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A new 3-Site-Per-Nucleotide coarse-grained model for DNA is presented. The model includes
anisotropic potentials between bases involved in base stacking and base pair interactions that en-
able the description of relevant structural properties, including the major and minor grooves. In
an improvement over available coarse-grained models, the correct persistence length is recovered
for both ssDNA and dsDNA, allowing for simulation of non-canonical structures such as hair-
pins. DNA melting temperatures, measured for duplexes and hairpins by integrating over free
energy surfaces generated using metadynamics simulations, are shown to be in quantitative agree-
ment with experiment for a variety of sequences and conditions. Hybridization rate constants, cal-
culated using forward-flux sampling, are also shown to be in good agreement with experiment. The
coarse-grained model presented here is suitable for use in biological and engineering applications,
including nucleosome positioning and DNA-templated engineering. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4822042]

I. INTRODUCTION

The elementary building block of DNA consists of a
sugar, a phosphate, and a base. The bases can be Adenine
(A), Thymine (T), Guanine (G) or Cytosine (C), which dif-
fer primarily in the number of aromatic rings and their func-
tional groups. The small number of nucleic acid monomers
and the similarity between them stand in sharp contrast to
the diverse assortment of amino acids that constitute proteins.
Such relative homogeneity makes DNA particularly amenable
to coarse-grained descriptions.

There is considerable interest in developing molecular
models capable of describing the structure and properties of
DNA. In order to complement available experimental infor-
mation, such models must provide appropriate temporal and
spatial resolution. Existing atomistic force fields are able to
describe fast conformational fluctuations of DNA structure
and protein-DNA binding;1 however, such models cannot ac-
cess the length and time scales needed to study phenom-
ena such as nucleosome positioning or DNA hybridization.
Coarse-grained models that reduce the total number of de-
grees of freedom are therefore necessary.

Examples of DNA coarse-grained models include rep-
resentations that rely on rigid rods, semi-flexible rods,2, 3 or
bead-spring chains4, 5 with different spring potentials.6 Higher
resolution n-site-per-nucleotide models have been proposed
in attempts to resolve more of the molecular structure of
DNA. Beginning with an n = 2 representation, coarse-grained
models of increasing complexity have been introduced.7–22

By increasing n, it has become possible to reproduce more
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of the structural features of DNA, such as the major and mi-
nor grooves, as well as thermodynamic properties such as the
melting temperature.9, 14, 17, 18, 22

Here we focus on the so-called 3-Site-Per-Nucleotide
(3SPN) model, originally introduced by Knotts et al.9 Note
that n = 3 is the minimum number of sites that enable reso-
lution of major and minor grooves using isotropic potentials,
thereby providing a reasonable compromise between struc-
tural fidelity and computational efficiency. 3SPN.1, a subse-
quent refinement of the model, enabled a description of de-
naturation and renaturation as a function of temperature and
ionic strength.11 This model has been used to explore the path-
ways for hybridization in the bulk23, 24 and on surfaces,25–27

and has provided new insights into DNA bending,28 DNA
melting,29 and DNA-based hybrid structures.30 It has since
been extended to include explicit ions30–32 and water.31

However, available versions of the 3SPN model exhibit
a number of important limitations. In particular, the persis-
tence length of dsDNA was underpredicted9 or the persis-
tence length of ssDNA was overpredicted.11 As pointed out
by us9, 11 and others,16 the use of Gō-like interactions to rep-
resent base stacking restricts the range of conformations that
may be sampled by the coarse-grained model. Gō-like interac-
tions use simple non-bonded potentials to penalize deviations
from a reference structure.33 These interactions were adopted
in previous models because only one site, subject to isotropic
potentials, was used to represent each base; without additional
constraints the duplex would be neither stable nor helical.

Other limitations include the use of isotropic base pair-
ing interactions, which allow a single base to pair with mul-
tiple bases on the complementary strand.28, 29 The simulated
melting temperatures did not include concentration effects34
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and were dependent on a rather arbitrary definition of a base
pair.14 Perhaps more importantly, the hybridization rate con-
stants calculated with 3SPN.1 deviate significantly from ex-
perimental values, and interactions between 3SPN.1 and pro-
teins can lead to structural motifs that are not consistent with
experimental observations.

Previous attempts to improve 3SPN include the work
of Morriss-Andrews et al.,16 who developed a three-site
model with base sites represented by ellipsoidal particles.
The asymmetrical nature of the ellipsoids removed the need
for Gō-like interactions, but unfortunately led to structural
and mechanical characteristics that are not in agreement with
experiment.

Following a different approach, Dans et al.14 chose to
incorporate additional interaction sites into the model; they
adopted a 6-site-per-nucleotide representation with explicit
partial charges, thereby providing a simple means to map
all-atom (AA) coordinates onto the CG model.35 This model
has been shown to provide reasonable agreement with base
step parameters from AA simulations; however, it includes
multimodal torsional interactions that could impart unrealis-
tic rigidity to ssDNA.

Ouldridge et al.17 developed a model with 3 collinear
sites and a vector normal to the base site. This normal vec-
tor allowed for the construction of angle-dependent poten-
tial interactions, which can in turn reproduce the persistence
length of both ssDNA and dsDNA. The model can also de-
scribe the ssDNA–dsDNA transition, and a variety of DNA
structures.36–38 The original model had limited sequence-
specificity and was developed in the context of a Monte Carlo
framework, but a more recent version includes sequence-
specificity, and a Langevin dynamics framework has been
built around it.39 This model, however, does not capture the
major and minor grooves of DNA, thereby limiting its ap-
plicability to the study of DNA-protein interactions. Linak
et al.18 also incorporated angle-dependent base pairing, base,
and cross-stacking interactions into a 3SPN model to simulate
hairpins, G-quartets, and triplexes. However, some anomalies
in the model have become apparent and must be addressed
before it can be used more broadly.40

Hsu et al.20 developed a two site coarse-grained DNA
model that is based on ab initio calculations. Using den-
sity functional theory, they arrived at a set of parameters for
bonded and angle-dependent non-bonded interactions. The re-
sulting model is able to resolve the correct DNA structure and
qualitatively captures bubble formation within long helices.
However, it overpredicts the melting temperature of DNA
considerably, making it of limited use for study of structural
transitions. That model does not provide a good representa-
tion of the excluded volume of DNA, and cannot be used in
its present form to study DNA-protein complexes.

Recently, several approaches have been proposed that
provide more detailed representations of the nucleotide bases.
Edens et al.21 developed a coarse-grained model with a rigid
nucleotide consisting of 7 or 8 sites designed to create a lock-
and-key relationship with the complementary nucleotide. By
creating a close-packed representation of the excluded vol-
ume core, it reproduces the major and minor grooves while
utilizing short-ranged isotropic potentials. Despite not being

rigorously parameterized to capture thermodynamic quanti-
ties, it captures the structure and persistence length of DNA
and has been used to examine the effect of over- and un-
dertwist on DNA minicircles. Taking the representation of
the base to an even finer level, Savin et al.19 developed a
6-site-per-nucleotide representation of DNA that facilitates
inter-conversion into AA coordinates. This allows for base
stacking and base pairing interactions to be calculated at
every time step using the AMBER AA force field.41 This
model has been used to calculate the thermal conductivity
of DNA19 and to explain the co-existence of multiple phases
within stretched dsDNA.42 However, it is unknown to what
degree it can describe the thermodynamic properties of DNA.
More recently, He et al.22 proposed a coarse-grained model
that couples a structured backbone with bases represented by
Gay-Berne ellipsoids and electrostatic dipoles. The model
was parameterized using AA simulations and distributions
extracted from PDB structures, and its results suggest that
multipole-multipole interactions are important in driving the
formation of a DNA double helix.

All three models involve significant departures from pre-
vious descriptions of DNA, and rely on the inclusion of ad-
ditional interaction sites or higher order interactions. In the
present work, we seek to develop a model with a minimal
number of interaction sites and with interaction potentials
that are easily implemented into existing molecular dynamics
packages. As in previous versions of 3SPN, we place empha-
sis on the description of the equilibrium structure and thermo-
dynamic properties of DNA.

