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Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy
selective x-ray imaging.
Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any
unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always
increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in
an energy selective x-ray system is derived. The formula is used to gain insight into the dependence
of the increase in variance on the properties of the additional basis functions, the measurement noise
covariance, and the source spectrum. The formula is also used with computer simulations to quantify
the dependence of the additional variance on these factors. Simulated images of an object with three
materials are used to demonstrate the trade-off of increased information with dimensionality and
noise. The images are computed from energy selective data with a maximum likelihood estimator.
Results: The increase in variance depends most importantly on the dimension and on the properties
of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and
adipose tissue as the basis functions, the increase in variance of the bone component from two to three
dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient
of a high atomic number contrast agent is used as the third basis function, there is only a slight
increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue
components, respectively. The changes in spectrum shape with beam hardening also have a substantial
effect. They increase the variance by a factor of approximately 200 for the bone component and 220
for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing
the energy resolution of the detectors increases the variance of the bone component markedly with
three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to
3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with
the contrast agent as the third material for two or three dimensions is also a factor of two for both
components. The simulated images show that a maximum likelihood estimator can be used to process
energy selective x-ray data to produce images with noise close to the CRLB.
Conclusions: The method presented can be used to compute the effects of the object attenuation
coefficients and the x-ray system properties on the relationship of dimensionality and noise in en-
ergy selective x-ray imaging systems. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4824057]
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1. INTRODUCTION

With the Alvarez-Macovski1 approach to energy selective
x-ray imaging, we approximate the attenuation coefficient
with a linear combination of functions of energy. The num-
ber of functions required, the dimensionality, is an important
quantity because it determines both the available information
and the complexity of the measurements required to extract it.
Two functions are most commonly used because they provide
good accuracy and can be extracted with two x-ray spectra but
it was realized1 that the dimension was an empirical choice. It
depended on the physical properties of x-ray attenuation, the
measurement noise and on the state of the art of x-ray detec-
tors. Recently, the count rate capabilities of photon counting
detectors have improved so it may be possible to use them
in diagnostic imaging.2, 3 These detectors have the potential
to make measurements with high energy resolution by using

pulse height analysis (PHA) and this increased resolution may
allow us to extract higher dimensionality information.

The higher dimension information could have important
clinical applications. For example, with a two function basis
set we are limited to imaging two tissue types such as bone or
soft tissue separately. A third material such as adipose tissue
cannot be imaged separately but will appear to be a combi-
nation of the two basis materials. Addition of a third dimen-
sion would allow adipose tissue to be imaged independently
in mammography or improve the accuracy of bone densitome-
try when there are variations in overlying tissues with adipose
components. Higher dimension processing can also be used
to image externally administered high atomic number contrast
agents independent of body structures.

There are several important physical constraints on
dimensionality.4–6 The mixture rule states that since x-ray
photon energies, which are of the order of 105 electron-volts,
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are so much greater than chemical binding energies, which
are of order 1 electron-volt, x-ray interactions are essentially
independent of the chemical state of the atoms. With this ap-
proximation, the dimensionality is limited to the number of
different elements present in the object in significant quan-
tities. Another constraint is the sum rule for x-ray cross-
sections. In the diagnostic energy region, x-rays interact with
matter through only a small number of independent physical
processes, principally Compton scattering, photoelectric in-
teractions, Rayleigh scattering, and possibly pair-production
at high energies. The sum rule states that since the processes
are independent the total cross-section is the sum of the in-
dividual cross sections. If these cross sections were separa-
ble into atomic number dependent and x-ray energy depen-
dent functions, then the dimensionality would be limited to
the number of significant interaction processes. Logarithmic
plots of these cross sections as a function of energy4 for dif-
ferent elements show that they are close to but not exactly
parallel.

These physical considerations indicate that the two func-
tion basis set commonly used is an empirical choice adopted
as a compromise of approximation accuracy, noise versus pa-
tient dose considerations, and x-ray imaging systems technol-
ogy. To consider the potential of photon counting detectors
with PHA for increased dimensionality, we need a method
to quantify the additional photon numbers, dose, and the im-
provements in detector system electronic noise and accuracy
that are required to extract it. The development and testing of
such a method is the purpose of this paper.

The method is based on statistical estimator theory.7–9 This
theory was originally developed for analyzing communica-
tions systems and it models a system as three parts: a source
that produces signals, a transmission channel, and a detector
that measures the transmitted signal but adds random noise.
For energy selective imaging, the basis functions are known
a priori so the basis set coefficients carry all the information.
The line integrals of these coefficients completely determine
the transmitted spectrum so, in the communications system
analogy, they are the signal. The transmission channel is the
x-ray source and the attenuation by the body while the detec-
tor is a photon counting detector with PHA that measures the
energy spectrum of the transmitted radiation. A statistical es-
timator processes the noisy measurements to give an estimate
of the line integrals. These line integrals are summarized as
the components of a vector, which is called the A-vector in
this paper. The method of computing the A-vector and dis-
playing the information is referred to as A-space processing.

