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Abstract

The number of transcriptomic sequencing projects of various non-model organisms is still accumulating rapidly. As non-
coding RNAs (ncRNAs) are highly abundant in living organism and play important roles in many biological processes,
identifying fragmentary members of ncRNAs in small RNA-seq data is an important step in post-NGS analysis. However, the
state-of-the-art ncRNA search tools are not optimized for next-generation sequencing (NGS) data, especially for very short
reads. In this work, we propose and implement a comprehensive ncRNA classification tool (RNA-CODE) for very short reads.
RNA-CODE is specifically designed for ncRNA identification in NGS data that lack quality reference genomes. Given a set of
short reads, our tool classifies the reads into different types of ncRNA families. The classification results can be used to
quantify the expression levels of different types of ncRNAs in RNA-seq data and ncRNA composition profiles in
metagenomic data, respectively. The experimental results of applying RNA-CODE to RNA-seq of Arabidopsis and a
metagenomic data set sampled from human guts demonstrate that RNA-CODE competes favorably in both sensitivity and
specificity with other tools. The source codes of RNA-CODE can be downloaded at http://www.cse.msu.edu/,chengy/
RNA_CODE.
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Introduction

Noncoding RNAs (ncRNAs), which function directly as RNAs

without translating into proteins, play diverse and crucial roles in

many biochemical processes. For example, tRNAs and rRNAs aid

protein synthesis. SnoRNAs guide rRNA modifications. Micro-

RNAs (miRNAs) regulate gene expression [1]. Short interfering

RNAs (siRNAs) involve in gene silencing in RNAi process [2].

In particular, the development of next-generation sequencing

(NGS) technologies sheds light on more sensitive and comprehen-

sive ncRNA annotation. Deep sequencing of transcriptomes of

various organisms has revealed that a large portion of transcrip-

tomic data cannot be mapped back to annotated protein-coding

genes in the reference genome, indicating that those transcripts

may contain transcribed ncRNAs [3]. Total RNA-seq and small

RNA-seq data generated by numerous transcriptomic sequencing

projects are still accumulating rapidly. Identifying different types of

ncRNAs and quantifying their expression levels in different tissues,

conditions, and developmental stages have generated new

knowledge about functions of ncRNAs. Besides RNA-seq data,

ncRNA identification is also important for analyzing metagenomic

data, which contain sequenced metagenomes from various

environmental samples. For example, 16s rRNA classification

[4,5] and assembly [6,7] is a fundamental step for studying

phylogenies in a sample. NCRNA annotation is, therefore, an

important component in post-NGS analysis.

There are two different ncRNA identification problems for

NGS data. One focuses on identifying homologs of annotated

ncRNAs, such as tRNA, rRNAs, snoRNAs, and many types of

miRNAs. Some example applications include comparing expres-

sion level changes of let-7 miRNA genes in different developmen-

tal stages of C. elegans [8], identifying all homologs to annotated

miRNAs in the small RNA-seq data of a non-model species [9],

and 16s rRNA annotation in metagenomic data [6]. These studies

aim to annotate all known ncRNAs or novel members of

characterized ncRNA families. The second category focuses on

reporting novel ncRNA genes. One possible strategy is to cluster

sequences and then apply de novo ncRNA gene finding tools such as

RNAz [10]. This work belongs to the first category.

The state-of-the-art method for ncRNA homology search is still

based on comparative ncRNA identification, which searches for

ncRNAs through evidence of evolutionary conservation. As the

function of an ncRNA is determined not only by its sequence but

also by its secondary structure, which contains interacting base

pairs, such as Watson-Crick base pairs and G-U base pairs,

successful ncRNA search should take advantage of both sequence

and secondary structural similarity. A number of such tools are

available such as a general ncRNA search tool Infernal [11] and

specialized tools for tRNA [12] and snoRNA [13] etc. However,

most existing homology search strategies use complete secondary

structure of annotated ncRNAs and are not optimized for NGS

data. When applied to short and fragmentary sequences, these

tools generate marginal scores and thus cannot distinguish reads

sequenced from ncRNAs or other regions. To our best knowledge,

trCYK [14] is the only tool that conducts homology search for

fragmentary reads sequenced from various types of ncRNAs.
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However, using it alone tends to incur high false positive rate

according to our experimental results.

It is worth noting that although NGS platforms are producing

longer reads, many reads sequenced from ncRNAs are still

fragmentary. First, many ncRNAs are very long, including

mRNA-like long ncRNAs [15], 16s rRNAs [5], etc. Second, the

biogenesis shows that some types of small ncRNAs are cleavaged

into short products (such as mature miRNAs from their

precursors). The sizes of these short products are not increasing

with read length.