Generally speaking, the success of available coarse-
grained DNA models serves to highlight the usefulness of
a top-down parameterization approach9, 11, 17, 28 that relies on
available experimentally-measured quantities, thereby lead-
ing to greater applicability. Despite important bottom-up ef-
forts to parameterize coarse-grained models by relying almost
exclusively on AA simulations,16 or using data extracted from
nucleic acids in structural databases,22 the predictive capabil-
ity of the resulting models has been limited. Here we note,
however, that recent work suggests that, by including higher
order terms, bottom-up parameterizations of DNA can be-
come more effective.19, 20, 22

In this work, we follow a similar top-down strategy to that
adopted in our earlier work9, 11 to develop an improved 3SPN
model that eliminates many of the shortcomings of previous
versions. The experimental data employed in our work in-
clude: base step energies,43 base stacking free energies,44 and
equilibrium values of bond lengths, bend angles, and dihedral
angles.45 We demonstrate that by including such information,
it is possible to build on available models and extend their pre-
dictive capability to a wider range of experimental situations.
More specifically, the improved 3SPN coarse-grained model
for DNA (1) resolves the correct structural features, (2) accu-
rately reproduces the persistence lengths of both ss- and ds-
DNA, (3) incorporates the effect of ionic strength, sequence,
concentration, and temperature on hairpin and duplex forma-
tion, and (4) predicts reaction rate constants that are consistent
with experimental values.

This paper is structured as follows: In Sec. II, we present
the parameterization, topology, and Hamiltonian of our new
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model, which we refer to as “3SPN.2.” In Sec. III we describe
methods used to calculate structural properties, persistence
lengths, melting temperatures, and hybridization rate con-
stants. In Sec. IV we compare the predictions from 3SPN.2
to experimental data and to those of an earlier version of the
model (3SPN.1).11 Lastly, In Sec. V we discuss the improve-
ments, applications and limitations of the 3SPN.2 model.

II. MODEL

A. Parameterization approach

We seek to parameterize coarse-grained interactions in a
manner that ensures consistency with experimental free en-
ergy measures. Specifically, we target free energies of hy-
bridization and base stacking.

The free energy of hybridization is directly related to
the melting temperature Tm of a DNA sequence. At Tm, the
relative free energies (and probabilities) of the hybridized
and dehybridized states are equal. By adjusting model pa-
rameters such that the free energies of each state are equal
at Tm, we can determine the proper strength for inter-strand
non-bonded interactions. Values of Tm, obtained via UV ab-
sorbance measurements, are widely available; here we use
data from Owczarzy et al.46

The intra-strand base stacking was measured by Pro-
tozanova et al. by nicking DNA duplexes and then examining
their relative electrophoretic mobility.44 These free energies
can be interpreted as the relative probabilities of the stacked
and destacked states. In simulations, we can calculate these
probabilities and adjust stacking strengths until the simulated
free energy of stacking is consistent with experiment. We do
so by relying on a Boltzmann inversion approach.47 By doing
so, we assume that the additional restraint of backbone con-
nectivity has a negligible effect on the required strength of
base stacking interactions.

Hybridization and stacking free energies are calculated
by metadynamics simulations.48 In these simulations, a time-
dependent bias is added to the system, forcing the simulation
to sample all relevant regions of an order parameter space.
Upon convergence, all states are sampled uniformly and the
bias provides an estimate of the free energy as a function of
the order parameter(s). By integrating the free energy surface
over relevant ranges of the order parameters, the relatively
probability of each state can be calculated. Additional details
regarding these calculations can be found in Sec. III C and in
the supplementary material.49

Structural quantities, such as the persistence length or the
width of the minor and major grooves, are obtained by ad-
justing bonded parameters manually until results are consis-
tent with experiment. Due to the indirect effect of the bonded
parameters on the aforementioned free energies, several iter-
ations are performed until consistency is reached with both
thermodynamic and structural properties.

B. Site diameter

Nucleotides are represented by 3 spherical sites corre-
sponding to the phosphate, deoxyribose sugar, and nitroge-
nous base—these are placed at the center of mass (COM) of

the corresponding moiety. This differs from prior versions of
3SPN9, 11 that placed the base site at the N1 atom site of Ade-
nine and Guanine and the N3 atom site of Thymine and Cyto-
sine. This change is motivated by the close stacking of bases
in DNA that excludes ions and water molecules from the core
of the double helix. 3SPN.1 represented each base site with
the same small excluded volume (σ = 6.86 Å) at locations on
the very edge of each base (the N1 or N3 atoms). This resulted
in an excluded volume representation that would permit ions
or coarse-grained protein sites to insert themselves into the
DNA. By centering the base at its COM, we more accurately
represent the solvent excluded core of the DNA. This will be
beneficial in future implementations of 3SPN.2 with explicit
ions.

The size of each base site is set such that no excluded
volume interactions occur in coarse-grained representations
of the B form of DNA (B-DNA). The resulting site diameters
run contrary to intuition (e.g., the A and G sites are smaller
than the T and C sites); this is a consequence of the use of
an isotropic excluded volume potential to represent the het-
erocyclic bases, which are anisotropic in nature. However,
this choice does not limit the applicability of the model to
studies of DNA-protein binding. The resulting model is de-
picted in Fig. 1. The numerical values of these diameters
and a more extensive discussion of their origin are given in
Appendix A.

C. Bonded potentials

The bonded potential, Ub, includes bond, angle, and di-
hedral contributions. The bond contributions are harmonic
and anharmonic. The angle contribution is harmonic, as in

FIG. 1. (a) Comparison of all-atom and 3SPN.2 coarse-grained ex-
cluded volume representations of the Drew-Dickerson dodecamer (5′-
CGCGAATTCGCG-3′). (b) Coarse-grained sites of 3SPN.2 superimposed
on the all-atom representations. The coarse-grained sites are located at the
centers of mass of the phosphate, sugar, or base. (c) Schematic representation
of the angle-dependent non-bonded interactions acting between the base sites.
The green arrows represent the base stacking potential UBS, the blue arrows
represent the base pairing potential UBP, and the orange arrows represent the
cross-stacking potential UCS. Figures were rendered using VMD.50
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previous versions9, 11 of 3SPN. The dihedral potential is given
by a Gaussian well. Thus, the bonded potential is

Ub = Ubond + Ubend + Utors

=
bonds∑

i

kb(ri − ro,i)
2 + 100kb(ri − ro,i)

4

+
bends∑

i

kθ (θi − θo,i)
2

+
dihedrals∑

i

−kφ exp

(
−(φi − φo,i)2

2σ 2
φ,i

)
, (1)

where kb and ro, i are the force constant and equilibrium bond
length for bond i; kθ and θo, i represent the force constant and
equilibrium angle for bend i, and kφ , φo, i, and σφ, i denote
the well-depth, equilibrium angle, and Gaussian well-width,
respectively, of dihedral i. The functional form of the dihe-
dral potential represents a departure from previous versions
of the 3SPN model; it was changed to a Gaussian well in or-
der to favor B-DNA while still allowing free rotation once
the structure is perturbed. While not strictly periodic, the po-
tential and its first derivative effectively go to zero at |φi

− φo, i| = π , allowing a periodic implementation. In addition,
3SPN.2 only applies a dihedral potential between dihedrals
formed by sugar and phosphates sites (i.e., S-P-S-P and P-S-
P-S). Previous versions of 3SPN included dihedral potentials
between dihedrals involving bases, such as A-S-P-S, S-P-S-A,
etc. These are no longer necessary because of the anisotropic
nature of the non-bonded interactions, which is discussed in
Sec. II D. All equilibrium bond lengths ro, i, bend angles θo, i,
and dihedral angles φo, i are obtained from the fiber crystal
structure of B-DNA.45

D. Non-bonded potentials

The non-bonded potential Unb is given by

Unb = Uexe + Ubstk + Ucstk + Ubp + Uelec, (2)

where Uexe denotes excluded volume contributions and Ubstk,
Ucstk, and Ubp are the intra-strand base stacking, inter-strand
cross-stacking, and base pairing interactions, respectively.
The term Uelec is a screened electrostatic potential. It is impor-
tant to note that these non-bonded contributions to the energy
arise only between sites that do not participate in the same
bond, angle, or dihedral potential.

1. Excluded volume interactions

We utilize a purely repulsive potential between sites i and
j of the form

Uexe =
∑
i<j

⎧⎪⎨
⎪⎩

εr

[(
σij

rij

)12

− 2

(
σij

rij

)6
]

+ εr r < rC

0 r ≥ rC

.

(3)
This potential is active between all sites that do not partici-
pate in bonded interactions, base pairing interactions (Ubp),

or are not part of neighboring nucleotides in the same strand
and are located within a cutoff distance rC. The energy pa-
rameter for excluded volume interactions is denoted by εr;
σij = 1

2 (σi + σj ) is the average site diameter, and rij is the in-
tersite separation. The cutoff distance rC is always σ ij. Bases
that form W–C base pairs do not interact via this potential;
instead, they experience a repulsion dictated by a Morse po-
tential as explained in Sec. II D 2.