In general, the noise depends on the estimator used. How-
ever, estimator theory10 shows that there is a universal lower
limit of the covariance for any nonbiased estimator called the
Cramèr-Rao lower bound (CRLB). The CRLB is a fundamen-
tal measure that is independent of a particular estimator im-
plementation and is useful as a general metric to characterize
the energy selective system performance. It combines the ef-
fects of intrinsic dimensionality, which depends on the atten-
uation coefficients of the materials imaged, with the energy
resolution and detector noise to compute the covariance of the
A-vector. This covariance determines the image noise, which

can be compared with variations in body structures to judge
the level required to provide clinically useful information.

An important result from estimator theory11 is that increas-
ing the dimension increases the variance not only of the pa-
rameter added but also of all the lower dimension parameters.
This paper applies this general result to energy selective sys-
tems and shows how the magnitude of the increase depends
on factors such as the attenuation coefficient of the additional
materials imaged, the source spectrum, and the detector en-
ergy resolution. The methods presented allow us to predict
the effects of these factors to judge the trade-off between the
increased dose required to extract the additional information
with satisfactory noise and its clinical utility.

Note that the increase in variance with dimensionality does
not imply that energy selective systems are inherently nois-
ier than conventional systems. The A-vector information is
a physically different quantity than the data represented by
a conventional x-ray image and the noise cannot be directly
compared. Indeed, Tapiovaara and Wagner12 showed theoret-
ically that systems that measure the energy spectrum can have
an optimal SNR higher than conventional systems for a given
dose. A previous paper13 and the results in this paper show
that we can use A-space processing with low energy resolu-
tion data to produce images with larger signal to noise ratio
than conventional photon count or integrated energy images
at the same dose. The additional dose that may be required by
energy selective systems is used to produce material-selective
information. This is an additional information that is not ex-
tracted by conventional systems.

Previous studies5, 6, 14–17 concentrated on the “intrinsic di-
mensionality” of attenuation coefficients. That is, the number
of basis functions needed to approximate tabulated attenua-
tion coefficient data with error less than its estimated uncer-
tainty. Alvarez5, 6 applied the singular value decomposition
(SVD) to determine the approximation error of a table of body
material attenuation coefficients as a function of dimensional-
ity. With this approach, the attenuation coefficients of the ele-
ments in body materials sampled at a large number of energies
are placed in a matrix. The dimensionality is then equal to the
rank of this matrix. If the entries in this matrix are considered
to be of infinite precision, almost all matrices will have full
rank, the smaller of the number of rows or columns. The SVD
approximation theorem18 provides matrices of lower rank that
are optimally close to the original matrix. That is, the norm of
the difference of the lower rank matrix and the original matrix
is minimum for all matrices of that rank. If this norm is less
than the estimated accuracy of the attenuation coefficient data,
the lower rank can be defined as the intrinsic dimensionality.
Roth19 used the SVD to study the information of three di-
mension systems that include a high atomic number contrast
agent. Weaver and Huddleston14 used principal components
analysis (PCA), which is closely related to the SVD,20 to de-
termine the dimensionality. They compared basis functions
based on PCA to the photoelectric effect/Compton scattering1

and material attenuation coefficient21 sets and showed that
the principal components provided better accuracy and more
stability. Bornefalk17 also applied PCA with advanced stop-
ping rules and showed that the intrinsic dimensionality of
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the XCOM attenuation coefficient database may be equal
to four.

Gingold and Hasegawa15 and Williamson et al.16 not only
study the intrinsic dimensionality but also use sensitivity anal-
ysis with the partial derivatives of the basis set coefficients to
include errors in the measurements. Gingold and Hasegawa
compare the errors using two monoenergetic spectra with
energies in low and high bands to the sensitivity analysis.
Williamson et al. compare the basis vector model with non-
linear parametric models, which approximate the attenuation
coefficient based on parameters such as effective atomic num-
ber and density. They found that the basis vector models
were more promising for dual energy computed tomography
systems.

2. METHODS

In this section, the theory to quantify the dependence of
the increased variance on the basis functions, the source spec-
trum, and the detector energy resolution is developed. Next,
Sec. 2.E describes simulations of the increased variance using
realistic models of the x-ray tube spectrum and the attenuation
coefficients of body materials and contrast agents. Finally, in
Secs. 2.F and 2.G, a simulation of images with random noise
that illustrates the additional information and the increase in
noise with increased dimensionality is described.

2.A. Vector data in energy selective systems

The A-space processing analysis is facilitated by using a
vector model for the energy selective measurements. In this
model, the x-ray attenuation coefficient μ(r, E) at each point
r in the object at photon energy E is decomposed using K
basis functions as

μ(r, E) =
K∑

k=1

ak(r)fk(E). (1)

If the source produces a photon number spectrum nsource(E),
the spectrum transmitted through the object is

ntransmitted(E) = nsource(E)e− ∫
S
μ(r,E)ds, (2)

where
∫
S
μ(r, E)ds is the integral of the attenuation coeffi-

cient on a line from the source to the detector pixel. Introduc-
ing the decomposition in Eq. (1), the line integral is

∫
S

μ(r, E)ds =
K∑

k=1

Akfk(E),

where Ak = ∫
S
ak(r)ds. We can summarize the line in-

tegrals Ak as the components of a length K vector
A = [A1, A2, . . . , AK ]T , the A-vector. The notation []T de-
notes the transpose.