In order to apply existing ncRNA identification tools to NGS

data, read mapping or de novo sequence assembly tools are usually

applied first to connect short reads into contigs. When the

reference genome is available, short reads can be mapped back to

the reference genome. Existing ncRNA identification tools can

then be applied to the blocks containing overlapping reads along

the reference genome. When there is no quality reference genome

available, which is often the case for metagenomic data and RNA-

seq data of non-model organisms, de novo sequence assembly tools

can be employed first to connect fragmentary reads into contigs.

However, using sequence assembly tools as the first step is not

always ideal for ncRNA classification.

First, the quality of read assembly deteriorates significantly in

complicated NGS data sets [16]. Different sequence assembly tools

generate different sets of contigs. There is no consensus on the best

assembly tool. Error-containing contigs often affect down-stream

analysis.

Second, successful de novo assembly requires relatively high

sequencing depth, which is difficult to achieve for many ncRNAs.

It is shown [17,18] that the transcription levels of many types of

ncRNA genes are low and condition-dependent. Often it is

difficult to foresee which ncRNA genes are lowly transcribed.

Thus there lacks information to optimize the parameters of de novo

assembly tools to produce complete or partial ncRNAs of highly

divergent expression levels or abundance.

Third, some types of ncRNAs are cleaved during the

maturation process (mature miRNAs). The observed reads

sequenced from these ncRNAs do not share any overlap and

cannot be assembled. Thus, there is a need for an alternative and

better ncRNA search tool for NGS data lacking reference

genomes.

In this work, we introduce a comprehensive ncRNA classifica-

tion tool for short reads: RNA-CODE, which is specifically designed

for ncRNA identification in NGS data sets that lack reference

genomes. Given a set of short reads, RNA-CODE classifies the

reads into different types of ncRNA families. The classification

results can be used to quantify the expression levels of different

types of ncRNAs in RNA-seq data and ncRNA composition

profiles in metagenomic data, respectively. RNA-CODE inte-

grates secondary structure based homology search with family-

specific de novo assembly. The parameters of de novo assembly tools

can be adjusted in a family-specific fashion.

The remaining of this manuscript is organized as follows. The

Methods section describes the design rationale of RNA-CODE

and the three main stages. The Results section benchmarks RNA-

CODE with other ncRNA classification frameworks. We present

experiments results on real metagenomic data and RNA-seq data.

For the small-scale metagenomic data, we compare RNA-CODE

with Metaxa [4] on 16s rRNA read classification. Then, we

compare RNA-CODE with de novo sequence assembly on small

RNA-seq data annotation of a well-annotated organism.

Methods

We propose a method that combines homology search and

family-specific de novo assembly to identify reads sequenced from

ncRNAs. In particular, the homology search is applied to both the

short reads and contigs produced by assembly programs. This

method is designed based on two key observations. First, reads

sequenced from ncRNAs tend to share higher sequence and

structural similarity with the their native families than reads

sequenced from other families. Thus, higher alignment scores by

ncRNA homology search tools are expected. In particular,

homology search is vital for identifying ncRNAs that go through

cleavage and degradation. Reads sequenced from miRNAs are

hard to assemble because only reads corresponding to mature

miRNAs can be largely captured into RNA-seq data. None or a

few can be mapped to other regions of the pre-miRNA due to fast

degradation. Figure 1 shows the mapping results of reads

sequenced from pre-miRNAs obtained from Arabidopsis. No

contig or very short contigs can be produced based on the typical

read mapping pattern. In addition, this read mapping pattern does

not change with increase of expression levels, as shown in the three

miRNAs in Figure 1. For these types of ncRNAs, applying

homology search on short reads directly is indispensable.

While homology search is important, applying it to short and

fragmentary reads may introduce high false positive rate when

detecting remote ncRNA homologs (data will be shown in

Methods Section). Thus RNA-CODE employs the second

observation that true ncRNA reads sequenced from the same

gene can be assembled into contigs with significantly high

alignment scores against their native families. On the contrary,

reads aligned by chance are not likely to be assembled because

they tend to share poor overlaps. Both properties are important in

boosting sensitivity and accuracy of short reads classification.

RNA-CODE consists of three key stages. First, RNA-CODE

coarsely classifies reads into different ncRNA families using both

secondary structure and sequence similarity. Then, a family-

specific sequence assembly is used to assemble aligned reads into

contigs. Because the numbers of reads that are coarsely classified

in the first step indicate the expression levels or abundance of

ncRNA genes in this family, this step chooses de novo assembly

parameters (such as kmer size or overlap threshold) accordingly.

The produced contigs are generally longer than input reads and

thus can be classified into ncRNA families with better sensitivity

and accuracy in the last step. For miRNAs which cannot be

assembled into contigs, we use their biogenesis-based property and

homology search results for classification.