2. Base–base interactions

As mentioned earlier, prior versions of 3SPN relied on
an isotropic intra-strand Gō-like interaction33 to capture base
stacking and stabilize dsDNA. These interactions, originally
developed in the context of studies of protein folding, allow
for fluctuations around a reference native structure while per-
mitting unfolding in denaturing conditions. A disadvantage is
that the resulting model is unable to capture metastable states
that deviate strongly from the reference structure.

Prior versions of 3SPN also used an isotropic potential
to represent base pairing interactions, and were unable to ac-
count for the directionality intrinsic in W–C base pairing.
In 3SPN.2 the Gō-like interactions are replaced by angle-
dependent potentials, as done in other models.17, 18, 20, 22 This
angle-dependence creates a cone of strong attraction sur-
rounded by a larger cone within which a Morse potential is
smoothly modulated from its full magnitude to zero. Out-
side of the larger cone, there is no interaction other than the
excluded volume repulsion. This modulation is illustrated in
Fig. 2.

The angles that modulate the potentials are shown in
Fig. 3. The angle used to modulate intra-strand base stack-
ing, θBS, arises between a vector connecting a sugar and base
site within the same nucleotide and the vector connecting the
current base with its neighbor in the 5′ or 3′ direction.

For base pairing, the angles θ1 and θ2 are used to modu-
late the Morse potential. The first of these, θ1, is the angle be-
tween the vector pointing from the sugar site to the base site
in a nucleotide participating in a W–C base pair and the vec-
tor connecting the two complementary bases; θ2 is the angle
between the vector connecting the two base sites participating

(a) (b) (c)

FIG. 2. Schematic representation of anisotropic base-base interactions. The
inner yellow cone represents the angles wherein the full potential is applied.
The volume of the outer green cone not included in the yellow cone represents
the range of angles wherein the potential is modulated from its full value to
zero. A parameter K controls the width of these cones, with a smaller value
leading to a wider range of interactions. (a) Angle-dependence of the intra-
strand base stacking interactions (K = 6). (b) Angle-dependence of one of
the angles θ in the base pairing interactions (K = 12). (c) Angle-dependence
of the cross-stacking interactions (K = 8). The shaded spheres represent the
excluded volume of the DNA sites. Figures were rendered using VMD.50
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BS
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rij
1
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1

Bi
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r'ij

3

CS

Bi

Bj

r''ij

(a) (b) (c)

FIG. 3. Definition of the angles used to modulate base-base interactions. (a) Intra-strand base stacking angle θBS, defined as the angle between Bi , the vector
connecting a sugar and base site and rij , the vector connecting the base with its neighbor in the 3′ direction. (b) Base pairing angles, θ1, θ2, and φ1, are defined
by the effective dihedral angle between the base pair; θ1 is the angle between vector Bi connecting the sugar and base on the sense strand and vector r′

ij

connecting the base on the sense strand with its complement, either on the anti-sense strand in the case of a duplex or the sense strand of a hairpin. Here θ2 is
the angle between vector r′

ij and vector Bj , connecting the sugar and base site of the complementary nucleotide. The angle φ1 is the dihedral angle defined by
the vectors Bi , rij , and Bj . (c) cross-stacking angles, θ3 and θCS, are the angles between vectors Bi and Bj and vectors Bi and r′′

ij , respectively. Here, r′′
ij is the

vector connecting the base site on the sense strand to the base site adjacent to its W–C complement in the 5′ direction of the anti-sense strand. A similar vector
is defined between the base site participating in a W–C base pair and the base site adjacent to its complement in the 3′ direction of the sense strand. The shaded
spheres represent the excluded volume of the DNA sites. Figures were rendered using VMD.50

in a base pair and the sugar–base vector on the complemen-
tary nucleotide, and φ1 is the dihedral defined by the 3 vectors
used to define θ1 and θ2. Note that the dihedral angle is not
used in the modulating function.

Two angles modulate the cross-stacking interactions: θ3

is the angle between the sugar–base vectors on sites partici-
pating in a W–C base pair, and θCS is the angle between one
of the sugar–base vectors and a vector connecting that same
base site to the base site immediately adjacent (3′ direction) to
the W–C complement on the opposite strand. As such, these
angles are similar to those introduced in the work of Linak
et al.;18 our treatment differs in that the equilibrium angles
for each interaction are unique to the identity of the bases in-
volved, and in each case have been extracted from the crystal
structure of B-DNA.

The modulating function f takes the form

f (K,�θ )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −π
2K

<�θ< π
2K

1 − cos2(K�θ ) − π
K

<�θ<− π
2K

or π
2K

< �θ < π
K

0 �θ< − π
K

or �θ> π
K

,

(4)

where K controls the width of the cone of attraction and �θ

= θ − θo, the difference between the current angle θ and θo,
the angle from the crystal structure of B-DNA. The derivative
of this function vanishes at | π

K
| and | π

2K
|. The relative widths

of these modulating regions are shown in Fig. 2.

Base stacking and base pairing interactions between base
sites are described by a Morse potential,

Um(εij , αij , rij ) = εij (1 − e(−αij (rij −ro,ij )))2 − εij , (5)

where εij is the depth of the well of the attraction between
sites i and j, ro, ij is the equilibrium separation between them,
and αij is a parameter that is adjusted to control the range of
attraction. In the course of model development, we have found
it helpful to decompose the attractive and repulsive portions
of the Morse potential when modulating the attraction using
f. After decomposition, the repulsive component is

U rep
m (εij , αij , rij ) =

{
εij (1 − e(−αij (rij −ro,ij )))2 r < ro,ij

0 r ≥ ro,ij

(6)

and the attractive component is

U attr
m (εij , αij , rij )

=
{−εij rij < ro,ij

εij (1 − e(−αij (rij −ro,ij )))2 − εij rij ≥ ro,ij .
(7)

This decomposition ensures that the repulsive character is
maintained, regardless of the modulating angle.

Base pairing and base stacking interactions are modu-
lated by f using θBS and θ1 and θ2, respectively. The cross-
stacking interaction is modulated using both θ3 and θCS. Only
the attractive component of the Morse potential is modulated.
The resulting functional form is given by

Ubstk =
nbstk∑ {

U
rep
m (εij , αBS, rij ) + f (KBS,�θBSij )U attr

m (εij , αBS, rij ) rij < ro,ij

f (KBS,�θBSij )U attr
m (εij , αBS, rij ) rij ≥ ro,ij

(8)

for base stacking,

Ubp =
nbp∑ ⎧⎨

⎩
U

rep
m (εij , αBP, rij ) + 1

2 (1 + cos(�φ1))f (KBP,�θ1ij
)f (KBP,�θ2ij )U attr

m (εij , αBP, rij ) rij < ro,ij

1
2 (1 + cos(�φ1))f (KBP,�θ1ij )f (KBP,�θ2ij )U attr

m (εij , αBP, rij ) rij ≥ ro,ij

(9)
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for base pairing, and

Ucstk =
ncstk∑

f (KBP,�θ3ij ))f (KCS,�θCSij )U attr
m (εij , αCS, rij )

(10)
for cross-stacking. In the equations above, εij and ro, ij are spe-
cific to each combination of bases i and j; �φ1 = φ1 − φ1o

,
penalizing deviations from a reference dihedral angle. The in-
tegers nbstk, nbp and ncstk represent the total number of base
stacking, base pairing, and cross-stacking interactions, re-
spectively. The parameters KBS and αBS, KBP and αBP, KCS

and αCS are the same for all base stacking, base pairing, and
cross-stacking interactions, and are given in Appendix B. We
restrict intra-strand base pairing to occur only between base
sites separated by at least 3 nucleotides.

The functional form of the base pairing potential is de-
signed to prevent the formation of multiple base pairs, as ob-
served in previous models.28, 29 By using the effective dihedral
created by the W–C pair and the neighboring sugar sites, we
discourage the formation of multiple base pairs by a single
base, as might otherwise be seen in an AA base step.

E. Electrostatic interactions

Electrostatic interactions occur between the charged
phosphates sites; the base and sugar sites are neutral. In a
departure from previous versions of the 3SPN model, the
effective charge of each phosphate is increased from −1.0
to −0.6, giving each nucleotide a net charge of -0.6. This
increase in the effective charge is motivated by Oosawa–
Manning counter-ion condensation theory,51, 52 which states
that the charge density along a polyelectrolyte will be re-
duced through counter-ion condensation until the electrostatic
interactions within the chain are comparable to kbT, the ther-
mal energy. For a polyelectrolyte with inter-charge spacing b,
counter-ion condensation will occur if λB

b
> 1. Here λB is the

Bjerrum length:

λB = e2
c

4πεoεkbT
, (11)

where ec is the elementary charge, εo is the dielectric permit-
tivity of vacuum, ε is the dielectric permittivity of the solu-
tion (defined below), kb is the Boltzmann constant, and T is
the temperature. The Bjerrum length λB for water at 298 K
is 7.14 Å while the approximate charge spacing in ssDNA is
4.3 Å;53, 54 therefore, counter-ion condensation will occur. We
obtain the reduced charge of −0.6 by rounding −b

λB
. We use the

value b for ssDNA instead of dsDNA because electrostatic in-
teractions have a dominant effect on the self-assembly of ss-
DNA molecules into dsDNA. The approximate charge spac-
ing for dsDNA is −2e−/3.4 Å and would lead to an effective
charge −0.2 to −0.25.

