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Abstract

Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this
malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by
simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic
interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques
for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a
computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel
computational approach based on network topology and machine learning capable to predict oncogenic interactions and
extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This
approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these
oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the
prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions
with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which
mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting
oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original
interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the
potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken
together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research interested in
detecting signaling networks most prone to contribute with the emergence of malignant phenotype.
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Introduction

The cancer phenotype is driven by the simultaneous expression

of six biological capabilities: self-sufficiency in growth signals,

insensitivity to antigrowth signals, avoidance of apoptosis,

sustained angiogenesis, limitless replicative potential and tissue

invasion and metastasis [1]. All these ‘‘hallmarks of cancer’’

emerge as a result of the complex interplay among oncogenic

signals that are sets of sequential physical and biochemical

reactions, i.e. phosphorylation, dephosphorylation, binding, disso-

ciation etc., that are triggered by oncogenes or tumor suppressor

genes and culminate in the expression of fundamental cell

physiology changes associated with the malignant phenotype.

In general, oncogenic signals disturb the normal interactions as

long as these signals propagate through the signaling network. For

example, the overexpression of CCND1, a gene that is an

important regulator in cell cycle progression, is the result of the

constitutive oncogenic signaling triggered by mutated KRAS in

many cancer cells [2]. The interactions downstream to KRAS and

upstream to CCND1 are disturbed and, as a consequence, CCND1

is overexpressed. However, overexpression of CCND1 alone is not

sufficient to drive oncogenic transformation through the self-

sufficiency in growth signals supported by mutated KRAS.

Instead, additional oncogenic signals altering nuclear trafficking

and ubiquitin-mediated proteolysis are required to promote the

nuclear retention of the overexpressed CCND1 [3], condition of

which the continued proliferation of cell, one of the features

necessary to a full malignant transformation, can be sustained.

The above-mentioned example reinforces the fact that a normal

cell will be transformed into a cancer cell only if multiple normal

interactions are simultaneously disturbed by multiple oncogenic

signals. In this regard, the determination of the oncogenic role of

individual genes or proteins is insufficient to decipher the

intricacies of the signaling pathways involved in cancer. The

determination of oncogenic role of genes and proteins in a systems

level, on the other hand, would be preferable to this end and, as a

matter of fact, systems biology-based approaches have been

convincingly shown to be successful in uncovering the functioning

of cancer signaling pathways (for reviews on cancer systems

biology, see [4] and [5]).

The combination of machine learning and graph theory is one

of the systems biology-based approaches used to determine and

predict how phenotypes emerge from the interactions among

biological entities. We have previously used this approach to

predict essential genes on a genome-wide scale and determine

cellular rules for essentiality on Escherichia coli [6] and Saccharomyces
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cerevisiae [7]. Moreover, we have also used the combination of

machine learning and graph theory to predict morbid and

druggable genes and determine rules for morbidity and drugg-

ability in human [8]. Besides attaining successful prediction rates,

we have also obtained biologically plausible cellular rules in these

cases. These findings prompted us to investigate whether the

combination of machine learning and graph theory would be also

useful to reveal in a systems-level how cancer signaling pathways

act in concert to generate the malignant phenotype.

For this purpose, we present in this paper a novel computational

method based on machine learning and graph theory, the

graph2sig, that determines (1) the oncogenic potential of an

interaction, i.e. its capacity to transmit oncogenic signals in an

integrated network of human gene interactions (INHGI) and (2)

extracts from INHGI potential cancer-related signaling subnet-

works given two genes of interest by using the oncogenic potential

scores assigned to the interactions. Using graph2sig, we were able to

reliably predict the oncogenic potential of interactions as well as to

extract from INHGI subnetworks containing known and potential

oncogenic pathways supported by experimental evidence. To the

best of our knowledge, this is the first time that the combination of

machine learning and graph theory is used to predict both the

oncogenic potential of interactions and potential cancer-related

signaling subnetworks.

Materials and Methods

The aims of graph2sig is twofold: prediction of the oncogenic

potential of interactions (Figure 1) and extraction of potential

oncogenic signaling subnetworks from the INHGI (Figure 2). The

first step of graph2sig is the construction of the INHGI and the

computation of network centralities of genes in INHGI (Table 1).

The second step concerns the use of these computed network

centralities as training data for training machine learning

algorithms (or learners) to generate prediction models for assigning

oncogenic potential to interactions. The third step is the

assignment of a ‘‘oncogenic potential’’ (pcan) to each interaction

by these prediction models (Figure 1).

The fourth step is to find the paths between two genes of

interest, gi and gj , in the INHGI with the highest pcan values by

using the recursive enumeration algorithm (REA) [9], a path

finding algorithm that lists the paths in the order of their weights

(in this case, the pcan). The final step is the selection and merging of

paths found by REA for building the potential cancer-related

signaling subnetwork containing the highest oncogenic pathways

linking gi and gj (Figure 2). These steps were implemented in a

bash script available at http://www.lbbc.ibb.unesp.br/graph2sig.

First step: INHGI construction and computation of
network centralities

INHGI construction. The INHGI, which contains only

experimentally verified interactions, was constructed based on

assumption that two genes, g1 and g2, coding respectively for

proteins p1 and p2, are interacting genes if (i) p1 and p2 interact

physically (protein physical interaction), (ii) the transcription factor

p1 directly regulates the transcription of gene g2, i.e., p1 binds to

the promoter region of g2 (transcriptional regulation interaction),

or (iii) the enzymes p1 and p2 share metabolites, i.e., a product

generated by a reaction catalyzed by enzyme p1 is used as reactant

by a reaction catalyzed by enzyme p2, or the enzyme p1 generates

a metabolite that interacts with a non-enzymatic p2 (metabolic

interaction). The experimentally verified human interactions were

obtained from different sources according to the type of

interaction as described below.