The three-stage workflow with chosen tool for each stage is

illustrated in Figure 2. Here, we highlight the rationale behind the

design of the three stages. The first stage aims to classify a large

number of input reads into different ncRNA families with high

sensitivity. It employs existing homology search tools. For short

and fragmentary reads, this stage can incur high FP rate. Thus,

downstream analysis is needed to remove those falsely classified

reads. In the second stage, de novo sequence assembly tools are

employed to assembly classified reads into contigs. The family-

specific sequence assembly is expected to produce contigs

corresponding to complete or partial ncRNA genes. However,

because of the extremely uneven or low transcriptional levels of

many types of ncRNAs or low abundance, a small overlap cutoff

or kmer is needed to ensure appropriate connectivity for some

families. As a result, some contigs are chimeric or simply consist of

randomly aligned reads. The third stage is used to remove the false

positives. All contigs are aligned to ncRNA families. Only ones

with scores or lengths above given cutoffs are kept. For miRNAs

RNA-CODE: ncRNA Classification for Short Reads
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that cannot form contigs, we use stringent homology search scores

and known biogenesis-related properties as classification criteria.

Every stage will be described in great detail below.

Stage 1: SCFG-based filtration
To maximize classification sensitivity, short reads are aligned to

an SCFG model built from an RNA family of interest. An SCFG

describes not only primary sequence of an RNA family but also its

secondary structure formed by base pair interaction. The state-of-

the-art implementation of SCFG model is Covariance Model

(CM). The software suite Infernal [11] builds a CM on a family of

RNA sequences, and searches for homologs using inside-outside

algorithms. A CM in Infernal is implemented as a tree-like

structure in which each node models a single base or a base pair.

Infernal is able to optimally align a sequence to this tree with the

highest possible score. Short reads, however, pose challenges to the

search algorithms because they are fragmentary sequences in

which nucleotides expected to form base pairs could be missing.

Due to missing bases, base pairs that could have been aligned to a

base-pair node in a parse tree are not alignable any more. As a

result, reads sequenced from this family may not be well aligned to

the underlying CM. Truncated-CYK (trCYK) [14] is a specialized

tool designed for fragmentary sequence search. It performs local

RNA alignment against a CM of interest, recovering base pairs

that are possibly missing and would otherwise be base paired. For

every alignment, a score is provided by trCYK indicating the

goodness of alignment. Homologous reads tend to yield higher

scores and longer alignments than random reads.

Here we report the performance comparison of two homology

search tools that can be applied to short and fragmentary reads.

One is the mostly commonly used homology search tool BLAST

[19], which relies on sequence similarity only. The second tool is

trCYK [14]. The goal is to compare the performance of trCYK

with BLAST in classifying ncRNA reads of different lengths. Thus,

for read length 25, 30 and 50, we sampled 5000 true reads from

tRNA sequences obtained from Rfam. Another 5000 random

reads generated from other RNA families were mixed with true

tRNA reads. Seed sequences from Rfam were excluded from the

test data. Covariance Model used in trCYK and formatted

database used in BLAST were both built from seed sequences of

tRNA. We then searched for tRNA reads in the mixed reads using

trCYK and BLAST. The performance of both tools is visualized in

the ROC curves in Figure 3. The figure demonstrates that trCYK

has better performance than BLAST. However, both tools have

high FP rates, showing the need for further screening.

Like all alignment programs, a score cutoff is needed to

distinguish homologous sequences from others. We set two cutoffs

s and l, on alignment score and alignment length, respectively. s

and l determine the strength of filtration. A low cutoff will lead to

an overwhelming number of negative reads which could

significantly slow down the next two stages. A high cutoff,

however, will exclude remote homologous reads with poor

conservation from further analysis. As trCYK does not provide

such thresholds, we considered two strategies to determine the

cutoffs. First, the expected alignment score for a homologous

sequence of length L can be used as the cutoff. In order to ensure

high sensitivity, the actual cutoff can be smaller than the expected

score. Second, Monte-Carlo method can be used to evaluate the

sensitivity and FP rate of a score cutoff using a large number of

sequences that are generated from both ncRNAs and non-

ncRNAs. In this work, we used the second strategy. Figure 3 shows

that some very short homologous reads have poor alignment

scores. As the first stage defines the upper-bound of the

classification sensitivity, we chose a loose cutoff s = 1 to guarantee

Figure 1. Reads sequenced from pre-miRNAs cannot be
assembled into contigs. Reads sequenced from pre-miRNAs cannot
be assembled into contigs. Three different miRNAs show highly
different expression levels in the same RNA-seq data. A. mir-156 B.
mir-160 C. mir-166.
doi:10.1371/journal.pone.0077596.g001

RNA-CODE: ncRNA Classification for Short Reads
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Figure 2. The pipeline of RNA-CODE. The pipeline of RNA-CODE. For miRNAs, the output of the first stage (SCFG-based filtration) and the whole
pipeline will be used together for reads classification.
doi:10.1371/journal.pone.0077596.g002

RNA-CODE: ncRNA Classification for Short Reads

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e77596



that most positive reads can pass the filtration stage. We found that

this threshold also applies to reads sequenced from other types of

ncRNAs. With the increase of read length, this score threshold

needs to be improved as well. As the first stage is designed to

achieve high sensitivity, the default cutoff is set to 1. To further

increase the sensitivity of filtration, we also accept reads with

alignment score s greater than -1 and with alignment length l§30
bases.