While Manning’s assumption that the polyelectrolyte
consists of an infinite linear charge density is not consis-
tent with the flexible nature of ssDNA, Liu and Muthukumar
have shown55 that for monovalent cations, Oosawa-Manning
theory provides a good approximation for flexible polymers,
thereby suggesting that the theory can be applied to our
coarse-grained model.

The charged phosphate sites interact via a screened
electrostatic potential between all other inter-strand phos-
phates and all intra-strand phosphates not on neighboring nu-
cleotides. This interaction is given by

Uelec =
nelec∑
i<j

qiqj e
−rij /λD

4πεoε(T ,C)rij

, (12)

where qi and qj are the charges of sites i and j, rij is the inter-
site separation, λD is the Debye screening length, ε(T, C) is
the dielectric permittivity of the solution, and other variables
as defined previously. The Debye screening length is defined
as

λD =
√

εoε(T ,C)

2βNAe2
c I

, (13)

where β is the inverse thermal energy of the system (kbT)−1,
NA is Avogadro’s number, and I is the ionic strength of the
solution. The solution dielectric permittivity ε(T, C) is a func-
tion of the molarity of NaCl and temperature. Assuming that
the contributions of salt molarity C and temperature T are in-
dependent, as done by Ref. 56, the dielectric permittivity can
be approximated as

ε(T ,C) = ε(T )a(C), (14)

where

ε(T ) = 249.4 − 0.788T/K + 7.20 × 10−4(T/K)2 (15)

and

a(C) =1.000 − 2.551C/M + 5.151

× 10−2(C/M)2 − 6.889 × 10−3(C/M)3.
(16)

Equation (15) is as reported in Ref. 56, while Eq. (16) has a
form inspired by others57 and coefficients obtained by fitting
experimental data.58

F. Langevin dynamics

The integration scheme used here is the same as in pre-
vious versions of 3SPN9, 11 and relies on Langevin dynamics
(LD). The force on particle i at point r is given by

fi(r) = −∇Ui(r) − γipi(t) + gi(t) = dpi(t)

dt
, (17)

where −∇Ui(r) is the force arising from the force field, γ i is
a damping constant (in units of reciprocal time), pi(t) is the
momentum of particle i, and gi(t) is a random force that satis-
fies the fluctuation-dissipation theorem. This LD algorithm is
implemented as reported by Bussi and Parinello59 with a time
step �t of 0.02 ps.

In order to assign the damping constant, we use the Ein-
stein relation which states

D = 1

βξm

, (18)

where ξm is the molecular friction coefficient. We assume
that the molecular friction coefficient is distributed uniformly
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among all N coarse-grained DNA sites as in 3SPN.1,11 irre-
spective of the diameter of the different sites. This gives

D = 1

βNξi

, (19)

where ξ i is the friction coefficient of each site. We use
an experimental diffusivity of an 18 base pair (bp) ssDNA
(9.94 10−7 cm2/s) and scale the diffusivity according to
D ∼ 1/N0.68 to account for the effect of length.60 Having cal-
culated ξ i, the damping constant is simply γi = ξi

mi
.

III. VALIDATION METHODS

A. Structural properties

Relevant structural properties of DNA include the width
of the duplex, the number of base pairs per turn, the base rise,
and the widths of the major and minor grooves. We calculate
the width of dsDNA from long-time averages of the distances
between phosphate sites of a W–C base pair. These bases are
located at least 5 bases from the end of the strand to avoid
end effects (e.g., fraying). Base rise is calculated by project-
ing the inter-base separation onto an approximate helical axis,
as constructed below. Sequence and groove geometry deter-
mine the relative affinity of a protein to a particular sequence
of DNA.54 Previous versions of 3SPN did not exhibit stable,
clearly defined major and minor grooves, making such models
ill-suited for studying DNA–protein binding events.

In order to calculate the width of the major and minor
grooves, we use the method outlined by Stofer and Lavery,61

where a plane is rotated around a vector perpendicular to the
helical axis that bisects the minor groove. The distance be-
tween the points of intersection of this plane with continuous
space curves drawn through the phosphates of each strand is
calculated for different angles of rotation. The local minima in
the resulting curve showing distance as a function of rotation
angle represent the major and minor groove widths.

When using this method with our CG representation, it
is not possible to calculate the helical axis using the local co-
ordinate frame as done with atomistic representations.62 The
helical axis is approximated using the method presented in
Ref. 63. Tetrads of nucleotides separated by 3 nucleotides on
the sense and anti-sense strands are used to generate a local
helical axis. This local helical axis provides a good approxi-
mation of the true helix axis, and is used here to determine the
major and minor groove widths, the base rise, and to calculate
the persistence length of dsDNA.

B. Persistence length

A number of strategies are available for calculation of the
persistence length.64 One definition for flexible chains is

lp =
〈
R2

e

〉
2L

, (20)

where Re is the end-to-end distance, L is the contour length,
and the angle brackets represent a long-time average. For
more rigid polymers, a useful definition comes from the bond

autocorrelation function,

〈u(0) · u(s)〉 = e−s/ lp . (21)

In Eq. (21) the position along the polymer contour length is
characterized by s. The vectors u(s) are tangent to the helical
axis at s, calculated using the tetrads described in Sec. III A.

Experimental measurements of ssDNA persistence
length range from 2–4 nm (6–12 bp).65 For long DNA
oligomers, comprising 100 bases or more, many persistence
lengths of ssDNA are simulated and Eq. (20) is an appropri-
ate choice. The contour length L is calculated using the same
ssDNA charge spacing (4.3 Å) that was used in Sec. II E. The
persistence length of dsDNA (40–60 nm; 100–150 bp66) is
much larger than that of ssDNA, thus making Eq. (21) more
appropriate.

C. Melting temperatures

The melting temperature of dsDNA provides an impor-
tant measure of the thermal stability of our DNA model. In
previous work,9, 11, 32 melting temperatures were determined
via a simple parallel tempering or replica exchange simula-
tion (REMD)67, 68 approach. That approach relied on a spe-
cific definition of a base pair which depends on the value
adopted for the pair cutoff distance. Changing this cutoff by
a small amount, however, can shift the position of the melt-
ing point.14 It has also been pointed out that base sites in prior
versions of the 3SPN model can form more than one base pair
at a time.28, 29

To circumvent these issues, in this work we employ meta-
dynamics simulations48, 69–71 to estimate the free energy sur-
face associated with hybridization and hairpin formation. In
order to efficiently explore phase space, a biasing potential is
accumulated as the simulation proceeds. This pushes the sys-
tem away from local free energy minima and forces the explo-
ration of other regions of phase space. Upon convergence, the
added biasing potential can be related to the underlying free
energy surface.71 The following discussion is framed in the
context of determining the melting temperature of a duplex;
however, the same approach is applicable for calculation of
hairpin melting temperatures. Subtle differences are discussed
in the supplementary material.49

We employ a two-dimensional order parameter that de-
scribes the spatial separation and rotational orientation of the
two DNA strands. The first order parameter measures the spa-
tial separation between two strands. The distance between the
centers of the two interacting single strands is denoted by δC.
The sites used to describe the center of an ssDNA are re-
stricted to the central five bases of each single strand in the
case of oligonucleotides with an odd number of bases, and
the central six bases otherwise. The second order parame-
ter is θDNA, and describes the angle between vectors point-
ing from the 5′ to the 3′ termini of each single strand. This
two-dimensional order parameter surface is able to distin-
guish between dehybridized (large δC) and hybridized DNA
(small δC and θDNA ≈ 180◦ as dsDNA adopts an antiparallel
configuration).
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(a)
(b) (c)

(e)
(f)

(a) (b) (c)

(d) (e) (f)(d)

FIG. 4. Metadynamics, combined with an appropriate choice of order parameter, is used to quantify melting temperatures with 3SPN.2. The top panel shows a
representative free energy surface for a DNA duplex (5′-TACTAACATTAACTA-3′) at the melting temperature calculated using the order parameters described
in the text. (a)–(c) The positions in order parameter space of the configurations found on the right. The dashed green line indicates the approximate position of
the saddle point used to differentiate between hybridized and dehybridized states. Note that beyond 90 Å the free energy surface has been extended analytically.
The bottom panel shows a representative free energy surface for a DNA hairpin (5′-ATGCAATGCTACATATTCGCTTTTTGCGAATATGTAGCATTGCAT-3′)
at its melting temperature using the same order parameters as in the case of the duplex. (d)–(f) The locations of the configurations shown on the right. Again,
the dashed green line on the free energy surface is used to separate hybridized and dehybridized states.

