by the dotted ma-

genta line with a 95% confidence level given by the magenta

transparent region. Visually, the non-movement state dis-

plays a longer bursting period that ranges from a 2 ms to a

10 ms time lag, a modulation significantly less than 1 for

time lags between 10 ms and 40 ms, and a modulation signifi-

cantly larger than 1 for lags between 40 ms and 60 ms.

During the movement state, the estimated modulation exhib-

its a significant reduction in the parameters above 10 ms

related to rhythmic activity. The clear visual separation

between the transparent 95% confidence regions between

these two states from 10 ms to 60 ms lags suggest that this

likely represents a statistically significant change in dynamics.

Figure 3(c) shows an example K-S plot for the model fit

of the neuron whose estimated history dependent properties

are shown in Figure 6(b). As with the simulation study, the

model and empirical cumulative distribution functions

(CDFs) demonstrate a good overall fit, with some evidence of

misfit in the smallest rescaled ISIs. This may suggest some

model misfit related to our assumptions of consistent and

sudden state changes or may be related to the difficulty in

estimating the transition times with a high level of accuracy.

Figure 3(d) shows the p-values for the significance tests

for each of the 22 rhythmic neurons whose firing properties

were analyzed. In 21 of these 22 hypothesis tests, we

obtained p-values below 0.05 and in 15 of these 22 cells, we

obtained p-values below 10�8.

In addition, we analyzed the modulation in the estimated

model history parameters between the non-movement and

movement states for parameters related to the baseline firing

intensity, bursting, and the 30 ms and 50 ms lags related to

beta rhythmicity across all 22 STN neurons. Figure 4 shows

FIG. 3. (a) Estimates and 95% confidence bounds for transition points between non-movement and movement states for four representative neurons. (b)

Estimated history dependent modulation parameters as a function of lag with 95% confidence bounds for a single representative neuron. Cyan dashed line and

magenta dotted line represent modulation estimates during non-movement state and during movement state, respectively. Transparent regions represent the

corresponding 95% confidence regions. (c) K-S plot comparing empirical and model CDFs of rescaled ISIs from estimated point process model. (d) P-values

for the maximum likelihood ratio test for significant changes in modulation between states for all 22 cells, in descending order.
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a set of histograms across cells for each parameter, where a

value of 1 represents no modulation in the estimated parame-

ter value between non-movement and movement states, a

value greater than 1 indicates an increase in that parameter

for a particular neuron with movement, and a value less than

1 indicates a decrease in that parameter with movement. The

upper right panel shows that the baseline firing intensity

tends to increase in the majority of cells with movement,

with a mean increase in 5.6% from the non-movement base-

line firing. The upper right panel shows that modulations

2 ms after a spike related to bursting behavior tend to

decrease for all but two cells when entering movement state,

with a mean decrease in 10.8% from the non-movement

state. The lower panels show changes in the parameters

related to rhythmic firing in the beta range related to 30 ms

lags (left) and 50 ms lags (right). Most neurons show an

increase in the 30 ms lag modulation parameter correspond-

ing to an attenuation of the previously observed inhibition at

this lag during movement. The average increase in modula-

tion across all cells is 6.6%. For the parameter related to a

50 ms lag, there are a large fraction of neurons that increase

their modulation during movement and a larger percentage

that decrease their modulation. The average change in modu-

lation is a decrease in only 0.5%. These results suggest that

rhythmic spiking in the beta frequency range is associated

with a process of inhibition and excitation, and that change

in the inhibitory component leads to modulation of beta fir-

ing more robustly across the neurons we examined. Overall,

even though the parameters responsible for rhythmic firing

activity represent fairly small modulation in the firing proba-

bility at any instant, the two-state model is able to detect

these differences accurately.

D. Tracking changes in spiking dynamics—Simulation
study

In order to characterize the ability of the state-space

framework to track evolving rhythmic spiking dynamics, we

generated simulated spike train data that smoothly transi-

tioned from the dynamics of the non-movement and move-

ment states observed when we applied the above two-state

model to the data. We simulated 200 spike trains of length

3.2 s using the time-rescaling algorithm described in Sec. II.