Stage 2: family-specific de novo assembly
For reads that are coarsely classified to a family by the first

stage, they will be input to de novo assembly tools. Compared to

conducting de novo assembly on all the reads, the input sizes to

assembly tools are significantly reduced. Thus, even memory

intensive assembly tools can be applied.

Multiple de novo assembly tools exist. Depending on the data

properties, such as read length and sequencing error rates, sensible

choices can be made. In this work, the de novo assembly programs

are applied to RNA-seq data of non-model organisms or

metagenomic data. Thus, specific properties of these two data

should be considered when choosing assembly tools. Unlike

genome assembly, highly diverse sequencing coverage is expected

in both data sets. In RNA-seq data, heterogeneous expression

levels of ncRNAs contribute to highly diverse sequencing

coverage. In metagenomic data, different abundance of ncRNA

genes lead to different sequencing coverage. Choosing one set of

parameters (such as overlap threshold in overlap graph or kmer

size in de Bruijn graph) for the whole data set is not likely to

produce optimal results for downstream ncRNA analysis. Thus,

the first requirement for the chosen assembly program is that users

can adjust the parameters according to the output of the filtration

stage. Specifically, although the first stage only coarsely classifies

reads into gene families, it can be used to estimate the expression

levels or abundance of genes in a family. For families with large

number of reads classified, RNA-CODE assumes high sequencing

coverage and thus uses stringent assembly parameters. On the

other hand, for families with fewer number of classified reads,

small overlap cutoffs (in an overlap graph-based assembly tools) or

small kmers (in de Bruijn graph) should be used to ensure

connectivity for lowly transcribed regions or low abundance genes.

Second, many assembly programs removed kmers with low

coverage as they may contain sequencing errors. In order to

assembly ncRNAs of low expression or abundance, we use an

assembly tool that can keep reads/kmers with low coverage.

In this work, for very short reads (read length v50 bp), we

applied and compared several assembly programs [20,21] and

chose SSAKE [22] because it delivers better assembly perfor-

mance on our experimental data. SSAKE is a specialized de novo

assembly tool for unpaired short reads assembly. It is a graph-

based greedy assembler that efficiently assembles millions of short

reads following near-linear time complexity. During the assembly

process, the 39 end of a contig is extended if its suffix overlaps with

Figure 3. ROC curves of short reads classification using trCYK and BLAST. ROC curves of short reads classification using trCYK and BLAST.
Sensitivity measures the ratio of correctly found true tRNAs to the total number of true tRNA reads. False positive rate measures the ratio of falsely
found tRNA reads to the total number of false tRNA reads.
doi:10.1371/journal.pone.0077596.g003

RNA-CODE: ncRNA Classification for Short Reads
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the prefix of another read. SSAKE generates contigs progressively

by searching all prefixes stored in a hash table for the longest

possible prefix-suffix match whose overlap is above a threshold.

We modified the codes of SSAKE to make it accept any overlap

cutoff.

To follow standard notation for assembly algorithms, we use k

to represent either the kmer size in De Bruijn graph or the overlap

threshold in an overlap graph for assembly. The length of overlap

threshold k is an important parameter in SSAKE. A higher k

usually results in fewer but more accurate contigs. A lower k leads

to higher contiguity. But incorrect extension may happen because

the probability of a random prefix-suffix match is high. In de novo

assembly, there does not exist optimal overlap threshold. Although

the expression or abundance is not known a prior, we estimate it

using the number of classified reads in the first stage and choose k

accordingly. In addition, it is observed that using a single-k will

lead to suboptimal performance of de novo assemblers. In the

second stage, a range of k’s are chosen and used on short reads

assembly. For each k, all reads are used in assembly. The contigs

from different assemblies are subsequently pooled together for

further analysis.

Stage 3: contig selection
Some randomly aligned reads in stage 1 can be removed by

stage 2 because they are not part of any contig. However, due to

the loose overlap cutoff or small kmers, some reads can still be

assembled into contigs and thus produced by stage 2. There are

three types of contigs with reference to an ncRNA gene family: 1)

positive contigs that are assembled by reads originated from this

family, 2) negative contigs that are assembled from false reads that

are not part of the underlying gene family, and 3) chimeric contigs

that are formed by both true and false reads. Negative and

chimeric contigs can be formed due to small overlaps we allowed

in the multiple-k assembly. The probability that a contig is

extended with a negative read due to a random prefix-suffix match

is high for a small overlap cutoff. Sketches of the three types of

contigs are presented in Figure 4.

To distinguish positive contigs from negative ones, we align

contigs to the underlying CM. We chose to use trCYK for the

following reasons. 1) Both sequence and structural information of a

contig should be utilized. 2) Many contigs may not be complete

RNA genes especially when the gene transcription level is low.