In energy selective imaging, we estimate the A-vector from
a set of measurements with different spectra and use this
information to compute clinically useful images.1 Assum-
ing a photon counting detector, the expected values of the

measurements are

Nj =
∫

gj (E)e− ∑K
k=1 Ak(r)fk (E)dE j = 1 . . . J, (3)

where gj(E) are the effective spectra for the measurements
and J is the number of spectra. As an example, with PHA the
effective spectra are gj (E) = �j (E)nsource(E) where �j(E)
is a rectangle function equal to one in the energy bin and
zero otherwise. The model can also be used with switched
voltage x-ray tube spectra. Introducing vector notation, the
measurements Nj are the elements of a length J vector
N = [N1, N2, . . . , NJ ]T . Because of the exponential trans-
mission in Eq. (2), using the logarithm of the data is useful so
we introduce the vector L = − log( N

N0
) where N0 is the vector

of “air” values with no object in the system and the quotient
notation means corresponding elements of each vector are
divided.

2.B. The Cramèr-Rao lower bound and dimensionality

Estimator theory shows that there is a lower limit, called
the Cramèr-Rao lower bound (CRLB), of the covariance for
any nonbiased estimator.10 As discussed in the Introduction,
we can use the CRLB to characterize the energy selective sys-
tem performance.

The CRLB is the inverse of the Fisher information matrix,
F, whose elements are8

Fij = −
〈
∂2 log p(L; A)

∂Ai∂Aj

〉
. (4)

In this equation, p(L; A) is the probability density function of
the measurements given a particular A-vector and 〈 〉 denotes
expected value. The CRLB is the minimum covariance in the
sense that the difference of the covariance CA of any unbiased
estimator and the CRLB is positive semidefinite

CA − F−1 ≥ 0. (5)

Matrix theory22 shows that the diagonal elements of a positive
semidefinite matrix are greater than or equal to zero. There-
fore, the diagonal elements of the CRLB, which are the vari-
ances of the individual components, are the minimum for any
unbiased estimator.

Another important result from estimator theory is that
adding additional parameters always increases the variance of
the estimates or under rare conditions they remain the same.11

For example, if we first use two basis functions and then add
an additional function, the variance of the estimates of first
two A-vector components with a three function set will be
greater than or equal to the variances of the same components
with a two function set.

Corollary B.4 of Van den Bos9 gives the magnitude of
the additional variance. To apply this result, suppose FK−1

is the Fisher matrix with a K − 1 function basis set and
RK−1 = F−1

K−1 is the corresponding CRLB covariance. If we
add an additional basis function, then the K dimension Fisher
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matrix can be partitioned as

FK =

⎡
⎢⎢⎢⎢⎣

FK−1 q

qT FKK

⎤
⎥⎥⎥⎥⎦ , (6)

where q is a column vector and FKK is a scalar. According to
the corollary, the CRLB for the K basis function case is

RK = F−1
K =

⎡
⎢⎢⎢⎢⎣

RK−1+ 1
u

RK−1qqTRK−1 − 1
u

RK−1q

− 1
u

qTRK−1
1
u

⎤
⎥⎥⎥⎥⎦ ,

(7)

where the scalar u = FKK −qTRK−1q.
In Eq. (7), the additional covariance due to the added basis

function is

�RK = 1

u
RK−1qqTRK−1 = 1

u
vvT, (8)

where v = RK−1q. Since RK−1 is a covariance, it is positive
definite so RK−1q is zero if and only if q is equal to zero. Sec-
tions 2.C and 2.D show that q = 0 implies that the additional
basis function is orthogonal to the first K − 1 functions. This
is usually not the case in energy selective imaging where at-
tenuation coefficients of physical materials are used as basis
functions.

2.C. The CRLB for an energy selective
x-ray imaging system

Since in medical imaging the noise is relatively small, we
can use a Taylor’s series to derive a linearized approximation
about the expected value 〈A〉

L(〈A〉 + δA) ≈ L(〈A〉) + ∂L
∂A

δA + · · ·, (9)

where L is the vector of the logarithm of the measurements
described in Sec. 2.A. Defining δL = L(〈A〉 + δA) − L(〈A〉),
the linearized model with noise is

δL = MδA + w. (10)

In this model, M is a matrix with coefficients

Mjk = −∂log(Nj )

∂Ak

= − 1

Nj

∂Nj

∂AK

.

Differentiating the definition of Nj in Eq. (3),

Mjk =
∫
fk(E)gj (E)e− ∑K

k=1 Ak(r)fk (E)dE∫
gj (E)e− ∑K

k=1 Ak(r)fk (E)dE
= 〈fk(E)〉j ,

(11)

we see that the elements of M are the weighted values of the
basis functions fk(E) in the normalized measurement spectra.
Note that M has one row for each energy spectrum and one
column for each basis function, J rows and K columns.

If the photon counts are sufficiently large, we can model
the noise w in Eq. (10) as a zero mean multivariate normal

random variable whose covariance depends on A. For exam-
ple, with a quantum limited photon counting detector with
PHA and negligible pulse pileup, the measurements in differ-
ent bins are independent so the covariance matrix of the log
data CL is

CL =

⎡
⎢⎢⎢⎣

1/N1 0
1/N2

. . .
0 1/NJ

⎤
⎥⎥⎥⎦ . (12)

The expected values of the noise are 〈wj 〉 = − log(Nj/Nj (0))
where Nj (A) is given by Eq. (3).