Protein-protein physical interactions data were obtained from

version 1.3 of the Human Integrated Protein-Protein Interaction

rEference (HIPPIE), a database dedicated to the collection of

experimentally verified and scored human protein-protein inter-

actions integrated from multiple sources [10]. We collected from

HIPPIE only interactions detected by experimental techniques

that received scores of 5 or more, i.e. techniques that were

considered by HIPPIE expert curators as those with high reliability

and low error rate [10]. Protein-protein interactions from HIPPIE

(and from all other similar databases in fact) are considered

undirected interactions because this type of interaction is supposed

to be non-directional. However, as the extraction of potential

oncogenic signaling subnetworks from INHGI depends on the

directionality of interactions, i.e. direction of signal flow between

proteins, and interactions provided by our source of training data,

the KEGG PATHWAY [11], are directed (see more details in the

section ‘‘Construction of training datasets’’), each protein-protein

interaction p1 – p2 was transformed in two distinct directed

interactions: p1 ? p2 and p2 ? p1.

Human transcriptional regulation interactions were obtained

from the current version of the Human Transcriptional Regula-

tion Interaction database (HTRIdb; [12]). Created by our group,

HTRIdb is a repository of experimentally verified interactions

between human transcription factors and their target genes

detected by 14 distinct experimental techniques embracing both

small and large-scale techniques. We collected from HTRIdb all

transcription factors/target genes interactions.

Metabolic interactions were extracted from the human meta-

bolic model Recon 1 [13] by a code implemented in Mathematica
H 7.0 (Wolfram Research, Inc.). We excluded those metabolic

interactions generated by the so-called ‘‘currency metabolites’’,

abundant molecular species present throughout the cell most of

the time and, therefore, unlikely to impose any constraints on the

dynamics of metabolic reactions [14]. We considered currency

metabolites the eight most connected metabolites (ADP, ATP,

Hz, H2O, NADPz, NADPH, orthophosphate and pyrophos-

phate) in the original metabolic model Recon 1. In addition, we

added to the set of metabolic interactions some important

interactions that are missing in the Recon 1: PIK3CA ? PDPK1,

PIK3CA ? ILK, PIK3CA ? AKT3, PIK3CA ? AKT2,

PIK3CA ? AKT1, PIK3CB ? PDPK1, PIK3CB ? ILK,

PIK3CB ? AKT3, PIK3CB ? AKT2, PIK3CB ? AKT1,

PIK3CD ? PDPK1, PIK3CD ? ILK, PIK3CD ? AKT3,

PIK3CD ? AKT2, PIK3CD ? AKT1 and PTEN ? AKT1.

The final INHGI is a directed network formed by the integration

of the protein physical, metabolic and transcriptional regulation

interactions through genes common to these data sets (see

Dataset S1). Before performing the integration, we converted all

human gene names to their GeneID – as provided by the Entrez

Gene database [15] – to avoid the creation of false interactions due

to gene name ambiguity.

Computation of network centralities. For each gene g in

INHGI, we computed 4 network centrality measures as listed in

Table 1. Briefly, degree centrality (deg) is defined as the number of

links to node (in our case, gene). Clustering coefficient (cluster) of a

node (in our case, a gene) quantifies how close the node and its

neighbors are to being a clique, i.e., all nodes connected to all

nodes. For the INHGI, cluster is defined as the proportion of links

between the genes within the neighborhood of g divided by the

number of links that could exist between them. Betweenness

centrality (bet) reflects the role played by a node (in our case, a

gene) in the global network architecture and, for the INHGI, is

defined as the fraction of shortest paths between gi and gj passing

through g. Closeness centrality (clo) measures how close a node (in
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our case, a gene) is to all others in the network and, for the INHGI,

is defined as the mean shortest path between g and all other genes

reachable from it. All these network centrality measures were

calculated by the Python package NetworkX 1.6 [16].

Second step: generation of prediction models
Construction of training datasets. We constructed two

groups of balanced training datasets, i.e., datasets containing the

same number of positive (in our case, known oncogenic

interactions) and negative (in our case, non-oncogenic interactions)

examples: ‘‘normal datasets’’ and ‘‘shuffled datasets’’. These

training data are available at http://www.lbbc.ibb.unesp.br/

graph2sig.

For constructing the training datasets, we first gathered a list of

oncogenic interactions – interactions known to transmit oncogenic

signals – from the cancer pathway maps provided by KEGG

PATHWAY database [11] and then mapped them to the INHGI.

The final list of oncogenic interactions used as positive examples to

train our machine learning algorithm is comprised by 265

oncogenic interactions present in the INHGI (see Dataset S1).

Regarding the negative examples, we considered as ‘‘non-

oncogenic interactions’’ the remaining interactions present in the

INHGI because currently it is not possible to build a list of

interactions not known to transmit oncogenic signals. We

randomly selected 1000 different sets of 265 of these non-

oncogenic interactions and combine them with the list of 265

known oncogenic interactions to build 1000 different training

datasets containing 530 interactions each. These are the ‘‘normal

datasets’’. From these normal datasets, we generate 10000

different ‘‘shuffled datasets’’ by randomly shuffling the class labels

(oncogenic and non-oncogenic) among interactions (Figure 1).

Construction of prediction models. We employed the

version 3.7.5 of WEKA (Waikato Environment for Knowledge

Analysis) software package, a collection of machine learning

algorithms for data mining tasks [17], to generate the prediction

models. We used the training data described in the previous

section to train the bootstrap aggregating (bagging), a machine

learning ensemble meta-algorithm that combine multiple base

learners [18]. In our case, we selected as the base learner the J48

algorithm, a WEKA’s implementation of the C4.5 decision tree

[19], with the default parameters.