Thus we need to consider missing bases while aligning contigs to

the underlying CM.

After trCYK is applied to all contigs from stage 2, if there exist

contigs with alignment scores greater than a pre-determined

cutoff, the gene of interest is considered to be transcribed. As

trCYK is a local alignment tool, it is common that only part of the

contig is aligned to the underlying CM. Thus only reads that

assemble the aligned part are classified into this RNA family. This

feature could be very effective when multiple correct segments

exist in a chimeric contig, although we did not observe such cases

in our experiment. Bad segments interleaved by correct ones could

potentially be removed.

MIRNA families
Normally, all classified reads need to pass through the entire

pipeline. But for miRNA families, as no contigs might be formed,

we used two criteria for read classification. First, the alignment

score and length of the trCYK alignments in the first stage must

pass the pre-determined threshold. Second, for all reads that align

to the miRNA* region, we examined whether they can form a

stem with reads aligned to the mature miRNA region. If not, the

reads aligning to miRNA* region will be removed. As a result,

many reads that cannot form any contig can be still classified into

miRNAs based only on the homology search results in the first

stage.

Results and Discussion

RNA-CODE can be applied to ncRNA classification in both

metagenomic data and RNA-seq data of non-model species. To

demonstrate the utility of RNA-CODE, we conducted two

experiments. In the first experiment, we tested RNA-CODE on

identifying reads sequenced from 16s rRNAs in a small-scale

metagenomic data set. It is widely known that 16s rRNA is an

important genetic marker for taxonomic identification in meta-

genomes. Identifying 16s rRNA reads can be used as the first step

to assemble full-length 16s rRNAs [4,6,7]. This experiment aims

to detect reads that are sequenced from 16s rRNAs. In the second

experiment, we tested RNA-CODE on annotating reads se-

quenced from different ncRNA genes including house-keeping

RNAs, miRNAs etc. in RNA-seq data of the model organism

Arabidopsis Thaliana.

For the first experiment, the performance of RNA-CODE was

benchmarked with Metaxa [4], which is designed for classifying

short reads into different rRNA families. For the second

experiment, the performance of RNA-CODE was benchmarked

with standard annotation pipeline for NGS data, which is de novo

assembly tools plus existing ncRNA annotation tools.

To evaluate the performance of all tools, we compared the true

membership and the predicted membership of reads. Two metrics

are used in evaluation: read-level sensitivity and positive predictive

value (PPV), which indicates accuracy. For an RNA family of

interest, let TP be the set of true positive reads originated from this

ncRNA family. Let P be the set of reads predicted to be positive.

Sensitivity is defined as

sensitivity~
P\TP

TP
:

PPV is defined as re appropriate

PPV~
P\TP

P
:

A good ncRNA identification tool should have both high

sensitivity and high PPV.

Detecting reads of 16s ribosomal RNAs
RNA-CODE can detect and discriminate among multiple

ncRNA types. This experiment tests RNA-CODE in recognition

of one type of ncRNA, 16s rRNA in a metagenomic data set.

Various tools exist for 16s rRNA search [4,11,23,24], of which,

only Metaxa is designed for short reads. Thus, we benchmark

RNA-CODE with Metaxa in this experiment.

Data. In order to accurately evaluate the performance of

RNA-CODE, we need to know the ground-truth membership of

reads in metagenomic data. Thus, we constructed a small-scale

real metagenomic data set, for which we knew which reads were

sequenced from 16s rRNAs. We obtained human gut microbial

metagenomics data from European Nucleotide Archive (http://

www.ebi.ac.uk/ena/data/view/ERA000116). The data were se-

quenced from fecal specimens of obese individual human adults

using Illumina Genome Analyser [25]. We selected two pair-ended

metagenomics data sets of different read lengths. There were

RNA-CODE: ncRNA Classification for Short Reads
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9,633,603 reads of length 44 in the one dataset and 14,822,431

reads of length 75 in the other. Without knowing the genomes of

the species in this sample and their 16s rRNA annotations, we

cannot obtain the true membership of all the reads. Thus, we need

to construct a small metagenomic data set using reads that can be

reliably labeled as 16s rRNAs in fully sequenced genomes. To do

this, we first chose species that have whole genomes and 16s rRNA

annotations using the species catalog in [26]. Then, all reads that

can be mapped to these genomes were included in the small

metagenomic data set. In total, 11 strains with complete genomes

available were selected from 67 strains designed by Turn-

baugh[26]. To determine whether a read was originated from

16s ribosomal genes, we mapped each read back to the genomes of

the 11 selected bacteria strains. The read mapping positions and

the annotation of 16s rRNA genes are combined to determine

whether a read is sequenced from 16s rRNAs. If a mapped read

share at least 80% of bases with an underlying 16s genes, we

defined this read as positive. If a read has no overlap with any 16s

gene, we defined it as negative. The reads having less than 80% of

their bases overlapped with a 16s gene are considered to be

ambiguous and were discarded. Additionally, the reads that

cannot be mapped to any of the 11 genomes were also discarded,

because we did not have enough information of their true

membership. The small-scale metagenomic data consists of both

positive and negative reads. For the data set of read length 44,

there are 606 positive reads and 71993 negative reads,

respectively. For the data set of read length 75, there are 379

positive reads and 61086 negative reads, respectively.