Kay23 shows that the Fisher matrix for a linear model with
multivariate normal noise has elements

Fij =M(:, i)T CL
−1M(:, j )+ 1

2
tr

[
CL

−1 ∂CL

∂Ai
CL

−1 ∂CL

∂Aj

]
,

(13)

where the notation M(:, i) is column i of M and tr[] is the
trace. By using Eq. (11) for M and Eqs. (3) and (12) for CL,
we can compute the Fisher matrix if we have a formula for
∂CL
∂Ai

. This is the matrix of the derivatives of each of the el-
ements of CL with respect to each of the components of A.
Since CL is diagonal, the required derivatives can be com-
puted from M and Nk

∂

∂Ai

(
1

Nk

)
= − 1

N2
k

∂Nk

∂Ai

= −Mki

Nk

. (14)

Equations (13) and (14) show that the CRLB combines the
effects of the attenuation coefficients of the object materials,
since these are used as basis functions, and the detector noise
covariance.

2.D. Additional basis functions and
the increase in CRLB

If we assume, for the moment, that the measurement co-
variance CL does not change with A, the Fisher matrix is24

F = MTC−1
L M. (15)

Comparing this with Eq. (13), we see that the first term of the
general Fisher matrix is the same as the constant covariance
result and the second term measures the effect of changes in
the covariance with A.

Studying the two terms, the constant covariance term in-
cludes C−1

L , which is roughly proportional to photon counts,
while the second term, which has the product of CL and
its inverse, does not increase with photon counts. Therefore,
we would expect the constant covariance term to dominate
the Fisher matrix and the CRLB as photon count increases.
The Appendix shows simulations that verify this conjecture.
The second term is negligible for photon counts greater than
approximately 100 for 5 PHA bins and 1000 with 100 PHA
bins.

Using the constant covariance approximation to gain in-
sight into the additional variance, suppose we partition the
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basis function matrix M into its columns and, for simplified
notation, consider the three function case

M =
⎡
⎣ | |

μ1 | μ2 | μ3

| |

⎤
⎦ .

We can then write the constant covariance term of the Fisher
matrix using partitioned matrix notation as

F3 = MTC−1
L M

=

⎡
⎢⎢⎢⎢⎣

μT
1

− − − − − − − − −
μT

2
− − − − − − − − −

μT
3

⎤
⎥⎥⎥⎥⎦ C−1

L

⎡
⎣ | |

μ1 | μ2 | μ3

| |

⎤
⎦ .

(16)

Comparing Eq. (16) with the partitioning of the Fisher ma-
trix in Eq. (6) for the dimension 3 case,

F3 =

⎡
⎢⎢⎢⎢⎣

F2 q

qT F33

⎤
⎥⎥⎥⎥⎦ ,

the vector q is

q =
[

μT
1 C−1

L μ3

μT
2 C−1

L μ3

]
. (17)

From the discussion in Sec. 2.D, the additional CRLB co-
variance depends on R2q. Since the two-dimension CRLB,
R2, is positive definite, the additional covariance is propor-
tional to q.

We can interpret the elements of q as the weighted inner
products of the third basis vector with the first two basis vec-
tors using the inverse measurement covariance matrix as the
weighting function. With a photon counting PHA detector,
the inverse of the variance is equal to the expected value of
the counts in each measurement bin so the weighting function
is the x-ray spectrum. The components of q and therefore the
additional covariance will be zero only if the third basis func-
tion μ3 is orthogonal to μ1 and to μ2 using the weighted inner
product.

2.E. Simulations of increase in CRLB

Simulations were used to quantify the increase in covari-
ance under different circumstances. A 120 kilovolt (kV) x-ray
tube spectrum in 1 keV bins was generated using the TASMIP
algorithm.25 The number of photons per measurement was ad-
justed by multiplying by a constant so the spectrum integral
was equal to the desired number for each trial. The expected
numbers of transmitted photons for each pixel and PHA en-
ergy bin were computed from the source spectrum, the thick-
nesses of each of the materials in the object, and their atten-
uation coefficients as a function of energy using exponential
transmission with good geometry so scatter was negligible.

The attenuation coefficients of the object materials were com-
puted from the Hubbell-Seltzer26 database using elemental
compositions from ICRU Report 44.27 The Hubbell-Seltzer
attenuation coefficient values were interpolated using piece-
wise continuous Hermite polynomials in log attenuation coef-
ficient, log photon energy. Random statistically independent
Poisson distributed data with the expected counts for each
pixel and energy bin were then computed. The independent
Poisson distribution is a valid statistical model if the detector
is quantum noise limited and pulse pileup is negligible.28, 29

The quantum-noise limited assumption means that electronic
noise and other system imperfections are much smaller than
photon counting noise.

The object materials were cortical bone, soft and adipose
tissue, and a contrast agent with composition one percent io-
dine by weight in water. The CRLB was computed using the
inverse of the full Fisher matrix in Eq. (13) using Eq. (14)
to compute the derivatives in the second term. The data were
processed with the A-space method with a basis set consist-
ing of the attenuation coefficients of bone and soft tissue for
the two function case and adding either the attenuation coef-
ficient of adipose tissue or the contrast agent as the third basis
function.