Usually, the generation of prediction models by bagging is

conducted as follows: (1) n bootstrap replicates of the training

dataset is created; (2) each replicate is presented to the base learner

Figure 1. Initial steps of graph2sig. After building the INHGI and calculating the network centralities, balanced training groups are constructed
and presented to the selected machine learning algorithm (bagged J48) that, in turn, generates the prediction models as depicted in (A). These
prediction models are combined in one final prediction model by the Vote algorithm. This final model is then used to assign oncogenic scores to
interactions in INHGI originating the wINHGI as shown in (B).
doi:10.1371/journal.pone.0077521.g001
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that than builds n prediction models; and (3) these n prediction

models are eventually combined in a single model. In our case,

bagging was configured to produce 20 bootstrap replicates of each

training dataset and these replicates were then presented to J48

that, in turn, generated 20 prediction models for each training

dataset. These models were finally combined in a single model for

each training dataset totaling 1000 combined ‘‘normal’’ models

(generated from the normal datasets) and 10000 combined

‘‘shuffled’’ models (generated from shuffled datasets).

Performance of constructed prediction models. We

assessed the performance of our prediction models by estimating

their recall, precision and area under the receiving operating

characteristic (ROC) curve (AUC). Recall is the proportion of

actual oncogenic interactions which are correctly predicted as such

against all actual cancer-related interactions:

Recall~
TP

TPzFN

Figure 2. Final steps of graph2sig. (A) The application of REA on the wINHGI generates a list of m paths along with their costs for each pair of
genes and these costs are converted to weights and normalized so that the minimum weight is zero and the maximum weight is 1. (B) Twenty
subnetworks are generated from this list of paths and the subnetwork with the highest average clustering coefficient is selected. (C) For each pair of
genes, 41 subnetworks are generated and, among these subnetworks, the one with the highest average clustering coefficient is selected as the final
potential cancer-related subnetwork.
doi:10.1371/journal.pone.0077521.g002
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TP (true positive) denotes the amount of actual cancer-related

interactions correctly predicted as such and FN (false negative)

denotes the amount of actual cancer-related interactions incor-

rectly predicted as not known to be related to cancer, respectively.

Precision is the proportion of actual cancer-related interactions

which are correctly predicted as such against all interactions

predicted as related to cancer:

Precision~
TP

TPzFP

FP denotes the amount of interactions actually not known to be

related to cancer incorrectly predicted as cancer-related interac-

tions, respectively.

The AUC is a summary measure of the ROC curve – a plot of

the true positive rate versus false positive rate that indicates the

probability of a true positive prediction as a function of the

probability of a false positive prediction for all possible threshold

values [20] – and is equivalent to the probability that a randomly

chosen negative example (in our case, a non-oncogenic interac-

tion) will have a smaller estimated probability of belonging to the

positive class than a randomly chosen positive example (in our

case, a oncogenic interaction) [21].

Using WEKA, we estimated the above-mentioned performance

measures by performing a 10-fold cross-validation to test the 1000

combined normal and 10000 combined shuffled prediction

models. The 10-fold cross-validation works as follows: each dataset

is randomly partitioned into 10 subsets. Of the 10 subsets, a single

subset is retained as the validation data for testing the model, and

the remaining 9 subsets are used as training data. The cross-

validation process is then repeated 10 times, with each of the 10

subsets used exactly once as the validation data. The 10 results

from the folds are then averaged to produce a single estimation for

each performance measure for each prediction model. In our case,

each performance measure of each prediction model is an average

of 200 results since each model is a combination of 20 other

models. Finally, we reported the performance measures estimated

by the 10-fold cross-validation as medians of the 1000 combined

normal and 10000 combined shuffled prediction models.

The statistical comparisons of the performance measures

estimated by our prediction models generated by normal and

shuffled datasets were performed by the Mann-Whitney-U test

[22]. According to established conventions in the machine

learning community, we used this test since it makes no

assumptions about the underlying distribution of performance

measures used to evaluate the prediction models [23]. Differences

between performance measures estimated by our prediction

models generated by normal and shuffled datasets with a p-value

v0.005 were considered statistically significant.

Third step: prediction of potential oncogenic interactions
We assembled the 1000 combined normal prediction models

constructed in the previous step in one single model (available at

http://www.lbbc.ibb.unesp.br/graph2sig) by using ‘‘Vote’’, a

WEKA’s implementation of the voting meta-algorithm that

combines the output predictions of each prediction model by

different rules [24]. We then applied this single prediction model,

which contains 20000 models as a result of the combination of the

1000 combined models that, in turn, contains 20 models each, to

assign pcan values, i.e., potential to transmit oncogenic signals, to

the entire set of interactions in INHGI pcan values. The final pcan

value is an average of 20000 values individually assigned by each

model within the single prediction model.

Fourth step: execution of the recursive enumeration
algorithm (REA)

To find the paths with the highest pcan values between two genes

gi and gj in the INHGI, graph2sig uses REA [9]. This algorithm

enumerates k paths between a start and an end node in the reverse

order of their costs, C, so that the path with minimum C is ranked

first among the k paths. Before executing REA, pcan values in

INHGI are converted into costs (1{pcan) since REA considers the

weights of edges as costs. In this way, the path with the maximumXI

i~1
pcarc(i), where I is the total number of interactions in the

path, corresponds to the path with minimum C for REA.