Mathematically, the order parameter δC is given by

δC =
∣∣∣∣∣
∣∣∣∣∣
∑

nB
mi r i∑

nB
mi

−
∑

nA
mj rj∑

nA
mj

∣∣∣∣∣
∣∣∣∣∣ , (22)

where mi is the mass of site i, r i is the position in Cartesian
space of site i, and nA and nB are the indices of the specific
coarse-grained sites used to characterize δC between single
strands A and B, respectively. The order parameter θDNA is
given by

θDNA = arccos

(
vA · vB

‖vA‖‖vB‖
)

, (23)

where vi is a vector that points from the COM of the 5′ ter-
minal nucleotide to the COM of the 3′ terminal nucleotide of
DNA single strand i (these vectors are depicted as blue arrows
in Fig. 4).

Each production run was preceded by 50 ns of equilibra-
tion in the NVT ensemble at the appropriate simulation tem-
perature with all walkers but one starting from a dehybridized
configuration. Conventional metadynamics simulations were
performed until the free energy surface (FES) was found to
fluctuate around a steady value. The uncertainty in the pre-
dicted free energy surface was calculated by using instanta-
neous snapshots of the biasing potential from the last half of
the simulation. For δC, the width of the Gaussian biasing po-
tential was 0.25 Å while the width for θDNA was 2◦. Gaussians
with a height of 0.1 kJ mol−1 were deposited every 500 time
steps for each of the walkers employed for all metadynamics
simulations72 in order to accelerate sampling.

An artificial wall was applied to δC to prevent spending
significant simulation time exploring dehybridized configura-
tions where entropy dominates. This repulsive wall confines
δC to separations less than a threshold distance. Beyond this
distance, the free energy surface can be extended analytically
to any center-to-center separation. Details regarding this ex-
tension of the free energy surface are provided in the supple-
mentary material.49

In order to sample the melting transition, simulations
were performed for temperatures in the vicinity of the melting
temperature of an oligonucleotide. For each temperature, the
probability of residing in the hybridization basin was calcu-
lated. The demarcation between hybridized and dehybridized
states on the free energy surface was taken as the saddle point
separating the hybridized DNA basin and the dehybridized
basin as shown in Fig. 4. As configurations near the bottom
of these basins dominate each state’s partition function, the
exact location of this boundary is unimportant; shifting it by
a few angstroms does not affect the calculated probabilities.

To account for concentration effects, the free energy sur-
face was extended to a center-to-center separation that corre-
sponds to the concentration of the experiment against which
we are comparing. This extension is not performed for hair-
pins because strand concentration does not affect hairpin
melting temperatures. We also incorporate the correction pro-
posed by Ouldridge and co-workers34 to account for fluctua-
tions in concentration that cannot be captured in a simulation
with only two single strands. This correction is given by

f∞ =
(

1 + 1

2�

)
−

√(
1 + 1

2�

)2

− 1, (24)

where f∞ is the corrected estimate of the fraction of hy-
bridized DNA molecules in the bulk and � is the ratio of
the probabilities of hybridized and dehybridized states in the
simulation, � = Phybridized

Pdehybridized
. Plotting 1 − f∞ versus temperature

yields melting curves analogous to those obtained experimen-
tally; the melting temperature is defined here as the temper-
ature at which the hybridized and dehybridized states in the
thermodynamic limit are equally probable (f∞ = 0.5).

D. Hybridization rate constants

The hybridization of complementary ssDNA has been
studied in considerable detail (see Ref. 73 for a summary of
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key experimental findings). Based on experimental observa-
tions, DNA hybridization has been proposed to occur via nu-
cleation involving a few consecutive, in-register W–C base
pairs, followed by rapid cooperative zippering. The origi-
nal hybridization experiments were performed with relatively
long sequences of DNA and were performed at high ionic
strength. Less is known regarding the hybridization of short
DNA oligomers at low ionic strength.74, 75

The present model is well-suited for examining the mech-
anisms and rates of such systems because of the base–level
resolution provided by the 3SPN representation. We calcu-
late hybridization rate constants using Forward Flux Sam-
pling (FFS);76 specifically, we use the Rosenbluth FFS algo-
rithm. FFS requires that n interfaces be defined according to
an order parameter λi that separates the initial and final states.
It provides both transition paths between these two states as
well as the associated rate constants k expressed as

k = �0

n−1∏
i=0

P (λi+1|λi), (25)

where �0 is the flux of trajectories through the initial interface
λ0 and P is the probability of crossing interface λi+1 subject
to having crossed λi in the direction of λn.

The prefactor �0 is calculated here using the methods
developed by Northrup et al.77 They separate the associa-
tion reaction into centrosymmetric and non-centrosymmetric
regimes, and probabilistic correction factors κ1, κ2, and κ3 are
used to account for finite size effects. The κ’s are defined in
terms of three cut-off distances d1, d2, and d3. The definitions
of the cut-off distances and the calculated probabilities can be
found in the supplementary material.49 The bimolecular reac-
tion rate constant can then be expressed as

k =
kD(d2)

[
κ2

1−(1−κ2)κ3

]
α

1 − (1 − α)
{
κ1 +

[
κ2

1−(1−κ2)κ3

]
(1 − κ1)

} , (26)

where the kD(d2) = 4πD0d2 is the Smoluchowski result for
spherical particles with isotropic reactivity for a COM sepa-
ration r = d2, D0 is the relative diffusion constant and α is the
overall conditional probability calculated using FFS,

α =
n−1∏
i=0

P (λi+1|λi). (27)

The overall conditional probability α is equivalent to
P(λn|λ0), where λ0 corresponds to the δCOM = d1 and no base
pairs formed.

For the present analysis the interfaces λi are defined as a
linear function of δCOM and the number of W–C base pairs be-
tween the complementary sequences. This is shown schemat-
ically in Fig. 5 where χ is the normalized COM separation, �

is the fraction of total possible W–C base pairs formed, and
λi is depicted by the diagonal lines. Doing so creates two well
defined states: dehybridized DNA, with no base pairs being
formed and a large δCOM, and fully hybridized DNA with all
possible native base pairs being formed and a small δCOM.
Note that by including δCOM, we avoid the problems that arise
when using only the number of W–C base pairs to differen-
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FIG. 5. Interfaces used in FFS to calculate the reaction probability. χ is the
normalized COM separation, � is the fraction of total possible W–C base
pairs formed, and λi is depicted by the diagonal lines.

tiate states in parallel tempering calculations. In the present
analysis, a base pair is defined as a base pairing interaction of
at least 80% of the maximum possible energy and the number
of interfaces n was set equal to the total number of bases of
each sequence.

IV. RESULTS

A. Structural properties

Structural properties were calculated using a 32 bp se-
quence at ionic strength of I = 100 mM and at T = 293.15 K,
simulated for 1 μs with snapshots taken every 2000 time
steps. For reference, the same sequence was also simulated
using 3SPN.1. The mean and standard deviations of all struc-
tural properties are provided in Table I, along with the cor-
responding experimental quantities. We find good agreement
with experimental base rise, helix width, and the number of
bases per turn. Table I also reveals that the major and mi-
nor grooves of 3SPN.2 are stable through the entire simula-
tion, and are consistent with the values reported by Stofer and
Lavery.61 The existence of stable grooves is important for cap-
turing some aspects of DNA-protein interactions.

TABLE I. Comparison of structural properties predicted by 3SPN.1 and
3SPN.2 to values from the B-DNA crystal structure. Uncertainties rep-
resent one standard deviation. Experimental values taken from Refs. 54
and 61. Structural properties were obtained from the 32 bp sequence 5′-
ATACAAAGGTGCGAGGTTTCTATGCTCCCACG-3′ at I = 100 mM and
T = 293.15 K.

3SPN.1 3SPN.2 Expt.

Base rise (Å) 3.26 ± 0.14 3.35 ± 0.04 3.4
Helix width (Å) 23.1 ± 0.7 22.9 ± 0.1 23.0
Bases per turn 10.6 ± 0.3 10.1 ± 0.1 10.0
Major groove (Å) 13.8 ± 1.7 16.6 ± 1.2 17.1
Minor groove (Å) 15.4 ± 1.3 11.7 ± 1.3 11.8
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FIG. 6. Representative 144 bp configurations of ssDNA (top) and dsDNA
(bottom) from separate 3SPN.2 simulations at T = 300 K and I = 150 mM.