2.E.1. Additional variance as a function of photon
number and third basis function

The CRLB variance of the bone and soft tissue A-vectors
was computed using a two or three function basis set as a
function of the total number of photons. The results were re-
peated with the adipose tissue or the iodine contrast agent as
the third basis material. The results were plotted on log-log
scales to show the functional dependence.

2.E.2. Effect of object thickness

As the object thickness increases, beam hardening will se-
lectively attenuate the lower energy photons thereby increas-
ing the average energy and reducing the spectral bandwidth
and therefore increasing the noise variance. This was studied
by filtering the 120 kV spectrum with a soft tissue object of
varying thickness. The transmitted spectrum was used with
Eq. (12) to compute the measurement covariance and then
with Eq. (13) to compute the CRLB for each thickness. From
the CRLB, the variance of the bone and soft tissue compo-
nents was plotted as a function of the thickness. The number
of transmitted photons for each thickness was kept constant to
allow us to separate the effect of the spectrum change and the
number of photons. This was done by normalizing the trans-
mitted spectrum by dividing its integral and then multiplying
by the fixed number of photons, 107. This constant was chosen
to be equal to the largest value used in the image simulations.

2.E.3. Effect of detector energy resolution

The effect of the detector energy resolution was simulated
by computing the additional variance for PHA detectors with
different number of energy bins. This requires a computation

Medical Physics, Vol. 40, No. 11, November 2013



111909-6 Robert E. Alvarez: Dimensionality and noise in energy selective x-ray imaging 111909-6

soft tissue

soft tissue

material 3

bone
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material 3
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material 3
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FIG. 1. The object for the images with noise simulation. The object is com-
posed of blocks of tissue shown in perspective view in part (a). The thick-
nesses of the blocks was 1 cm for adipose tissue and 0.1 cm for the bone
or the iodine contrast material. The soft tissue thickness for the noise vs di-
mensionality simulations was 1 cm but was varied from 1 to 30 cm for the
noise vs object thickness simulation. Part (b) shows the A-vector components
as they might be imaged by a three dimension system with adipose tissue as
the third basis material. Part (c) shows the components for a two dimension
system. In this case, the adipose tissue appears as a positive amount of soft
tissue and a negative amount of bone.

of the M matrix and the covariance for the limited resolution
detectors. For this computation, the energy response for each
energy bin was assumed to be a rectangle function equal to
one inside the energy bin and zero otherwise. The elements of
M are the effective values of the basis functions for the spec-
trum of each bin as given by Eq. (11) and the measurement
covariance is given by Eq. (12) with the Nk computed with
Eq. (3).

2.F. Simulated images from energy selective
x-ray data

The theoretical results derived in Secs. 2.A–2.D were il-
lustrated with simulated x-ray images of the object in Fig. 1.
The object, shown in perspective in Fig. 1(a), is composed
of blocks of three materials: soft tissue, cortical bone, and
a third material that can be either adipose tissue or the io-
dine contrast agent. The source spectrum, object attenuation
coefficients and PHA detector are as described in Sec. 2.E.
The object dimensions shown in the figure are not intended to
model a typical medical application but to illustrate the effects
of dimensionality on noise. The photons transmitted through
the object are measured with a PHA detector in each pixel.
Poisson distributed random samples of the transmitted spec-
trum for each pixel and PHA energy bin were generated and
logarithms of the data divided by the number of photons in-
cident on the object in each bin were computed. The data in
separate energy bins and pixels are statistically independent.

The random PHA data vectors L in each pixel were pro-
cessed first with three and then with two function basis sets.
Each bin is a separate effective measurement so there are
many more measurements than dimensions. A linear maxi-
mum likelihood estimator assuming constant covariance was
used. With the multivariate normal noise distribution, this es-
timator is24

ÂMLE = [(
MT C−1

L M
)−1

MTC−1
L

]
L. (18)

In Eq. (18), the term in brackets is a constant matrix since
the measurement covariance CL is assumed to be constant.
This allows the estimated A-vector at each pixel to be com-
puted by a matrix multiplication. The measurement covari-
ance was computed from the energy spectrum in the soft
tissue region. Since the covariance depends on the object
thickness, this can lead to errors and A-vector noise covari-
ance greater than the CRLB. However, the simulated results
show that the linear estimator gave good performance with the
relatively thin object used.

The estimators for two and three dimensions were com-
puted with Eq. (18) using M matrices with two or three
columns equal to the attenuation coefficients of the basis ma-
terials evaluated at the PHA energy bin boundaries. The same
measurement data L were used with both estimators so the
noise in the results is directly inter-comparable.

The variance of samples of the A-vector image data in the
soft tissue region that does not overlap the blocks of other
materials was computed. This was plotted as a function of
the number of photons. The CRLB was also computed using
Eq. (13) from the known spectrum and plotted for comparison
with the image noise.

2.G. Low noise conventional images
from energy selective data

As shown in my previous paper,13 we can use energy selec-
tive data to produce images with data comparable to conven-
tional photon counts or integrated energy but with larger SNR.
To illustrate this, the random measurement data were used to
make two images. One was an image of the total number of
photons in each pixel. The second used the two dimension
A-vectors. The vectors at every pixel were transformed by
multiplying by a “whitening” matrix13 so their components
have equal variance and are uncorrelated. Then a generalized
projection was computed by forming an inner product of the
whitened A-vectors with a unit vector with an angle chosen to
optimize the difference between the bone-region and the “air”
data outside the object.