In REA, besides selecting a start node – in our case a gene gi

that triggers the oncogenic signal – and an end node – in our case

a gene gj of interest that receives the oncogenic signal triggered by

the start gene – it is also possible to define k up to a maximum

value predetermined for each size of network. For INHGI, for

instance, REA allows to define a maximum p of 3|106 paths. For

each pair gi – gj , graph2sig runs REA with 41 different values of k:

100 to 1000 in increments of 100 paths, 2000 to 10000 in

increments of 1000 paths, 20000 to 100000 in increments of 10000

paths, 200000 to 1000000 in increments of 100000 paths and

1500000 to 3000000 in increments of 500000 paths.

From the 41 groups of paths returned by REA, 41 potential

cancer-related signaling subnetworks are constructed for each gi –

gj pair as shown in the next section.

Final step: extraction of potential cancer-related
signaling subnetworks

In this final step of graph2sig, from each group of paths returned by

REA (e.g., group with 1000 paths or 100000 paths) for each gi – gj

Table 1. Network centralities measures used as training features in graph2sig.

Centrality measure Function Description

Degree centrality deg(g) Number of links to gene g representing the number of interactions.

Clustering coefficient
clu(g)~

2ng

kg(kg{1)

ng is the number of links connecting the neighbors of g and kg is the number of links connecting g

to its neighbors.

Betweenness centrality
bet(g)~

X

gi=g=gj

sgi gj
(g)

sgi gj

sgi gj
is the number of shortest paths between gi and gj and sgi gj

(g) is the number of shortest paths

between gi and gj passing through g.

Closeness centrality clo(g)~
nP

gj

d(g,gj )
d(g,gj)is the shortest distance between genes g and gj ; n is the number of genes in the network.

doi:10.1371/journal.pone.0077521.t001
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pair, the potential cancer-related signaling subnetwork is construct-

ed as follows:

1. For each path, C is converted to weight, W , where W~
1

C
;

2. W values are normalized so that max (W )~1 and

min (W )~0 as following:

g(k)~
W (k){ min (W )

max (W ){ min (W )
ð1Þ

where g(k) is the normalized W for path k and W (k) is the

calculated weight in (1) for path k;

3. Twenty subnetworks are constructed such that each subnet-

work is comprised by a set of k paths with gƒ1{m where m
ranges from 0 to 0.95 in increments of 0.05 (Figure 2);

4. The subnetwork with the highest average clustering coefficient

among all 20 subnetworks is selected as the potential cancer-

related signaling subnetwork (Figure 2).

At this level, graph2sig contains a collection of 41 potential

cancer-related signaling subnetworks for each gi – gj pair. The

ultimate potential cancer-related signaling subnetwork for each gi

– gj pair is the subnetwork with the highest average clustering

coefficient among the 41 subnetworks (Figure 2).

Results and Discussion

INHGI: general features
The construction of the INHGI is fundamental to graph2sig since

the utilization of network centrality measures of genes as training

features in the machine learning approach proposed here is the

core of the whole process. In addition, the extraction of a signaling

subnetwork makes sense only in a network context. Thus, it is

important to be aware of some general features of the INHGI as

these features can serve as useful resources for the analysis and

interpretation of results.

The INHGI is a directed network comprised by 19789 genes and

318332 interactions. From these 19789 genes, 13932 interact with

each other via 242716 protein physical interactions (considered

here as directed interactions; see details in ‘‘Methods’’), 1166 via

24299 metabolic interactions and 18310 via 51317 transcriptional

regulation interactions. Moreover, 896 genes interact with each

other via protein physical and metabolic interactions, 12508 via

protein physical and transcriptional regulation interactions and

1042 via metabolic and transcriptional regulation interactions (see

Dataset S1).

The INHGI is certainly far from complete if we consider, for

example, the estimates calculated by Stumpf and colleagues [25]:

they have estimated that the size of human network of protein-

protein interactions is about 650000 interactions. Therefore,

INHGI contains &19% of total number of estimated human

protein-protein interactions as 121358 undirected protein-protein

interactions are present in this network. Moreover, INHGI

contains approximately 46% of the already identified 43059

human genes (according to the EntrezGene database [15] accessed

on September 10th, 2012). The remaining 23211 genes absent

from INHGI are transcriptionally regulated by at least one

transcription factor implying that, in the future, INHGI will be

increased by the addition of at least 23211 transcriptional

regulation interactions.

Due to the incompleteness of the INHGI discussed above – in

fact a noticeable characteristic of all networks constructed

exclusively by experimentally validated interactions –, the results

described in the next sections are valid only for the current INHGI.

Any alteration in the structure of INHGI will also change the

network centrality measures and, as a consequence, the construc-

tion of prediction models as well as the assignment of pcan values.

Evaluation of the performance of prediction models
The second and third steps of graph2sig concern, respectively, the

generation of prediction models and assignment of oncogenic

potential scores, pcan, to interactions in INHGI. Prior to the

assignment of pcan values (as described in detail in ‘‘Methods’’), we

sought to estimate the performance of the generated prediction

models in recovering known oncogenic interactions and distin-

guishing non-oncogenic from oncogenic interactions. For this

purpose, we assessed their performance by measuring their median

recall, precision and AUC across the 1000 normal models (see

‘‘Methods’’ for more details).

Before analyzing the performance measures of our prediction

models, we estimated the performance measures of the prediction

models generated from the shuffled datasets and then compared

them with the prediction models generated from the normal

datasets. This was done to check whether the prediction models

built by training the bagged J48 on non-shuffled datasets learned

the traits actually associated with cancer instead of traits associated

with any random subset of genes. For this comparison, we used the

Mann-Whitney-U test [22] as described in ‘‘Methods’’. For

shuffled models, the recall ranged from 0.22 to 0.81 with a

median of 0.49, the precision ranged from 0.39 to 0.69 with a

median of 0.5 and the AUC ranged from 0.38 to 0.62 with a

median of 0.49. All these values are statistically different from the

performance measures of normal models (p-value v2|10{16 for

all measures), thereby indicating that the traits actually associated

with cancer were learned by our normal prediction models.