We chose a constant baseline firing rate of 50 spikes per sec-

ond for all trials. Parameters for the first 10 ms of history de-

pendence were set to constant values across time, selected to

capture the refractory period and bursting activity observed

previously in STN neurons.29 We simulated changes in

rhythmic spiking in the beta frequency range by letting the

parameter associated with the 30 ms lag vary quadratically

FIG. 4. Histograms of ratio of estimated model parameters for baseline intensity and modulation at lags of 2, 30, and 50 ms across all 22 neurons analyzed. A

value of 1 indicates no change in modulation between the two states, a value above 1 indicates an increased estimate in the movement state, relative to the

non-movement state, and a value below 1 indicates a decreased estimate in the movement state.
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from a starting point of a maximum modulation that repre-

sents a 10% decrease in firing probability for a spike 30 ms

in the past during non-movement to no modulation for a pre-

vious spike 30 ms in the past at the start of movement, and

then back to a 10% negative modulation by the end of trial.

At the same time, we set the modulation parameter associ-

ated with the 50 ms lag to vary quadratically from a 10%

increase in the firing probability for a spike 50 ms in the past

to no modulation, back to a 10% increase. The remaining

history parameters were set to 0, indicating no modulation of

intensity based on previous spiking at these lags.

From the simulated spike trains, we used the point pro-

cess filter and smoother described in Eqs. (4)–(10) to esti-

mate the trajectory of the state process representing all of the

model parameters at each instant in time. Figure 5(a) shows

estimates and confidence bounds for the parameter related to

the baseline firing rate. The true baseline firing rate, shown

as the black line, was held constant at 0.05 spikes/ms. The

estimated baseline parameter evolves in time, but hovers at a

value close to the true value, with a 95% confidence bound

that contains the true value at all times.

Figure 5(b) shows both the true and estimated history

dependent modulation of firing intensity as a function of

time relative to movement onset on the x-axis and lags

between 10 and 100 ms on the y-axis. The bottom panel

shows the true modulation parameter values used to simulate

the data. The top panel shows the estimated modulation pa-

rameter values at each lag and time point. The middle panel

shows only those parameters whose point-wise significance,

computed using the estimated posterior covariance matrix,

attained a p-value less than p¼ 0.05, with the rest of the

modulation values set to 1. For each of the plots, modulation

higher than 1, representing an increase in firing probability

based on a previous spike at that lag, is shown in red,

whereas modulation lower than 1, representing a decrease in

firing probability, is shown in blue. Visually, we find that the

estimated trajectories of the modulation values are very close

to the true simulated values at all lags and times, although

the estimates show some noisy fluctuations, especially at the

higher time lags. By considering only those points whose

point-wise significances achieved a p-value below 0.05, the

noisy changes at higher lags disappear as shown in the mid-

dle panel. The important dynamic features of the simulation

model relating to the attenuation of the negative modulation

around the 30 ms lag and of the positive modulation at the

50 ms lag are well captured.

FIG. 5. (a) Estimated trajectory and uncertainty of baseline firing rate parameter for simulated spiking data. Blue line represents the estimates and red lines

denote 95% confidence regions at each time. Black line represents the true constant baseline firing rate parameter used to simulate the data. (b) Estimated and

true values of history dependent modulation of firing intensity as a function of time relative to movement onset on the x-axis and lag between 10 and 100 ms

on the y-axis. (c) Standard deviations for parameter estimates for baseline firing rate, and modulation at lag 2 ms, 30 ms, and 50 ms lags. In each case, estimated

standard deviations are small compared with estimated mean parameter values, indicating high confidence in estimates. (d) K-S plot comparing empirical and

model CDFs of rescaled simulated ISIs from estimated point process model.
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To assess the confidence of the state-space adaptive

model, we tracked the standard deviations of parameter esti-

mates associated with the baseline intensity, bursting propen-

sity (2 ms lag), and beta rhythmic firing (30 and 50 ms lags)

through time. Figure 5(c) displays the estimated standard

deviations of these parameters. They all show relatively

small and stable standard deviations, indicating a high

degree of confidence in the estimates through time. The esti-

mated standard deviation is large at the beginning and the

end of the trial, because the smoothing algorithm has less

data with which to compute the estimates at these points.