3. RESULTS

3.A. Additional variance as a function
of dimensionality and photon number

Figure 2 shows the variance of the first two A-vector com-
ponents with two and three dimension processing as a func-
tion of the total number of photons per pixel. The left panel
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FIG. 2. The variance for the soft tissue and bone A-vector components as
a function of photon number with two and three dimension processing. The
third basis function was the attenuation coefficient of adipose tissue. The left
panel shows the variance of Asoft tissue and the right panel is the variance of
Abone.

shows the variance of the soft tissue component while the
right panel shows the variance of the bone component.

The x and y scales are logarithmic so the variance is in-
versely proportional to the photon number in all cases. The
variance with three dimensions is much larger than the vari-
ance with two dimensions. At the same photon number, the
three dimension bone component variance is 1.4 × 103 larger
than the two dimension value. The soft tissue component vari-
ance increase is 2.7 × 104.

Figure 3 shows the variance of the first two A-vector com-
ponents when the third basis function is the attenuation co-
efficient of a mixture of iodine and water. In this case, the
variance of both components only increases slightly from two
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FIG. 3. Variance as a function of photon number when the third basis func-
tion is the attenuation coefficient of one percent (by weight) iodine in water.
The increase in variance of the bone component from two to three dimensions
is small but positive as shown by the zoom inset.
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FIG. 4. Additional variance vs object thickness. The photon number is con-
stant for each thickness so that the increase in variance is due to the effect
of beam hardening. Plotted is the ratio of the variance at each thickness to
the variance with zero thickness. The third basis function is the attenuation
coefficient of adipose tissue.

to three basis functions. The bone component variances are so
close that they are hard to see in the plot but the zoom inset
shows that there is indeed a small increase from two to three
dimensions as expected. The variance increases from two to
three dimensions by factors of 1.03 and 7.4 for the bone and
soft tissue components, respectively.

3.B. Additional variance vs object thickness

Figure 4 shows the effect of increasing the object thick-
ness on the variance. In the computation of the data, the total
number of transmitted photons was kept fixed at each object
thickness by increasing the total number of photons in the in-
cident spectrum but otherwise not changing its shape. The ob-
ject was assumed to be composed of soft tissue. Other body
materials such as bone will give curves with different shapes
but will also harden the spectrum and increase the variance.
The ratio of the variance for each thickness divided by the
variance with zero thickness is plotted so the results are inde-
pendent of the transmitted photon number. The increase from
1 to 30 cm was approximately a factor of 200 for the bone
component and 220 for the soft tissue component.

3.C. Additional variance vs detector energy resolution

The effect of the detector energy resolution is shown in
Fig. 5. The figure plots the variance of the bone component
for PHA with 3, 5, 10, and 100 energy bins. For the 3, 5, and
10 bin cases, the bins were contiguous with widths adjusted to
give the same number of photons. With the 100 bin detector,
the bins were equally spaced across the spectrum.

In the top panel, the additional basis function was the at-
tenuation coefficient of adipose tissue and in the bottom panel
it was the attenuation coefficient of the iodine and water mix-
ture. With three dimension processing and adipose tissue as
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FIG. 5. Additional variance vs detector energy resolution. Plotted is the
Abone variance with two and three basis functions for 3 to 100 bins PHA.
In the top panel, the third basis function is the attenuation coefficient of adi-
pose tissue while in the bottom panel it is the attenuation coefficient of one
percent iodine in water. The vertical scale is logarithmic.

the third basis material, the bone component variance in-
creases markedly, a factor of 25 from 100 bins to the 3 bin
value. The increase with two dimension processing is much
less, a factor of approximately two. The increase is variance
with the contrast agent as the third basis material is smaller
and about the same with either three or two dimension pro-
cessing, a factor of two for the bone and soft tissue A-vector
components.

3.D. Simulated images

Simulated images with three dimension processing are
shown in Fig. 6 and with two dimension processing in
Fig. 7.

The effect of the third basis function is shown in Fig. 8.
In this figure, the third basis function is the attenuation co-
efficient of one percent fraction by weight of iodine in wa-
ter. The number of photons for each row is the same as in
Figs. 6 and 7.

The variance of the A-vector data in the soft tissue region
of the images with noise as a function of the number of pho-
tons per pixel is plotted in Fig. 9. The CRLB computed using
the spectrum in the soft tissue region is plotted as the solid
lines for each case.

soft tissue bone adipose

103

104

105

106

107

FIG. 6. Simulated images with three dimension processing when the third
basis function is the attenuation coefficient of adipose tissue. A-space pro-
cessing is used with 100 energy bin PHA data to compute the effective line
integrals with a basis set consisting of the attenuation coefficients of soft tis-
sue, adipose tissue, and cortical bone. The A-vector components are shown
in the three columns. For each row, the spectra are multiplied by a constant so
the expected number of photons per pixel increases from 103 in the top row
to 107 in the bottom row. Note the gray bar at the right of each image with a
range from 0 to 2.5 cm.