Figure 4. Three types of contigs.
doi:10.1371/journal.pone.0077596.g004

RNA-CODE: ncRNA Classification for Short Reads
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Experimental results. We applied RNA-CODE to the

small-scale metagenomic data sets constructed above for 16s

rRNA classification. We then compared RNA-CODE with

Metaxa, a specialized tool for detecting reads originated from

SSU rRNAs such as 12s, 16s and 18s. Same as RNA-CODE,

input to Metaxa is also a set of short reads in FASTA format.

Output of Metaxa contains short reads presumably originated

from SSU rRNAs. Short reads are categorized by the species or

organelles that they are originated from. The categories include

bacteria, archaea, eukaryota, mitochondria, and chloroplast.

Because specific categories of reads are not concerned in this

experiment, we considered a read to be a true positive if it can be

categorized in any of the 5 categories.

The above experiments were conducted on reads of 44 bases

and 75 bases using default parameters. As displayed in Table 1,

both tools achieved high specificity for both read lengths. The

sensitivity of RNA-CODE out-performed Metaxa for both read

lengths. Specifically, RNA-CODE performed well on shorter

reads. As Metaxa does read classification using hidden Markov

models (HMMs), short reads tend to produce marginal scores and

thus are hard to distinguish from non-rRNA reads. RNA-CODE

considers both sequence and secondary structure similarity and is

more sensitive for short read classification. For the same reason, as

Metaxa relies on HMMs, it is not expected to perform well on

other types of ncRNAs that lack strong sequence similarity.

NCRNA classification in RNA-seq data
To demonstrate the utility of RNA-CODE on detecting reads

sequenced from various ncRNA genes, we conducted the second

experiment on real RNA-seq data. RNA-CODE classifies reads

into different ncRNA families. For house-keeping ncRNAs such as

tRNAs and rRNAs, which contain multiple gene members, the

number of classified reads show the overall expression levels of this

type of ncRNA. For single-member ncRNA families such as many

miRNA families in some species, the number of classified reads

quantifies the expression level of this gene. We chose to use RNA-

seq of the model species Arabidopsis Thaliana, which has high-

quality genome assembly and gene annotation available in TAIR

10 (http://www.arabidopsis.org), enabling us to determine the

true membership of reads with high confidence.

Data. An RNA-seq dataset obtained from NCBI SRA

(accession number GSM706704) was used in this experiment.

This dataset was sampled from transcriptome of inflorescence

tissues of Arabidopsis Thaliana. The sample was sequenced using

Illumina platform and contains 2,327,100 short reads. After

removing adaptor sequences and quality trimming, the average

length of reads is 23.5, which poses a great challenge for both

homology search tools and de novo assembly tools. Using ncRNA

annotation from TAIR 10, there are hundreds of ncRNAs

annotated in Arabidopsis. In this work, we present the results on

classifying reads into ncRNAs annotated on chromosome 2 of

Arabidopsis.

According to TAIR10 annotation and read mapping results,

there are 15 transcribed ncRNAs on chromosome 2 in this RNA-

seq data. Out of the 15, there is one miRNA mir-825a that does

not have corresponding family in Rfam. In addition, miRBase

shows that there are only two sequences annotated as mir-825,

which are not enough to train a model. Thus, we excluded this

miRNA from our test. After removing this family, we had in total

14 transcribed ncRNAs on chromosome 2 in this data set. These

families were used to evaluate the sensitivity of ncRNA classifi-

cation. The number of mapped reads for the 14 ncRNA families

can be found in Table 2. In order to evaluate both the sensitivity

and accuracy of RNA-CODE, we randomly chose 32 non-

transcribed but annotated ncRNA families as negative test data.

The non-transcribed families have zero mapped read and are used

to evaluate the accuracy of RNA-CODE. Ideally, an accurate

ncRNA detection tool should not classify any read in this RNA-seq

data into these ncRNAs.

For each of the 46 ncRNA families (14 positive +32 negative),

we used the corresponding SCFG-based models in Rfam 10.1 as

input to RNA-CODE. Read mapping results and TAIR10

annotation are used to determine the membership of reads. Only

if a read has more than 80% of its bases overlapping with an

annotated gene, we consider the read to be a member of this gene.

Reads with no overlapping bases are unlikely to be valid

transcripts of the gene of interest. Such reads are considered to

be negative.