However, within 100 ms, the variability quickly drops to a

consistent value. Additionally, we find that the estimated

confidence in the parameters related to the 30 and 50 ms lags

is much smaller than those related to the baseline or bursting

parameters, suggesting that these dynamics can be tracked

with a high degree of confidence.

Figure 5(d) shows a K-S plot of the rescaled ISIs for the

estimated state-space adaptive model. The K-S plot follows

the 45� line closely, with the majority of the larger rescaled

ISIs falling inside the 95% confidence bounds. Similar to the

K-S plot for the two-state model, the largest deviations from

the smallest ISIs perhaps indicate some minor model misfit

associated with the refractoriness and bursting of the STN

neurons, which disappear if simulated at a higher temporal

rate (not shown).

E. Tracking changes in spiking dynamics—STN data

Next, we applied the adaptive model to the spike train

data recorded in STN from Parkinson’s patients. Figure 6

shows the results for a representative, rhythmically firing

neuron. Figure 6(a) shows the adaptive estimate of the base-

line firing intensity, along with pointwise 95% confidence

bounds, at each time. Visually, we can identify an increase

in the baseline firing intensity that begins around 400 ms

before the initiation of the hand movement. The baseline in-

tensity keeps rising up until the movement begins, remains

relatively stable for around 300 ms, and then decreases back

to the pre-movement level by around 800 ms after movement

began.

Figure 6(b) shows the estimated history dependent mod-

ulation of firing intensity as a function of time relative to

movement onset on the x-axis and lag between 10 and

FIG. 6. (a) Estimated trajectory and uncertainty of baseline firing rate parameter for observed spiking data from a representative STN neuron. Blue line repre-

sents the estimates and red lines denote 95% confidence regions at each time. (b) Estimated values of history dependent modulation of firing intensity as a func-

tion of time relative to movement onset on the x-axis and lag between 10 and 100 ms on the y-axis. Blue regions at beginning and end of trial from 20 to 35 ms

lags indicate regions of negative modulation and red regions at beginning and end of trial from 40 to 60 ms lags indicate regions positive modulation. (c)

Standard deviations for parameter estimates for baseline firing rate and modulation at lag 2 ms, 30 ms, and 50 ms. (d) K-S plot comparing empirical and model

CDFs of rescaled ISIs from estimated point process model.
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100 ms on the y-axis. The top panel shows the estimated

modulation parameter values at each lag and time point. The

bottom panel shows only those parameters whose point-wise

significance, computed using the estimated posterior covari-

ance matrix, attained a p-value less than p¼ 0.05, with the

rest of the modulation values set to 1. The large blue regions

between lags of 20 ms and 35 ms at the beginning and end of

the trial represent negative modulation, or a decrease in the

firing probability as a function of previous spiking at these

lags, which is attenuated starting around 1100 ms before the

onset of hand movement and returns around 800 ms after

movement onset. Notice that this change is detectable well

in advance of the change in the baseline firing rate, which

does not begin until around 400 ms prior to movement onset.

The large red regions between lags of 40 ms and 60 ms indi-

cate positive modulation, or an increase in instantaneous fir-

ing probability as a function of previous spikes at these lags,

which is attenuated around 400 ms before movement onset

and returns to its initial level around 800 ms after movement

onset. The time course of the change in this parameter is

more similar to that of the baseline rate than the 30 ms modu-

lation parameter.

This suggests a dynamic pattern of transition between

spiking states, whereby the change in rhythmic spiking at

beta frequencies initially comes about by a reduction in in-

hibitory control of spiking, which is followed by reduction in

excitatory control at the beta period and a simultaneous

increase in baseline firing rate. The top panel also shows

short noisy changes in the estimated modulation parameters

at higher time lags, which disappear when considering mod-

ulation estimates below the point-wise 5% significance level,

as shown in the bottom panel, consistent with the simulation

study.