The effect of beam hardening is illustrated by the images in
Fig. 10. In the figure, the thickness of the soft tissue, shown in
the right column, was increased from 1 to 30 cm. The number
of transmitted photons per pixel was fixed at 107 by increasing
the incident number of photons as the thickness increases. The
image variance values are plotted in Fig. 11 as a function of
the thickness. The CRLB values computed from the spectrum
in the soft tissue region are also plotted as the solid lines.

As the soft tissue thickness increases, the large difference
between the air region and the object causes errors with the
linear maximum likelihood estimator so the soft tissue object
appears in the bone and adipose tissue basis images. How-
ever, within the soft tissue region the contrast if the bone and
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soft tissue bone
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FIG. 7. The noisy data in Fig. 6 are processed using a two dimension basis
set. The noise is much less but the adipose tissue is not imaged separately and
it appears as a positive amount of soft tissue and a negative amount of bone.

adipose tissue blocks is lower and the linear estimator noise
variance is equal to the CRLB.

Computing low noise images with energy selective data is
illustrated in Fig. 12. In the figure, images with data equal to
the number of photon in each pixel are in the left column and
the optimal generalized projection images computed from the
A-vector data as discussed in Sec. 2.G are in the right column.
The number of photons per pixel increases from the top to the
bottom row as labeled on the images. The photon numbers
were the same as in Figs. 6 and 7 so the noise in the images
can be directly compared.

soft tissue bone cortical iodine solution

103

104

105

106

107

FIG. 8. The PHA data are processed using a basis set consisting of the at-
tenuation coefficients of soft tissue, cortical bone, and one percent iodine in
water solution. Compare the noise in these images with Fig. 6, which uses
the attenuation coefficient of adipose tissue as the third basis function.

4. DISCUSSION

The images in Sec. 3.D illustrate the trade-off between
dimensionality and noise. Figure 6 shows that a three di-
mension basis set has more information since we can image
bone, soft tissue, and adipose tissue separately while with
the two dimension set in Fig. 7 the adipose tissue appears
as a positive amount of soft tissue and a negative amount of
bone. However, for comparable numbers of transmitted pho-
tons per pixel, the three dimension images have much larger
noise variance than the two dimension images, 1.4 × 103 and
2.7 × 104 times larger for the bone and soft tissue compo-
nents, respectively.

Figure 8 shows that the properties of the basis functions
have a strong effect on the noise. In this figure, the third basis
function is the attenuation coefficient of a one percent mixture
of iodine in water. The number of photons for each row of this
image are the same as in Fig. 6 but the noise variance is much
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FIG. 9. A-vector variance in the soft tissue region of the images. In the top
graph, the third basis function is the attenuation coefficient of adipose tissue.
In the bottom graph, it is the attenuation coefficient of iodine in water. The
crosses and circles are the image sample variance and the solid lines are the
CRLB. Both axis scales are logarithmic.

smaller. The increase from two to three dimensions is 1.03
and 7.4 for the bone and soft tissue components in this case.

Figure 10 illustrates the effect of spectrum changes with
beam hardening on the noise. The figure shows the A-vector
component images as the thickness of the soft tissue block in
Fig. 1 is increased from 1 to 30 cm. The number of transmitted
photons is kept constant at each thickness so the increase in
noise is only due to the increase in the average energy and
reduction of the spectral bandwidth with beam hardening.

The detector energy resolution has a smaller but still sub-
stantial effect. Figure 5 shows that as the resolution decreases
from 100 to 3 bins the three dimension bone component vari-
ance increases by a factor of 25 with adipose tissue as the
third basis material. The increase for the soft tissue compo-
nent is smaller, approximately two. With the iodine mixture
as the third material, the increase for both components is also
approximately two. With either basis material, increasing the
energy resolution allows the system to extract the A-vector in-
formation with less noise for the same number of transmitted
photons.

The log-log plots in Figs. 2 and 3 show that the noise
variance is inversely proportional to the number of photons
so reducing the variance requires proportional increases in

soft tissue bone adipose

1

11

20

30

FIG. 10. Images illustrating the effects of beam hardening on basis image
noise. Each row shows the basis images for different soft tissue slab thick-
nesses from 1 to 30 cm. The thicknesses are labeled in the right column. See
Fig. 1 for a description of the phantom. The number of transmitted photons
per pixel was fixed at 107 for all four cases by increasing the number of inci-
dent photons as the thickness increases.
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FIG. 11. Noise variance in the images in Fig. 10 as a function of soft tissue
slab thickness. The variance of the image data within the soft tissue excluding
the regions where bone and adipose tissue blocks overlap is used. The image
data sample variances for three dimension processing are the circles while for
two dimension processing they are the cross symbols. The CRLB for each
type of processing is plotted as the solid lines.
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FIG. 12. Low noise images from energy selective data. The image data in
the left column are the total number of photons per pixel. The data in the right
column are computed from the two-dimension A-vectors by transforming so
the variances of the components are equal and uncorrelated. Then a dot prod-
uct is computed of the transformed A-vector in each pixel with a unit vector
at an angle selected to maximize the bone contrast.

the number of transmitted photons. Since the dose is in turn
roughly proportional to the transmitted photon number, large
increases in dose may be required with the soft tissue, bone,
and adipose tissue basis material set depending on the ac-
ceptable noise level for a clinical application of the data. The
methods described in this paper can be used by medical physi-
cists working with clinicians to optimize parameters for a par-
ticular application and to decide whether the increased dose
required to extract the higher dimension information is justi-
fied by its diagnostic value.