After confirmation that the prediction models generated from

normal datasets is likely to learn the traits actually associated with

cancer, we aimed to analyze their performance measures. As

shown in Figure 3, the recall of prediction models ranged from

0.83 to 0.94 with a median of 0.89 and their precision ranged from

0.71 to 0.83 with a median of 0.77. Then, the prediction models

correctly recovered 89% of known oncogenic interaction with a

precision of 77%. Furthermore, the probability of an interaction

predicted as oncogenic actually belongs to the set of known

oncogenic interactions ranged from 84% to 93% with a median of

89% as indicated by the median AUC (Figure 3).

While our prediction models are able to recover most of known

oncogenic interactions as revealed by their high recall (median of

89%), their ability to distinguish oncogenic from non-oncogenic is

less pronounced as revealed by their moderate precision (median

of 77%). This indicates a certain level of noise in the training data

that is likely associated with the existence of shared common

features between oncogenic and non-oncogenic interactions that

induced our prediction models to yield a moderate performance in

discriminating oncogenic from non-oncogenic interactions. This

can be partially due to the strategy used to select non-oncogenic

interactions: since it is impossible at present to compile a list of

non-oncogenic interactions, we selected interactions not known to

transmit oncogenic signals, i.e., all interactions in INHGI except

the known oncogenic interactions, as non-oncogenic interactions.

Thus, some of these non-oncogenic interactions may actually be

existing oncogenic interactions not yet present in the cancer

pathway maps provided by KEGG PATHWAY database.

Our strategy for selecting the oncogenic interactions could also

have contributed to the existence of shared common features

between oncogenic and non-oncogenic interaction. As previously

mentioned in the section ‘‘Materials and Methods’’, we considered

Oncogenic Interactions and Signaling Networks
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as ‘‘oncogenic’’ those interactions present in the cancer pathways

maps provided by KEGG PATHWAY database. We cannot

guarantee the real ‘‘oncogenicity’’ of these interactions since these

cancer pathways maps are inferred from literature by KEGG

expert curators through the combination of experimental data

obtained from different research articles. No experimental

evidence has been reported so far to show that these pathways,

at least in their entirety, are actually utilized in cancer cells.

Although we did not try to construct training groups by using

oncogenic interactions collected from sources other than KEGG

PATHWAY, we believe that it is difficult to avoid this uncertainty

about the real oncogenicity of interactions. For example, the

pathways present both in the NetPath database [26] and in the

oncogenic signaling map constructed by Cui and colleagues [27],

two alternatives to KEGG PATHWAY for gathering oncogenic

interactions, are also collected by using the same strategy as in the

case of KEGG PATHWAY.

Another contributing factor for the existence of shared common

features between non-oncogenic and oncogenic interactions can

be the incompleteness of INHGI as previously discussed. Since our

network contains about 121000 undirected protein-protein inter-

actions in comparison to the estimated 650000 human protein-

protein interactions [25], we can envisage that the values of all

network centrality measures might change with the enlargement of

network size and, therefore, some of the network centralities-

related shared common features between oncogenic and non-

oncogenic interactions might disappear as a consequence.

Do pcan values reliably express the oncogenic nature of
interactions?

As the final goal of graph2sig is to use the pcan values as edge

weights for the extraction of oncogenic signaling subnetworks

between any two genes of interest in the INHGI, it is important to

check whether these values reliably express the oncogenic nature

of interactions. For this purpose, the prediction models evaluated

in the previous section were merged in a single model that, in turn,

was used to assign pcan values to all interactions in the INHGI (see

details in ‘‘Methods’’). This weighted INHGI will be hereafter

denoted by wINHGI.

Our prediction model seems indeed to express the oncogenic

nature of interactions: known oncogenic interactions clearly

received high oncogenic potential scores as shown by Figure 4.

In fact, by using a hypergeometric test – statistical test that

calculates the likelihood, in a p-value form, that the overrepre-

sentation of a certain category in a sample occurs by chance – we

showed that the 257 known oncogenic interactions, which

represent 0.08% of interactions in wINHGI and 0.8% of the

30395 interactions that received pcan values greater than 0.7

(onco net), are significantly overrepresented in the onco net with a

p-value ~10{237. Furthermore, 252 (95%) of the 265 known

oncogenic interactions were assigned values of pcanw0:7.

The fact that known oncogenic interactions are overrepresented

in onco net is not surprising since these interactions were used as

training examples for constructing the prediction model. To

convincingly demonstrate that pcan values reliably express the

oncogenic nature of interactions, we asked whether putative

oncogenic interactions – interactions that seem to be involved in

cancer and are currently absent from the KEGG PATHWAY

database – also received high oncogenic potential scores by our

prediction model and are also significantly overrepresented in

onco net. To achieve this goal, we considered as putative

oncogenic interactions the ‘‘oncogenic signal transduction events’’

defined by Cui and colleagues [27]. According to these

investigators, oncogenic signal transduction events are interactions

in which the upstream and downstream nodes get altered either

genetically or epigenetically and, therefore, they are most likely to

be selected and used in cancer signaling. Our oncogenic

transduction events are interactions in the wINHGI in which both

genes are those for which mutations have been causally implicated

in cancer. These genes were collected from the Cancer Gene

Census (http://www.sanger.ac.uk/genetics/CGP/Census/; [28]).