B. Persistence length

As mentioned earlier, previous versions of the 3SPN
model were able to accurately capture the persistence length
of dsDNA11 or ssDNA,9 but not both. Sequences from λ-
phage DNA after digest using the TaqI restriction enzyme
were simulated at T = 300 K and varying ionic strength. Per-
sistence lengths were calculated using the methods outlined
in Sec. III B. Representative configurations of ssDNA and ds-
DNA from simulations are shown in Fig. 6.

As shown in Table II, the persistence lengths of ds-
DNA sequences are between 40 nm and 60 nm, consistent
with the experimental values.65 The calculated ssDNA persis-
tence lengths for λ-phage DNA sequences were biased as they
tended to form secondary structures such as hairpins. We per-
formed persistence length calculations for ssDNA poly(A) se-
quences in order to obtain results undistorted by hairpin struc-
tures. The calculated ssDNA persistence lengths are 2–4 nm,
also in agreement with experimental values.78 The persistence
length of ssDNA increases with increasing contour length.
This is likely a consequence of our inability to precisely cal-
culate the contour length of ssDNA.

The 3SPN.2 model includes explicit electrostatics, and it
is therefore of interest to examine the dependence of the per-
sistence length of dsDNA on ionic strength. The ionic strength
directly determines the flexibility of dsDNA via the degree
of shielding of electrostatic repulsion between phosphate
sites. Nonlinear Poisson–Boltzmann (P–B) theory for uni-
formly charged cylinders predicts that the persistence length

TABLE II. Comparison of persistence length as a function of polymer
length. ssDNA simulations were performed with poly(A) sequences to ensure
that hairpin formation did not bias persistence length estimates. The quantity
fCG denotes the fraction of CG content in each sequence. 5′ base and 3′ base
give the location of the sequence within the λ-phage genome. Error bars rep-
resent one standard deviation. T = 300 K, I = 150 mM.

Nnt fCG 5′ base 3′ base lssp (nm) lds
p (nm)

68 0.529 43826 43893 . . . 48.6 ± 1.3
144 0.472 33157 31406 . . . 48.5 ± 2.4
250 0.528 577 720 . . . 50.8 ± 5.7
68 0.0 . . . . . . 2.0 ± 0.1 . . .
144 0.0 . . . . . . 2.5 ± 0.4 . . .
250 0.0 . . . . . . 3.7 ± 0.8 . . .
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FIG. 7. Scaling of persistence length (lp) with ionic strength I for various
DNA coarse-grained models with explicit charges. All results have been
scaled such that the persistence length at I = 150 mM is 500 Å.

can be expressed as the sum of two contributions:65 a non-
electrostatic portion lp0 and an electrostatic portion lel that is
a function of the Debye λD and Bjerrum lengths λB, i.e.,

lp = lp0 + lel = lp0 + λ2
D

4λB

, (28)

with λB and λD as defined previously. Other coarse-grained
models with explicit electrostatics have sought to capture this
trend. These models tend to overpredict the dependence of
persistence length on ionic strength.9, 20 An exception is pro-
vided by the work of Savelyev and Papoian,79 who presented
a 1-site-per-nucleotide model with explicit ions that qualita-
tively captures this dependence on ionic strength. We have
not included explicit ions in 3SPN.2 but, as explained earlier,
we have adjusted the effective charge of the phosphate to im-
plicitly account for counter-ion condensation. Figure 7 shows
that 3SPN.2, with the adjusted effective charge, gives reason-
able agreement with P–B theory. Note that some deviations
do occur, most noticeably below I = 10 mM. These devia-
tions could be due to the fact that the inter-charge spacing
from ssDNA was used to assign the effective charges for the
model.

C. Melting temperatures

Melting temperatures were calculated for both DNA du-
plexes and hairpins. With 3SPN.2, hairpins can also be sim-
ulated because we can now account for the true flexibility of
ssDNA. After adjusting for the effect of concentration on the
melting temperature, a sigmoidal function of the form

g(T ) = 1

1 + eA(T −Tm)
(29)

is fit to the values of probability of being in the hybridized
state, f∞, as evaluated with metadynamics calculations at dif-
ferent temperatures.

In Eq. (29) A represents the width of the transition and Tm

is the melting temperature. The melting temperature predicted
from simulation and the corresponding experimental value
are shown in Fig. 8. The average difference between them
is of a few Kelvin (see the supplementary material49 for the
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FIG. 8. (Top) Agreement between experimental and simulated melting
temperature for duplexes and hairpins. (Bottom) Melting curves obtained
from simulation showing the effect of oligomer concentration on calcu-
lated melting temperatures. The 4–5 K change in the measured melt-
ing temperature is consistent with experiment. The experimental data pre-
sented are from an oligomer concentration of 2 μM.46 Sequence: 5′-
TACTTCCAGTGCTCAGCGTA-3′; I = 69 mM.

agreement between experiment and simulation presented in
tabular form). The width of the ssDNA–dsDNA melting tran-
sition is also shown in Fig. 8. In general, the agreement be-
tween simulated melting curves and experiment is satisfac-
tory. Here we note again that the dependence on oligomer
concentration is captured by extending the free energy sur-
face, as explained in Sec. III C and the supplementary
material.49 The width of the hybridization transition is
narrower than that predicted by 3SPN.1, and comparable
to that observed in prior models using angle-dependent
potentials.17, 18 While a previous report18 concluded that non-
W–C base pairing was the source of the reduction in broad-
ness of the transitions, we observe a reduction due only to the
inclusion of anisotropic inter-strand base–base interactions.
As the complementary strands melt, base–base interactions
can be disrupted not only by further separation but also by
rotation to unfavorable angles. This leads to more abrupt and
more realistic melting as thermal fluctuations begin to desta-
bilize the double helix.

D. Rate constants

Hybridization rate constants for 4 different sequences at
ionic strengths of 100 mM and 500 mM were calculated using
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FIG. 9. Comparison of simulated hybridization rate constants to experimen-
tal rates constants from Ref. 75. Error bars represent the standard error in the
mean.

FFS as explained in Sec. III D. These systems were consistent
with those studied in the work of Gao et al.75 Figure 9 illus-
trates the correspondence between simulation and experimen-
tal values.

The simulated rate constants are one to two orders of
magnitude larger than experiment. In general, faster dynam-
ics are to be expected from a model where the underlying free
energy surface has been coarsened considerably, thus low-
ering kinetic barriers. For 3SPN.2, we find that agreement
with experiment is better at near-physiological ionic strengths
(100 mM) than at high ionic strengths (500 mM). Overall,
however, the relative magnitude of the predicted rate con-
stants is qualitatively consistent with that observed in exper-
iments. We view this agreement as satisfactory, particularly
given the model’s simplicity and the fact that no dynamic
data were used in its parameterization, besides the friction
coefficient.

V. DISCUSSION

A. Improvements

The changes to previous versions of the 3SPN model pre-
sented here address several limitations of past models. In what
follows, we summarize the main improvements:

� Stable minor and major grooves: 3SPN.2 exhibits sta-
ble major and minor grooves. This is now possible be-
cause the Gō-like potentials have been supplanted by
angle-dependent potentials. While previous versions
of the 3SPN model were theoretically capable of re-
solving the grooves, these were difficult to discern in
simulations. Now that the major and minor grooves
are properly resolved, 3SPN.2 can be used to study
DNA-protein binding. Additionally, the geometry of
the grooves may have a subtle influence on the mech-
anism of hybridization.

� Molecular flexibility: 3SPN.2 captures the correct flex-
ibility of ssDNA and dsDNA. Indeed, the primary
motivation for developing 3SPN.2 was to correct an
overly large rigidity of ssDNA in an earlier model that
was suspected of adversely affecting the mechanism
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of DNA hybridization. Both the angle-dependent po-
tentials, as well as the Gaussian well used to model
the dihedral potentials, allow the single strand to rotate
around the phosphate-sugar backbone. These interac-
tions also cooperate upon helix formation to provide
the correct rigidity for dsDNA. By capturing the cor-
rect flexibilities of ssDNA and dsDNA, 3SPN.2 can be
used to examine biophysical processes involving de-
naturation and hybridization with better fidelity. This
has been demonstrated by calculating rate constants in
Sec. IV D.

� Electrostatic interactions: the effective charge of each
phosphate site has been reduced in magnitude from
−1.0 to −0.6. This modification removed the need for
the sugar-sugar interactions invoked in earlier models.
Such a potential was primarily needed to facilitate hy-
bridization at low ionic strength (I < 200 mM).