Experimental results. We evaluate the performance of

RNA-CODE from four aspects. First, as the filtration stage of

using trCYK is important to the performance of RNA-CODE, we

analyze the performance of trCYK in this experiment. Second, we

compare the performance of RNA-CODE with de novo assembly

tools. Third, we demonstrate the utility of using multiple overlap

thresholds in RNA-CODE. Finally, we present case studies for

miRNA genes, which produce reads that share no overlaps.

Performance of filtration. In this experiment, we report the

performance of the filtration stage for different types of ncRNAs.

The first stage of RNA-CODE uses trCYK to coarsely classify

reads into different families. Only reads that pass this filtration

stage will be further analyzed. Thus, the filtration stage

determined the upper bound of the sensitivity of RNA-CODE.

A low score cutoff is used to keep high sensitivity. The price paid,

however, is low specificity, as displayed in Table 3. trCYK did not

show good discriminative power on some genes because the

transcripts sequenced from these genes are not well conserved and

cannot form statistically significant alignments with the underlying

CM. For example, a majority of transcripts originated from Small

nucleolar RNA Z221/R21b had alignment scores lower than the

defined threshold due to poor conservation. Thus most reads

cannot pass the filtration.

Performance comparison with SSAKE. Reads that are

classified into each family are used as input to de novo assembly

programs. For N input families, N de novo assembly programs can

be run in parallel. A number of de novo assembly tools are available.

However, due to short read length and low coverage for many

types of ncRNAs, some popular tools such as Velvet [26] only

produces a few contigs. We empirically compared several de novo

assembly tools and chose SSAKE 3.8 for two reasons. First, it

produced more contigs than others. Second, the source codes of

SSAKE is relatively easy to modify to address specific needs for

this data. SSAKE was designed for short reads assembly and the

minimum length of an input read is 22 bases. In this data, there

exist reads of less than 22 bases. So we customized SSAKE to

make it accept reads as short as 19 bases. SSAKE requires a

minimum overlap of 16 bases when extending contigs. When gene

Table 1. Performance comparison of RNA-CODE vs Metaxa.
Both tools were applied using the default parameters.

RNA-CODE Metaxa

read length sen PPV sen PPV

44 0.999 1.000 0.786 1.000

75 1.000 1.000 0.986 1.000

doi:10.1371/journal.pone.0077596.t001
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expression level is low, the overlap between positive reads is often

lower than 16 bases. To assemble reads of lowly transcribed genes,

we customized SSAKE to extend a contig when its suffix has more

than 5 overlapping bases with a prefix of a read. We set Minimum

Number of Reads Needed to Call a Base During an Extension to be 1, as

opposed to 2, the default value. The rationale of using 1 is that in

the transcripts of poorly expressed genes, base coverage is low. It is

rare to find duplicates of a read when extending with this read.

The chosen assembly tool is run for each family separately.

Thus, family-specific assembly parameters can be chosen. In

particular, the overlap threshold of SSAKE can be adjusted

according to the number of classified reads by trCYK. Although

the number of classified reads is not an accurate indication of

depth of read coverage, it is preferred to choose a small overlap

threshold if the number of classified reads is small. In addition, it

has been shown that using multiple kmers can improve RNA-seq

Table 3. Filtration statistics.

gene name sensitivity PPV

5.8S ribosomal RNA 0.891 0.415

tRNA 0.882 0.5

Small nucleolar RNA SNORD96 1 0.018

mir-156 microRNA precursor 1 0.039

Mir-166 microRNA precursor 1 0.007

Mir-160 microRNA precursor 1 0.012

Small nucleolar RNA snoZ7/snoR77 1 0.003

Small nucleolar RNA Z221/R21b 0.077 0.001

mir-172 microRNA precursor 1 0.015

microRNA MIR164 1 0.002

microRNA MIR390 1 0.011

microRNA MIR408 1 0.018

microRNA MIR854 0.721 0.447

Small nucleolar RNA snoR14 1 0.007

doi:10.1371/journal.pone.0077596.t003

Table 2. Number of reads that are mapped to chromosome 2 of Arabidopsis.

ID in Rfam gene name num of mapped reads num mapped reads(unique)

RF00002 5.8S ribosomal RNA 27984 417

RF00005 tRNA 35602 1339

RF00055 Small nucleolar RNA SNORD96 29 12

RF00073 mir-156 microRNA precursor 8875 13

RF00075 Mir-166 microRNA precursor 3657 18

RF00247 Mir-160 microRNA precursor 31 4

RF00268 Small nucleolar RNA snoZ7/snoR77 7 5

RF00300 Small nucleolar RNA Z221/R21b 79 13

RF00452 mir-172 microRNA precursor 101581 15

RF00647 microRNA MIR164 2746 5

RF00689 microRNA MIR390 933 11

RF00690 microRNA MIR408 322 12

RF00893 microRNA MIR854 1367 313

RF01280 Small nucleolar RNA snoR14 9 8

doi:10.1371/journal.pone.0077596.t002

Table 4. Performance of RNA-CODE (multiple-k), SSAKE, and
RNA-CODE (single-k) on transcribed ncRNA families.