Figure 6(c) shows the estimated standard deviations for

the background rate and modulation parameters at lags of

2 ms, 30 ms, and 50 ms. The standard deviation of the base-

line firing rate shows dynamic behavior that mimics that of

the estimated mean baseline rate. This is not surprising; the

estimated mean and variance of the baseline rate of a point

process are typically associated. The standard deviation for

the modulation parameter at a 2 ms lag related to bursting is

small relative to the mean modulation that takes values near

1. The standard deviation is minimal during the movement,

where bursting behavior decreases. As with the simulation

study, the standard deviation of the parameters related to the

rhythmic firing at beta frequencies is small compared with

other lags, suggesting that these dynamics can be tracked

with a high degree of confidence.

Figure 6(d) shows the K-S plot of the time-rescaled ISIs

for the adaptive model. The model fits well and provides a

slight improvement over the two-state model shown in

Figure 3. There is still a small but significant lack of fit asso-

ciated with the smallest rescaled ISIs. This suggests that

there may still be some unmodelled features of the dynamics

not represented in these models. For example, the model we

used does not account for changes in firing as a function of

movement direction. Typically, model identification for

point process spiking models involves an iterative search

across multiple classes of models incorporating different

covariates and functional forms. Here, we have presented a

simplified model to highlight changes in the rhythmic spik-

ing dynamics rather than attempting to find a single model

that completely describes all features of the spiking structure

in the data.

IV. DISCUSSION

Increasingly, researchers studying the electrophysiologi-

cal origins and mechanisms of various neurological diseases

are acknowledging the importance of characterizing the

dynamic properties of neural rhythms. The most prevalent

methods for studying such dynamics typically focus on con-

tinuous brain signals, such as LFPs, EEG, MEG, and the

like. When applied to spike train data, these methods can

lead to results that are difficult to interpret, or inappropriate

because of incorrect modeling assumptions. Here, we have

presented a state-space point process framework that allows

us to first identify dynamics associated with rhythmic spik-

ing and then characterize the transitions between distinct

dynamic states.

Specifically, we applied the point process modeling

framework to characterize the transition of history-

dependent firing activity in STN during a hand movement

task. Model estimates showed that the effect of past spiking

on the instantaneous probability of firing a spike was small

on a single trial, but easily detectable across trials for dataset

of the size typically collected in these experiments. We

showed that a maximum likelihood ratio test was able to

identify very subtle but statistically significant changes in

these dynamics.

Furthermore, using a state-space adaptive algorithm, we

were able to track and characterize the time course of the

changes in modulation of the firing intensity as a function of

past spiking history. Although the trajectory of the parameter

estimates varied slightly depending on the regions of STN

where the signals were recorded, we observed consistent

trends across neurons in the time course of the modulation.

The modulation of the baseline firing rate on average began

to increase around 500 ms before movement onset, reached a

maximum around 150 ms before movement onset, fluctuated

around the peak value until 100 ms after movement onset,

and finally returned to its original value until about 700 ms

after movement onset. The parameter related to modulation

due to past spiking 50 ms in the past followed a similar time

course. However, the estimated influence of past spiking at a

30 ms lag showed more consistent dynamics across neurons

and had a temporal trajectory that began to attenuate at ear-

lier times in the planning period, suggesting that movement

initiation begins with a release of inhibitory control. These

results corroborate previous physiological findings that have

characterized the role of the basal ganglia in the disinhibition

of selected motor programs.40,41

The proposed framework has several important features.

First, by proposing an explicit point process model, we

obtain estimators that have clear interpretations in terms of

the probability of observing a spike at any time. By working

in the time domain, we need not assume a stationary spiking

process, as is common in frequency domain analyses. We
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also avoid common errors in interpretation that can occur

when frequency domain analyses fail to consider the effects

of point process data on power spectral estimates across all

frequencies.21

Second, the point process modeling framework provides

a great deal of flexibility in assessing relationships between

the instantaneous probability of spiking, the past spiking his-

tory, and other covariates that may influence neural spiking.

In this case, we chose to model the effect of past spiking his-

tory using cubic spline basis functions. This model formula-

tion allowed us to examine the effects of multiple temporal

lags simultaneously with a relatively small number of

degrees-of-freedom. This has the advantage of reducing the

chance of overfitting in our models, improving the computa-

tional efficiency of the estimation algorithms, and increasing

the statistical power of the hypothesis tests.