The simulations in this paper assume that the detectors are
quantum noise limited and satisfying this requirement with
high counts places stringent limits on the detector electronic
noise levels and other imperfections that may be beyond the
present state of the art. The increases in noise with the contrast

agent as the additional basis material are much smaller so this
application is more feasible with current technology.

Conventional systems that measure only the total photon
energy or the total number of photons do not extract the infor-
mation present in the energy spectrum. Figure 12 shows that
by using the spectrum information, we can produce images
with higher signal to noise ratio than images of the number of
photons.

The computation of images with variance close to the
CRLB requires a suitably chosen statistical estimator. An es-
timator that results in variance equal to the CRLB is called
“efficient” and the maximum likelihood estimator used in the
simulations is known to be asymptotically efficient in the limit
of a large number of observations.30 No general method is
known to determine the actual number of observations re-
quired to give efficient performance but the image simulations
show that the linear estimator described by Eq. (18) is efficient
with the ranges of photon counts used.

The linear assumption was not valid over the transition
from the “air” region to the object for the large soft tissue
thicknesses in Fig. 10 causing errors in this region. However,
general maximum likelihood estimators have been developed
that are usable over large object thickness variations. Roessl
and Proksa31 describe an iterative maximum likelihood
estimator that was used by Schlomka et al.32 to make exper-
imental images of an 8 cm phantom with photon counting
detectors with PHA. Alvarez33 describes a noniterative esti-
mator for two dimension processing that achieves the CRLB
with object thicknesses up to 30 cm.

The implementation by Schlomka et al.32 while impres-
sive had implementation problems including long and unpre-
dictable computation with the iterative algorithm and requir-
ing measurements of the source spectrum and detector energy
response that are difficult in clinical settings. The implemen-
tation by Alvarez33 addressed these problems but only a two-
dimensional estimator was described. Development of esti-
mators for higher dimensions that achieve the CRLB and can
be implemented in clinical systems should be addressed by
future research.

The x-ray detectors used in the simulations were ideal-
ized by assuming quantum limited noise and negligible pulse
pileup. The CRLB is applicable with nonidealized detectors if
good models28, 29 of detector noise are available. These mod-
els can be used with the CRLB to determine the effects of
nonideal detector performance on dimensionality, to optimize
the detectors, and to develop estimators that provide efficient
performance.

5. CONCLUSION

A method based on the Cramèr-Rao lower bound is pre-
sented to quantify the increase in noise variance with dimen-
sionality. This method allows us to study the trade-off of the
additional information with the increased dose required to ex-
tract it. The increase in noise variance from two to three di-
mensions will depend on the source spectrum, the object com-
position and thickness, the detector energy resolution, and the
basis set used. Even with very high energy resolution data,
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FIG. 13. Error using the constant covariance CRLB as a function of photon
counts. The top panel shows the error with 100 PHA bins while the bottom
panel is for 5 bins. The error decreases as the number of photons increases.
Note the logarithmic horizontal axis scale.

the increase in variance from two to three dimensions with
the soft tissue, bone, and adipose tissue basis material set, 1.4
× 103 and 2.7 × 104 for bone and soft tissue, respectively, is
so large that extracting it will be difficult. With the attenuation
coefficient of an iodine contrast agent as the third basis func-
tion, the increase in variance is much smaller, 1.03 and 7.4, so
extracting higher dimension information in this case may be
feasible as detector technology advances. The method is ap-
plicable with different types of energy selective systems and
can be used by x-ray system designers for optimizing energy
selective system parameters. It can also be used by medical
physicists working with clinicians to optimize parameters for
a particular application and to decide whether the increased
dose required to extract the higher dimension information is
justified by its diagnostic value.

APPENDIX: CONSTANT COVARIANCE
APPROXIMATION TO THE CRLB OF ENERGY
SELECTIVE SYSTEMS

The error using only the constant covariance term was cal-
culated as the norm of the difference of the complete CRLB
covariance computed using Eq. (13) and the CRLB computed
using only the first term in the Fisher matrix, Eq. (15), which

assumes the covariance is constant. The fractional error was
computed as the norm of the difference divided by the norm
of the complete CRLB,

frac.err. = ‖RA,CRLB − RA,CRLB,con.cov‖
‖RA,CRLB‖ . (A1)

See Section 2.C for a description of the formulas used to
compute the terms in this equation.

Simulations were performed to compute the error with
PHA detectors as a function of the photon counts and the
energy resolution. A 120 kV x-ray tube spectrum was used
with a basis set consisting of the attenuation coefficients of
soft tissue, cortical bone, and adipose tissue. Two different
PHA detectors with 100 bins or 5 bins were assumed. The
100 bins were uniformly spaced while the 5 bins were chosen
to give equal number of transmitted photons in each bin. The
bins in both cases were contiguous and spanned the complete
spectrum.

The error shown in Fig. 13 decreases with either detector
as the number of photons increases. The error is negligible
for photon numbers greater than approximately 100 for the 5
bin detector and 1000 for the 100 bin detector. Evidently the
number of photons per bin has a significant effect on the error
so more photons are required with larger number of bins.
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