In light of the aforementioned improvements, it is worth-
while to revisit previous results obtained with earlier versions
of the model. We limit ourselves to applications concerned
with hybridization and exclude studies of melting29 or exten-
sions of the model.30–32

Simulations of hybridization using 3SPN.1 resorted to
transition path sampling (TPS),23, 25 extended ensemble den-
sity of states (EXEDOS),24 and umbrella sampling.26 Using
each of these techniques, it was observed that hybridization
occurred via zippering for heterogeneous sequences or “slith-
ering” for homogeneous sequences. The nucleation event, or
formation of initial contacts that form between strands, was
often observed to occur with the two strands offset (or out
of register) by 2–3 base pairs. The same mechanism was ob-
served in simulations of surface hybridization.25–27

The offset nucleation observed in past work was influ-
enced by the relatively rigid, helical structure of ssDNA in
3SPN.1. Because the two strands were predominantly helical,
the only way for hybridization to succeed was for the strands
to wrap around each other, followed by “slithering.” While
slithering may not be entirely unphysical, we do believe that it
was overemphasized in previous versions of 3SPN.1. In a sys-
tem consisting of complementary, homogeneous sequences,
for example, “slithering” could be observed via the propaga-
tion of base pairs, facilitated by thermal fluctuations. In these
systems, no large energy barriers would be present to deter
the sliding motion of strands.

Using 3SPN.2, we observe that zippering of complemen-
tary strands is the dominant mechanism of hybridization. Off-
set configurations do occur; however, slithering is no longer
the primary mechanism for correcting the mismatch.

B. Possible applications

The 3SPN.2 model presented here should be appropri-
ate for studies of DNA hybridization. It is well suited for
studies examining the effect of ionic strength on the mech-
anism of hybridization. It is also easily extensible to studies
involving explicit ions. To this end, 3SPN.2 has been imple-
mented within the LAMMPS MD package80 and is available
as a user package (USER-3SPN2). Work is on-going to extend

the LAMMPS implementation of 3SPN.2 to include explicit
ions, as done previously for 3SPN.1.32

The new model is also well-suited to studies of DNA-
protein interactions. The resolution of 3SPN.2 is consistent
with existing coarse-grained models of proteins81 and the cou-
pling between the two is currently being considered. In addi-
tion, because the topology of dsDNA simulated by 3SPN.2
is derived from a crystal structure, it is possible to create
sequence-dependent topologies with minimal adjustments to
the parameters presented here. This can be done by adjust-
ing the equilibrium distances and angles for the bonded and
non-bonded interactions. All other parameters (K, ε’s) are un-
changed. Such adjustments, which will be discussed in a fu-
ture publication in the context of nucleosome positioning, al-
low for configurations with sequence-dependent major and
minor groove widths and intrinsic curvature. A similar model
could find widespread use for examination of the origin of
binding affinities of proteins for particular sequences of DNA.

C. Limitations

The 3SPN.2 model invokes several approximations that
merit further discussion. First, electrostatics are treated at the
level of a Debye-Hückel approximation. This is strictly appro-
priate only for low ionic strengths. At high ionic strengths,
however, electrostatic interactions are screened and one re-
covers a “neutral” version of the model analogous to that
adopted in other coarse grained representations of DNA.
While 3SPN.2 captures the correct melting temperatures at
both low and high ionic strengths, it is unclear how appro-
priate the model is for calculations of dynamic properties at
moderate to high ionic strength.

Excluded volume is represented by an isotropic poten-
tial. Representing planar base sites as spheres represents a
drastic approximation. However, as excluded volume interac-
tions are only experienced by base sites participating in cross-
stacking interactions or mismatches, this simplification does
not appear to have serious consequences. Importantly, it is
not necessary to parameterize entirely new interactions when
coupling this model with a coarse-grained protein model.
More realistic representations of the base, such as those of
Refs. 19 and 21, could serve the twofold purpose of more ac-
curately representing the excluded volume and potentially re-
move the need for angle-dependent potentials.

The topology of 3SPN.2 is built around the crystal struc-
ture of B-DNA. This is of little importance when simulat-
ing dsDNA, as the structure fluctuates around the equilib-
rium structure. However, the model may not be appropriate
for studying severely deformed DNA. This includes globally
deformed structures such as S-DNA, as well as local defor-
mations induced by the intercalation of dyes (e.g., YOYO82)
between the base sites.

The choice of reference structure may also have signif-
icant repercussions for ssDNA. As ssDNA behaves as a ran-
dom coil, it has no reference structure. However, we have used
the B-DNA as a first approximation for the reference structure
of ssDNA. The residual structure in the backbone required for
the double helix could limit the possible configurations for
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TABLE III. Cartesian and cylindrical polar coordinates for the 3SPN.2 representation of DNA. The masses and the excluded volume diameters of each site
are also included. The molecular topology of a single strand is built from the 3′ end using a transformation directly related to the helical rise (3.38 Å) and twist
(36◦) of B-DNA. For example, if a sugar site is placed at (r, φ, and z), the next sugar site moving in the 3′ to 5′ direction will be placed at (r, φ + 36◦, and
z + 3.38 Å. The sites of the complementary strands are related by a dyad along the x-axis; for a sugar site at (x, y, z), the sugar site of the complementary
nucleotide will be located at x, −y, −z. For base sites, the values of r, φ, x, and y, and z that are used should correspond to the identity of the site being placed.
For additional details, see Ref. 45.

Site type x (Å) y (Å) z (Å) r (Å) φ (◦) m (amu) σ (Å)

Phosphate (P) − 0.628 8.896 2.186 8.918 94.035 94.97 4.5
Sugar (S) 2.365 6.568 1.280 6.981 70.196 83.11 6.4
Adenine (A) 0.296 2.489 0.204 2.506 83.207 134.1 5.4
Thymine (T) − 0.198 3.412 0.272 3.418 93.327 125.1 7.1
Guanine (G) 0.542 2.232 0.186 2.297 76.349 150.1 4.9
Cytosine (C) 0.683 3.265 0.264 3.336 78.192 110.1 6.4

ssDNA. The consequences of this approximation are not yet
understood.

VI. CONCLUSION

We have presented a new 3-Site-Per-Nucleotide coarse-
grained model (3SPN.2) that has been extensively validated
using enhanced sampling techniques such as metadynamics
and forward flux sampling. The model provides good agree-
ment with experimental measures of structural properties such
as duplex width, base rise, and major and minor groove width.
In addition, it captures the persistence length of both ss- and
dsDNA and predicts melting temperatures that are consistent
with experiment. The 3SPN.2 model is also shown to predict
hybridization rate constants that qualitatively agree with ex-
perimental values.

The new 3SPN.2 model could be useful in several areas
of computational biophysics and materials science. These in-
clude studies of the mechanisms of nucleic acid hybridiza-
tion and DNA-protein binding and the structural properties
of nano-engineered DNA-hybrid materials, DNA origami,
and DNA liquid crystals. It has been implemented in the
LAMMPS MD package and is available for download.
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APPENDIX A: MODEL TOPOLOGY

Each site in the 3SPN.2 model is placed at the respec-
tive center-of-mass of the phosphate, sugar, or base, as cal-

culated from the crystal structure of B-DNA.45 Isotropic ex-
cluded volume interactions are included between all sites at
least 2 nucleotides away within the same strand and all sites
on other strands with one exception: base sites experience
excluded volume interactions only between inter-strand sites
that are non-complementary. Complementary sites experience
a shorter-range repulsion determined by the equilibrium dis-
tance of A-T and G-C base pairs. Table III provides coordi-
nates and masses for each site, as well as the algorithm used
to create the configurations used as the reference structure.
Table IV gives the equilibrium separations σ AT and σ GC of
the W–C base pairs.

APPENDIX B: MODEL PARAMETERS

The force constants for the bonded interactions are listed
in Table IV. Also included in the table are the parameters αi

and Ki that modulate the range of the Morse potential and the
width of the attractive cones depicted in Fig. 2. Base pair-
ing interactions are longer-ranged (smaller value of α) than
cross-stacking interactions. Base stacking is shorter-ranged
than base pairing because the fundamental basis for these in-
teractions is π–π stacking, instead of hydrogen bonding.

TABLE IV. Table of 3SPN.2 force field parameters used in the bonded and
non-bonded interactions.

Parameter Value

kb 0.6 kJ/mol/Å2

kθ 200 kJ/mol/rad2

kφ 6.0 kJ/mol
εr 1.0 kJ/mol

KBS 6.0
αBS 3.0
KCS 8.0
αCS 4.0
KBP 12.0
αBP 2.0
σAT 5.941 Å
σGC 5.518 Å
εAT 16.73 kJ/mol
εGC 21.18 kJ/mol
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TABLE V. Equilibrium bond lengths ro, bend angles θo, and dihedral an-
gles φo. The direction of the bonds is important. P(5′) or S(5′) represents the
phosphate or sugar, respectively, in the 5′ direction of the adjacent site while
P(3′) or S(3′) represents the phosphate or sugar in the 3′ direction.