Third, the point process modeling framework allows us to

examine the effects of multiple model components simultane-

ously. Simple visualization methods, such as autocorrelation

function, typically examine the effect of previous spiking at a

single time lag and can therefore fail to account for influences

of one covariate on the estimated influence of another.25 More

recently, point process models have been used to study multi-

ple features of rhythmic neural spiking in the STN of

Parkinson’s patients.42,43 These models similarly incorporate

history dependent modulation to capture features, such as

bursting and beta band oscillations, and include task depend-

ent components, such as movement direction and information

related to movement cues. However, these models assume

constant parameter values and do not attempt to capture rhyth-

mic neural dynamics as a function of movement planning and

execution. Forth, the parametric modeling approach provided

for a powerful hypothesis test for identifying subtle changes

in the firing dynamics. The parametric approach in conjunc-

tion with the time rescaling theorem also provides a simple

method for rapid simulation of data. We took advantage of

this to compute the power of the maximum likelihood ratio

hypothesis test. This will also be critical in expanding these

analysis methods to study interactions between large neural

ensembles.34

Finally, the state-space smoothing algorithm allowed us

to track the time course of the change in history dependence,

and therefore characterize a critical transition in rhythmic

spiking dynamics. We were able to maintain adaptive esti-

mates of both the parameter mean and variance-covariance

structure, permitting the construction of confidence intervals

and the identification of interactions between covariates.36

We foresee several potential improvements and exten-

sions of this framework. The algorithm we described can be

applied to a single trial of data or to multiple trials that share

common dynamical properties. Here, we assumed that the

spiking dynamics were identical across all trials. This allows

us to combine data over trials to detect very subtle changes

in the modulation structure through time. If the changes to

the modulation parameters as a function of movement are

large, then we expect to be able to detect those changes using

a single trial of data. For the STN data we analyzed in this

paper, we found that movement is associated with very

subtle changes in the modulation parameters. In this case,

assuming these changes are consistent across trials allows us

to detect these small changes with confidence. If the assump-

tion that these changes are consistent across trials is not true,

then our model is misspecified, which will affect the bias

and variance characteristics of the estimates. In general, we

would expect such misfit to manifest as a loss of statistical

power, making the identification of significant changes more

difficult, and to manifest as a reduction in the goodness-of-fit

measures. While no model is completely correct, the fact

that our models capture the structure of the data well sug-

gests that the effect of the model misspecification on the

analysis results is not substantial.

Here, we used a simplified model of neural spiking to

illustrate the problem of identifying and tracking transitions

in rhythmic spiking dynamics. In a more complete study, we

would develop more accurate and physiologically realistic

models by iteratively refining the model class to incorporate

other covariates or other functional relationships between

covariates. The question of relating statistical models that

describe the structure of neural spiking patterns and physio-

logically realistic models that describe the mechanisms of

spike generation is the one of increasing importance. As our

models become more complex, estimation and testing meth-

ods will need to adapt to accurately identify dynamic transi-

tions. Finally, here we limited ourselves to modeling the

spiking activity of a single neuron because in our experimen-

tal dataset, very few neurons were simultaneously recorded.

Typically, neural ensembles work together to generate and

maintain rhythmic activity. We can extend the point process

framework by modeling the firing probability of each neuron

based on its own history as well as the activity of other

simultaneously active neurons in the same or in different

brain regions. The methods we developed here can be easily

extended to address issues of synchronization by incorporat-

ing the past history of simultaneously recorded neurons with

parameters related to coupling between neurons into the con-

ditional intensity model with parameters related to coupling

between neurons.

As we learn more about the electrophysiological proc-

esses underlying neurological disease, the role of rhythms

and transitions will continue to grow. One important front in

our pursuit to understand these processes is the development

of useful statistical estimation and inference procedures—

procedures that respect the structure of the data, that rely on

appropriate modeling assumptions, and that provide a high

degree of statistical power. Point process methods, such as

the ones explored here, provide a powerful approach for

understanding dynamic structure in spike train data, both in

the healthy and diseased brain.
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