As shown in Figure 5, our prediction model tended to assign

high oncogenic potential scores to these oncogenic transduction

events although this assignment is not as clear as in the case of

known oncogenic interactions. However, by using a hypergeo-

metric test, we showed that the oncogenic signal transduction

events, which represent 0.3% of interactions in wINHGI and 1.5%

of interactions in onco net, are significantly overrepresented in

onco net with a p-value ~3|10{187. Moreover, 470 (43%) of the

1066 oncogenic signal transduction events in wINHGI were

assigned values of pcanw0:7.

Determination of oncogenic signaling subnetworks in
the wINHGI

As shown in the previous section, the oncogenic scores assigned

by the first step of graph2sig seem indeed to reflect the oncogenic

nature of interactions. However, as mentioned in ‘‘Introduction’’,

Figure 3. Boxplot showing the predictive performance mea-
sures for prediction models. Boxplot showing the distribution of
recall, precision and AUC values for 1000 prediction models generated
from normal datasets (red boxes) and 10000 prediction models
generated from shuffled datasets (blue boxes). The distributions of
performance values for models generated from normal and shuffled
datasets are statistically different according to the Mann-Whitney-U test
(p-value v2|10{16 for all measures).
doi:10.1371/journal.pone.0077521.g003
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a normal cell will be transformed into a cancer cell only if multiple

normal regulatory interactions are simultaneously disturbed by

multiple oncogenic signals. This prompted us to proceed to the last

steps of graph2sig: to use the oncogenic scores as edge weights in the

extraction of oncogenic signaling subnetworks between any two

genes of interest in the INHGI (Figure 2).

To evaluate the performance of graph2sig on extracting cancer

signaling subnetworks between genes of interest, oncogenic linear

pathways (OLPs) extracted from cancer pathway maps provided

by KEGG PATHWAY database were checked for their presence

within the extracted subnetworks. As currently there is no database

dedicated to the collection of experimentally validated cancer

signaling subnetworks, we were forced to use the OLPs as

surrogates for assessing the performance of graph2sig. For this

purpose, we selected OLPs from which all interactions could be

mapped to INHGI and the initial gene was an oncogene or tumor

suppressor gene. In addition, we selected OLPs from which the

oncogenic signal triggered by the initial gene reaches the target

genes only through direct interactions. Using this strategy, we

obtained 52 OLPs with number of interactions ranging from 3 to 8

(Table S1). We then used graph2sig to extract from INHGI the

cancer signaling subnetworks between the initial and target genes

from each OLP.

From the 52 pairs of genes collected from the above-mentioned

OLPs, graph2sig extracted subnetworks with size ranging from 10

to 3273 interactions (Table S1 and Dataset S2). Thirty-two

subnetworks (&61% ) contain all interactions from their

corresponding OLPs and 43 subnetworks (&83%) contain 50%

or more interactions from their corresponding OLPs (Table S1).

Before proceeding to the analysis of subnetworks per se, we

checked whether the success rate of graph2sig, i.e. the ratio between

the number of interactions of the OLP in the subnetwork and the

actual number of interactions in OLP, was dependent on factors

other than the availability of pathways with high oncogenic scores

linking the selected initial and target genes.

First, we examined the apparent dependence of success rate of

graph2sig on OLP size. At a first glance, the success rate of graph2sig

seems to rely on the OLP size: as we can observe in the Table S1,

all subnetworks constructed from OLPs with 3 interactions and

80% of subnetworks constructed from OLPs with 4 interactions

contain all interactions from their corresponding OLPs. On the

other hand, only &23% of the subnetworks constructed from

OLPs with more than 4 interactions contain all interactions from

their corresponding OLPs. To ascertain whether there is indeed a

dependence between the success rate of graph2sig and OLP size, we

applied the Kendall’s rank correlation test to assess the correlation

strength between these variables. According to this test, success

rate of graph2sig and OLP size correlate moderately with each

other (Kendall correlation coefficient tB = 20.56, p-value

= 6:2|10{9). Therefore, the performance of graph2sig is not

strongly influenced by OLP size.

Second, we attempted to determine whether the success rate of

graph2sig could be dependent on the ratio between the sizes of the

subnetwork and the corresponding OLP (subnet:OLP ratio).

According to Table S1, &68% of subnetworks with subnet:OLP

ratio greater than or equal to 10 contain all interactions of the

corresponding OLPs while &40% of subnetworks with subne-

t:OLP ratio less than 10 contain all interactions of the

corresponding OLPs. We performed a Kendall’s rank correlation

test that showed a weak correlation (Kendall correlation coefficient

tB = 0.31, p-value = 0.001) between the success rate of graph2sig

and subnet:OLP ratio. Thus, the performance of graph2sig is also

not strongly influenced by the subnet:OLP ratio.

It is worth to point out, however, that these correlations

between the success rate of graph2sig and the OLP size and the

subnet:OLP ratio as well as the success rate of graph2sig itself

should be interpreted cautiously. As already discussed in the

section ‘‘Evaluation of the performance of prediction models’’,

OLPs are pathways inferred from literature by KEGG expert

curators through the combination of experimental data obtained

from different research articles [29]. To the best of our knowledge,

so far no experimental evidence has been reported to show that

these OLPs, at least in their entirety, are actually utilized in cancer

cells. This limitation regarding the usage of OLPs as references is

thus likely to underestimate the performance of graph2sig due to the

uncertainty about the real role of these OLPs in transmitting

Figure 4. Frequency distribution of known oncogenic interactions per intervals of oncogenic scores. The blue and red bars show,
respectively, the frequency distributions of known oncogenic interactions and all interactions in the wINHGI per 0.2 intervals of oncogenic scores.
doi:10.1371/journal.pone.0077521.g004
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oncogenic signals as demonstrated in the maps provided by

KEGG PATHWAY database. However, on the other hand,

graph2sig can be evaluated by its performance in detecting known

oncogenic pathways that are not currently visible in the KEGG

PATHWAY maps. Below, we give some examples that illustrate

this point.