gene name RNA-CODE SSAKE single-k

sen PPV sen PPV sen PPV

5.8S ribosomal
RNA

0.778 0.95 0.99 0.884 0.999 0.978

tRNA 0.437 0.984 0.274 0.996 0.044 1

Small
nucleolar RNA
SNORD96

1 1 0.857 1 0.903 1

mir-156
microRNA
precursor

0.929 1 0.786 1 0 N/A

Mir-166
microRNA
precursor

1 0.947 0.944 1 0.996 1

Mir-160
microRNA
precursor

0.75 0.214 0 N/A 0 N/A

Small
nucleolar RNA
snoZ7/snoR77

1 1 0 N/A 0 N/A

Small nucleolar
RNA Z221/R21b

0 N/A 0 N/A 0 N/A

mir-172
microRNA
precursor

1 1 0.733 1 1 1

microRNA
MIR164

1 1 1 1 1 1

microRNA
MIR390

0.909 1 0.909 1 0.996 1

microRNA
MIR408

1 0.75 1 1 1 1

microRNA
MIR854

0.599 0.978 0.468 0.698 0.415 1

Small nucleolar
RNA snoR14

0.25 1 0 N/A 0 N/A

doi:10.1371/journal.pone.0077596.t004
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assembly [21]. As described in our method, RNA-CODE also uses

multiple overlap thresholds. Thus, for SSAKE, we allow overlap

from 6 to 16 if the number of classified reads by trCYK is less than

10,000. Otherwise, we use 10 to 20. Users can adjust these

parameters according to any known knowledge.

The performance of RNA-CODE on the 14 transcribed

families is listed in Table 4. For the 32 control families, which

were not considered to be transcribed, RNA-CODE did not find

any reads, yielding 0% false positive rate. This indicates that

RNA-CODE can successfully distinguish transcribed families from

un-transcribed ones. Table 4 also includes the performance

comparison with SSAKE. More specifically, all reads are used as

input to SSAKE. Then, all contigs produced by SSAKE are

searched against input ncRNA families using trCYK. The

comparison shows that RNA-CODE yielded better performance

on all genes except for 5.8S ribosomal RNA. Without the first stage, a

large number of negative reads may be assembled together with

positive reads and form chimeric contigs. In chimeric contigs,

positive reads could be interleaved by negative reads, making the

alignment score between itself and the underlying CM low.

The reason why RNA-CODE was out-performed on 5.8S

ribosomal RNA is that many short reads originated from 5.8S ribosomal

RNA did not pass the filtration due to poor conservation. As a result,

the overall sensitivity is lower than de novo assembly tools.
Using multiple overlap thresholds improves performance

of RNA-CODE. Multiple-k approach is another important

component in the pipeline. To demonstrate the effectiveness of

this approach, we compared RNA-CODE using multiple-k and

single-k approach. Sensitivity of RNA-CODE using multiple-k is

generally better than using single-k, except for 5.8S ribosomal RNA

and MIR-390. We used the default k value (i.e. 16) in single-k

approach. Many contigs assembled from short reads originated

from lowly expressed genes were not recovered in the single-k

approach; since overlap between two positive reads may be less

than 16 bases. However, using multiple overlap thresholds may

also introduce chimeric contigs, which explains the worse

performance of RNA-CODE using multiple k than single k on

5.8S ribosomal RNA and MIR-390.

Performance of microRNA families. For eight transcribed

miRNA genes, RNA-CODE performs better in six of them and

has the same sensitivity and PPV for the other two. This is

expected because miRNA reads usually cannot be assembled. In

this data set, because of the extreme short reads, some of them are

assembled into the mature miRNA and thus are able to be output

by SSAKE. For example, reads of length between 19 and 22 are

assembled into the mature miRNA of length 25 for mir-156. For

most RNA-seq data that have longer reads after quality trimming,

de novo assembly tools will not be able to assemble them into

contigs. Thus, using both homology search and de novo assembly is

important to generate a comprehensive catalog of ncRNAs.

Conclusion

We presented an ncRNA classification tool that can determine

the membership of reads that are sequenced from ncRNA genes.

By combining homology-based ncRNA search method and family-

specific de novo assembly, we can classify reads into different types

of ncRNAs, including those that cannot be assembled because of

cleavage and degradation. This tool can be applied to NGS data

that do not have quality reference genomes, such as metagenomic

data and RNA-seq data of non-model organisms.

RNA-CODE relies on trCYK as the ncRNA homology search

tool for very short reads. When reads are longer, more efficient

ncRNA homology search tool such as Infernal [11] can replace

trCYK. For very short reads, trCYK is still the best choice in order

to yield high sensitivity.
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