Bond ro (Å) Bend θo (◦)

P(5′)–S 3.899 S–P–S 94.49
S–P(3′) 3.559 P–S–P 120.15
S–A 4.670 P–S–A 103.53
S–T 4.189 P–S–T 92.06
S–G 4.829 P–S–G 107.40
S–C 3.844 P–S–C 103.79

A–S–P 112.07
Dihedrals φo (◦) σφ T–S–P 116.68

(5′)P–S–P–S(3′) −154.79 0.30 G–S–P 110.12
(5′)S–P–S–P(3′) −179.17 0.30 C–S–P 110.33

The values of K were parameterized in such a way that
behavior such as kinking was discouraged. The relative per-
missiveness of the modulating function f is justified as fol-
lows: Base pairing is the most restrictive (largest K), as it
represents directional base pairing. Cross-stacking is less re-
strictive than base pairing, as no hydrogen bonds are being
formed. Base stacking is least restrictive because adjacent
bases are free to slide or shift as DNA is deformed.

All short-ranged non-bonded interactions (excluded vol-
ume and base-base interactions) were calculated using a cut-
off of 18 Å. Electrostatic repulsions were cutoff beyond 50 Å,
except in calculations performed below 50 mM ionic strength.
At such low ionic strength, the Debye length is large and this
long-range cutoff must be extended to a sufficiently long dis-
tance (∼4λD).

The equilibrium bond lengths, bend angles, and dihe-
dral angles are provided in Table V. These equilibrium angles
were measured from the coarse-grained topology that can be
generated using the coordinates found in Table III.

The equilibrium distances, angles, and strengths used in
the non-bonded base-base interactions are shown in Tables VI
and VII. The angles and distances are obtained from the
coarse-grained topology, just as was done for the bonded pa-

rameters. The strength of the base-base interactions deserves
additional discussion.

The base stacking energies were parameterized by
performing simulations of systems analogous to those of
Protozanova et al.44 In their work, they determined the free
energies of stacking by measuring the electrophoretic mobil-
ity of nicked double helices. We simulated nicked double he-
lices using two collective variables in metadynamics: the dis-
tance between the stacking bases and the angle between the
two helical segments flanking the nick. Additional details can
be found in the supplementary material.49 Using Boltzmann
inversion,47 we iteratively adjusted the values of the stacking
strength according to the following relationship

εi+1 = εi + kT ln

(
Fi

Fexp

)
, (B1)

where ε is the stacking strength between 2 bases, i is the it-
eration number, Fi is the calculated free energy using εi, and
Fexp is the experimental free energy. Repeated Boltzmann in-
version cycles were performed until satisfactory agreement
was achieved.

The strengths of the base pairing and cross-stacking in-
teractions were parameterized using the Santalucia nearest-
neighbor enthalpies.43 The nearest-neighbor enthalpies were
divided into base pairing and cross-stacking energies. The ra-
tio of the G–C to A–T Watson–Crick base pairing strength
was 1.266, as done in the previous version of 3SPN.11 The
cross-stacking interactions were constrained to be 12% of the
total base step energies, as observed in Ref. 83. The base step
energies were reduced by the average W–C base pairing en-
ergy between the two bases in the base step and their comple-
ments. The remaining energy was then divided equally into 2
separate cross-stacking interactions. An adjustable parameter
was used to scale uniformly the nearest-neighbor enthalpies
until agreement was achieved between simulation and exper-
imental melting temperatures for sequence B at I = 69 mM
(see the supplementary material49 for exact sequence). Us-
ing this value of the adjustable parameter, melting tempera-
tures were predicted for other sequences, including hairpins
at varying ionic strengths.

TABLE VI. Reference angles used to modulate Ubp and Ucstk. The indices i and j correspond to the identity of
the base sites being used to define the vector rij. All angles are expressed in degrees.

Base j

φ1o θ1o

A T G C A T G C
A . . . −38.35 . . . . . . A . . . 156.54 . . . . . .
T −38.35 . . . . . . . . . T 135.78 . . . . . . . . .
G . . . . . . . . . −45.81 G . . . . . . . . . 154.62
C . . . . . . −45.81 . . . C . . . . . . 152.74 . . .

Base i θ2o θ3o

A T G C A T G C
A . . . 135.78 . . . . . . A . . . 116.09 . . . . . .
T 156.54 . . . . . . . . . T 116.09 . . . . . . . . .
G . . . . . . . . . 152.74 G . . . . . . . . . 131.78
C . . . . . . 154.62 . . . C . . . . . . 131.78 . . .
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TABLE VII. Values of the strengths εij, equilibrium distances σ ij, and equilibrium angles θXXo for the base stacking (a) and cross-stacking interactions (b-c).

The arrows ↑ and ↓ represent the sense and anti-sense strands, respectively with the bases participating in the base pair indicated by 5′ ↑ and ↓3′
. 3′ ↑ and ↓5′

indicate adjacent bases in the 3′ and 5′ directions, respectively, that participate in cross-stacking interactions.

(a) Base 3′ ↑
ε (kJ/mol) σ (Å) θBSo (◦)

Base 5′ ↑ A T G C A T G C A T G C
A 14.39 14.34 13.25 14.51 A 3.716 3.675 3.827 3.975 A 101.15 85.94 105.26 90.26
T 10.37 13.36 10.34 12.89 T 4.238 3.984 4.416 4.468 T 101.59 89.50 104.31 90.82
G 14.81 15.57 14.93 15.39 G 3.576 3.598 3.664 3.822 G 100.89 84.83 105.48 90.18
C 11.42 12.79 10.52 13.24 C 3.859 3.586 4.030 3.957 C 115.95 101.51 119.32 104.49

(b) Base ↓5′

ε (kJ/mol) σ (Å) θCSo (◦)
Base 5′ ↑ A T G C A T G C A T G C

A 2.186 2.774 2.833 1.951 A 6.208 6.876 6.072 6.941 A 154.38 159.10 152.46 157.58
T 2.774 2.186 2.539 2.980 T 6.876 7.480 6.771 7.640 T 147.10 153.79 144.44 148.59
G 2.833 2.539 3.774 1.129 G 6.072 6.771 5.921 6.792 G 154.69 157.83 153.43 158.60
C 1.951 2.980 1.129 4.802 C 6.941 7.640 6.792 7.698 C 160.37 164.45 158.62 162.73

(c) Base 3′ ↑
ε (kJ/mol) σ (Å) θCSo (◦)

Base ↓3′
A T G C A T G C A T G C

A 2.186 2.774 2.980 2.539 A 5.435 6.295 5.183 5.965 A 116.88 121.74 114.23 114.58
T 2.774 2.186 1.951 2.833 T 6.295 7.195 6.028 6.868 T 109.42 112.95 107.32 106.41
G 2.980 1.951 4.802 1.129 G 5.183 6.028 4.934 5.684 G 119.34 124.72 116.51 117.49
C 2.539 2.833 1.129 3.774 C 5.965 6.868 5.684 6.453 C 122.10 125.80 120.00 119.67

The cross-stacking energies are specified in terms of the
two bases between which the cross-stacking interaction is oc-
curring. This is done to easily relate thermodynamic base step
enthalpy to cross-stacking interactions where the strands of
ssDNA come together out-of-register. In that situation, using
the cross-stacking energies derived from the enthalpy of a sin-
gle base step is not appropriate; even though a W–C base pair
has formed, the bases adjacent to the W–C base pair may not
be complementary. Therefore, the cross-stacking strength be-
tween base types i and j on the sense and anti-sense strands,
respectively, is generally different from the cross-stacking
strength between base types j and i on the sense and anti-
sense strands. The cross-stacking strengths between the sense
W–C–forming base and an adjacent base site on the anti-sense
strand and the cross-stacking strengths between the anti-sense
W–C-forming base and an adjacent base site on the sense
strand are found in Table VII.

We remind the reader that cross-stacking interactions are
only experienced by bases participating in a W–C base pair
and adjacent bases on opposite strands. Thus, for an AG
base step interacting with its complement (CT), one cross-
stacking interaction is defined between the A site on the sense
strand and the C site on the anti-sense strand. A second cross-
stacking interaction is defined between the G site and the T
site. If the base site on the sense strand is participating in a
W–C pair with a base at the 5′ end of the anti-sense strand,
then it does not participate in cross-stacking. Likewise, a base
site on the anti-sense strand does not participate in a cross-
stacking interaction if its W–C complement is at the 3′ end of
the sense strand.
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