The ABL1 ? NFKB1 subnetwork contain 18 interactions and,

among these interactions, only one, specifically the physical

interaction between proteins NFKBIA and NFKB1, is also present

in its corresponding OLP (Figure 6 and Dataset S2). Despite this,

further analysis of the ABL1 ? NFKB1 subnetwork revealed the

presence of an oncogenic pathway not described in KEGG

PATHWAY: ABL1 ? CTNNB1 ? NFKB1 (Figure 6). The

existence of this pathway in cancer cells is supported by

experimental evidence reported in two research articles [30,31].

The cancer-related ABL1/CTNNB1 interaction has been dem-

onstrated by Colluccia and colleagues that showed that ABL1

phosphorylates CTNNB1 and this phosphorylation is responsible

for stabilization and nuclear translocation of CTNNB1 in chronic

myeloid leukemia [30]. The cancer-related CTNNB1/NFKB1

interaction, in turn, has been reported by Deng and colleagues

that demonstrated that CTNNB1 interacts with and inhibits

NFKB1 in human colon and breast cancers [31]. Therefore,

graph2sig disclosed a potential pathway in which the activity of

NFKB1 is disrupted by oncogenic signals received by ABL1 via

CTNNB1.

The MET ? JUN subnetwork contain 116 interactions and,

among these interactions, only two, specifically the protein

physical interactions MET/GRB2 and MAPK1/JUN, are also

present in its corresponding OLP (Figure S1). Despite this, further

analysis of the MET ? JUN subnetwork allowed us to find an

oncogenic pathway absent from KEGG PATHWAY: MET ?
STAT3 ? JUN (Figure S1). Experimental evidence supporting

this pathway comes from two research articles [32,33]. The

oncogenic MET/STAT3 interaction has been detected by Syed

and colleagues that demonstrated that the disruption of this

interaction can block tumor cell invasion in an in vivo model [32].

The involvement of STAT3/JUN interaction in tumor progres-

sion has been demonstrated by Ivanov and colleagues [33]: they

reported that a cooperation between STAT3 and JUN downreg-

ulates FAS surface expression and its downregulation underlies the

resistance of melanoma and possibly other tumor types to therapy.

Hence, by using graph2sig, we found a potential oncogenic pathway

by which the oncogenic signals triggered by MET can reach JUN.

The ERBB2 ? VEGFA subnetwork contains 24 interactions

and, among these interactions, all three interactions of its

corresponding OLP are also present in this subgraph (Figure 7

and Dataset S2). Regardless of the presence of a complete known

oncogenic pathway, further analysis of the ERBB2 ? VEGFA

subnetwork allowed us to find a potential oncogenic pathway

absent from KEGG PATHWAY: ERBB2 ? EGFR ? STAT3

? VEGFA (Figure 7). While the STAT3/VEGFA is a known

oncogenic transcriptional regulation interaction present in KEGG

PATHWAY, the other two interactions are oncogenic interactions

supported by experimental evidence as shown by two research

articles [34,35]. The oncogenic ERBB2/EGFR interaction has

been detected by Wang and colleagues that demonstrated that

ERBB2 associates with and activates the EGFR in lung cancer

cells [34]. The involvement of EGFR/STAT3 interaction in

tumor progression, in turn, has been demonstrated by Jaganathan

and colleagues [20]: they reported that the EGFR/STAT3

interaction supports the pancreatic cancer phenotype and explains

in part the insensitivity of pancreatic cancer cells to the inhibition

of EGFR or STAT3 alone. Thus, by using graph2sig, we found a

potential oncogenic pathway by which the oncogenic signals

triggered by ERBB2 alters the expression of VEGFA via EGFR-

STAT3 interaction.

As a final example, we checked the KRAS ? CCND1

subnetwork (Figure S2) for the presence of novel potential

oncogenic pathways. This subnetwork contains 134 interactions

Figure 5. Frequency distribution of potential oncogenic interactions per intervals of oncogenic scores. The blue and red bars show,
respectively, the frequency distributions of potential oncogenic interactions and all interactions in the wINHGI per 0.4 intervals of oncogenic scores.
doi:10.1371/journal.pone.0077521.g005
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including all five interactions of its corresponding OLP (Fig-

ure S2). The analysis of the KRAS ? CCND1 subnetwork

revealed a potential oncogenic pathway that is partially shown in

KEGG PATHWAY: KRAS ? PIK3CA ? AKT1 ? GSK3B ?
MYC ? CCND1 (Figure S2). All interactions, except for

GSK3B/MYC, can be found in other OLPs (e.g. in KRAS ?
BCL2L1; see Dataset S2). The oncogenic role of GSK3B/MYC

interaction, in turn, has been demonstrated elsewhere [36].

Therefore, we can hypothesize that, in cancer cells, the expression

of CCND1 promoted by MYC can be a result of oncogenic signals

triggered by KRAS that eventually protects MYC from degrada-

tion by GSK3B.

Taken together, these results, i.e. the high fraction (& 83%) of

constructed subnetworks containing 50% or more interactions

from their corresponding OLPs and the discovery of oncogenic

pathways experimentally reported in literature, are compelling

enough to suggest that the oncogenic scores assigned to

interactions in the first step of graph2sig can reliably be used as

edge weights in the extraction of oncogenic signaling subnetworks

between any two genes of interest in the INHGI in the second step

of graph2sig.

Concluding remarks
In an effort to accelerate the pace of discovery of cancer-related

interactions and subnetworks, we designed a network topology-

based machine learning computational approach, the graph2sig,

that uses network centralities as training attributes to construct

prediction models capable to assign oncogenic scores to interac-

tions that, in turn, are the base for the extraction of cancer-related

signaling subnetworks.

We could demonstrate that the combination of machine

learning and graph theory is promising in prioritizing (1)

interactions capable to transmit oncogenic signals and (2)

cancer-related signaling subnetworks. Similarly to the predictive

performance of models constructed to predict essential genes in

Figure 6. The ABL1 ? NFKB1 subnetwork. This subnetwork
contains 18 interactions. The highlighted solid edge represents the
interaction presents in the corresponding OLP. The highlighted dashed
edges represent the interactions of the potential oncogenic pathway
(ABL1 ? CTNNB1 ? NFKB1). Blue edges represent protein physical
interactions and orange nodes represent genes participating in the
known or potential oncogenic pathways.
doi:10.1371/journal.pone.0077521.g006

Figure 7. The ERBB2 ? VEGFA subnetwork. This subnetwork
contains 24 interactions. The highlighted solid edges represent the
interactions present in the corresponding OLP. The highlighted dashed
edges represent the interactions of the potential oncogenic pathway
(ERBB2 ? EGFR ? STAT3 ? VEGFA). Blue and red edges represent,
respectively, protein physical and transcriptional regulation interac-
tions; orange nodes represent genes participating in the known or
potential oncogenic pathways.
doi:10.1371/journal.pone.0077521.g007
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Escherichia coli [6] and Saccharomyces cerevisiae [7] and morbid and

druggable genes in human [8], the prediction model constructed

in the first steps of graph2sig presented a predictive performance

reliable enough (median recall of 0.89, median precision of 0.77

and median AUC of 0.89) to assign oncogenic scores to the

interactions of the INHGI. From this finding we can conclude that

network centralities are predictive of the oncogenic nature of

interactions.

Regarding the utilization of oncogenic scores as edges weights

for the extraction of oncogenic signaling subnetworks, we reason

that network centralities, indirectly through the oncogenic scores,

are also predictive of cancer-related signaling subnetworks since

more than 80% of constructed subnetworks contain more than

50% of original interactions in their corresponding OLPs. In

addition, the novel potential oncogenic pathways originally absent

from KEGG PATHWAY but embedded in the constructed

oncogenic signaling subnetworks seem to be biologically plausible

as demonstrated by experimental evidence taken from the

biomedical literature.

To the best of our knowledge, this is the first time that the

combination of machine learning and graph theory is used to

predict both the oncogenic potential of interactions and potential

cancer-related signaling subnetworks. We envisage that the

graph2sig itself and the weighted integrated network of human

genes interactions, a network created in the first steps of graph2sig,

will serve as platforms for elucidating the relationship between

interactions and the expression of the malignant phenotype.

Furthermore, as part of an integrative systems biology framework

to facilitate the interpretation of cancer genome sequencing data

[37], graph2sig could be used in two ways: the selection of the most

relevant mutated genes according to their presence in high

oncogenic interactions and the discovery of subnetworks most

likely to be affected by these most relevant mutated gene. Finally,

we also expect that the graph2sig can be used to predict and extract

signaling pathways related to phenotypes other than cancer.

Supporting Information

Figure S1 The MET ? JUN subnetwork. This subnetwork

contains 116 interactions. The highlighted solid edges represent

the interactions present in the corresponding OLP. The

highlighted dashed edges represent the interactions of the potential

oncogenic pathway (MET ? STAT3 ? JUN). Blue edges

represent protein physical interactions and orange nodes represent

genes participating in the known or potential oncogenic pathways.

(PDF)

Figure S2 The KRAS ? CCND1 subnetwork. This

subnetwork contains 134 interactions. The highlighted solid edges

represent the interactions present in the corresponding OLP. The

highlighted dashed edges represent the interactions of the potential

oncogenic pathway (KRAS ? PIK3CA ? AKT1 ? GSK3B ?
MYC ? CCND1). Blue, red and green edges represent,

respectively, protein physical, transcriptional regulation and

metabolic interactions; orange nodes represent genes participating

in the known or potential oncogenic pathways.

(PDF)

Dataset S1 Complete data for the wINHGI. This is a tab-

delimited file that includes a table containing all interactions of

wINGHI with their type of interaction (protein physical, transcrip-

tional regulation and metabolic interactions), calculated network

centralities and oncogenic scores. Furthermore, it is also possible

to find whether interactions are present in KEGG PATHWAY as

oncogenic interactions (interactions used as positive examples in

the training step) and whether interactions belong to the set of

putative oncogenic interactions (oncogenic signal transduction

events). The identification of interactors are EntrezGeneIDs. The

list of interactions are ordered by oncogenic score.

(ZIP)

Dataset S2 The 52 subnetworks constructed by graph2-
sig. Tab-limited file containing all 52 subnetworks constructed by

graph2sig. For each subnetwork are shown the interactions (the

identification of interactors is the official gene symbol), the type of

interaction (protein physical, transcriptional regulation and

metabolic interactions) and the oncogenic scores.

(TXT)

Table S1 Statistics for the 52 constructed subnetworks.
This spreadsheet shows the statistics for the 52 constructed

subnetworks including the initial and target genes of the OLPs, the

cancer type from which the OLPs were extracted, the sizes of

OLPs and constructed subnetworks and the ratio between the

number of interactions of OLPs in the subnetworks and the actual

number of interactions in OLPs.

(PDF)
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