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Abstract
Metabolomics use in toxicology is rapidly increasing, particularly owing to advances in mass
spectroscopy, which is widely used in the life sciences for phenotyping disease states. Toxicology
has the advantage of having the disease agent, the toxicant, available for experimental induction of
metabolomics changes monitored over time and dose. This review summarizes the different
technologies employed and gives examples of their use in various areas of toxicology. A
prominent use of metabolomics is the identification of signatures of toxicity – patterns of
metabolite changes predictive of a hazard manifestation. Increasingly, such signatures indicative
of a certain hazard manifestation are identified, suggesting that certain modes of action result in
specific derangements of the metabolism. This might enable the deduction of underlying pathways
of toxicity, which, in their entirety, form the Human Toxome, a key concept for implementing the
vision of Toxicity Testing for the 21st century. This review summarizes the current state of
metabolomics technologies and principles, their uses in toxicology and gives a thorough overview
on metabolomics bioinformatics, pathway identification and quality assurance. In addition, this
review lays out the prospects for further metabolomics application also in a regulatory context.
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Introduction
Is there such thing as toxicometabolomics or is there only metabolomics use in toxicology?
Is there something unique about this use that justifies coining a new word? The authors
believe that mass spectroscopy-based metabolomics represents an enabling technology to
drive toxicological progress within the current discussion of toxicology for the 21st century.
The study of metabolomics, as applied to toxicology, has applications that are unique, e.g.
the identification of pathways of toxicity (PoT), signatures of toxicity (SoT) for regulatory
evidence and applications feeding into systems toxicology approaches, which are to some
extent distinct from other areas in the life sciences. PoT, i.e. the molecularly defined cellular
processes which connect a chemico-biological interaction of a toxicant with its adverse
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outcome, are a key concept for implementing the vision of Toxicity Testing for the 21st
century (Tox-21c), the proposed change to a mechanistic toxicology by the NRC, 2007.

Metabolomics has been defined as ‘the quantitative measurement of time-related
multiparametric metabolic response of living systems to pathophysiological stimuli or
genetic modification’ (Nicholson et al., 1999). ‘Multiparametric’, however, may not fully
represent the ‘omic’ notion of aiming for the entirety of aspects. While the hundreds to
thousands of identifiable and currently detectable structures are already impressive enough,
and it certainly serves us well at the moment, only a small fraction of all metabolites can be
assessed in a single measurement. The ‘omics’ approach aims for larger coverage and a
nearly complete detection of small molecules in a biological sample.

Metabolomics, as an emerging field of ‘omics’ research, primarily concerns comparative
analysis of the endogenous metabolites present in any biological system or any specific
physiological state. It aims to characterize and identify the metabolites – the end products of
cellular metabolism. As an interdisciplinary field of science, metabolomics combines
analytical chemistry, bioinformatics, statistics and biochemistry. When applied to toxicology
studies, metabolomics also includes aspects of patho-biochemistry, systems biology and
molecular diagnostics (Griffiths et al., 2010). In the past few years, metabolomics
approaches have been widely used in toxicology studies, mostly because they have the
ability to provide helpful information for better understanding the mechanisms of toxicity.
Furthermore, metabolomics has the potential to identify biomarkers of toxic effects and
build models for toxicity prediction (Craig et al., 2006; Heijne et al., 2005a; Ruepp et al.,
2002; Schnackenberg et al., 2006, 2009). From an analytical perspective, the goal of
metabolomics in toxicology studies is to ‘achieve a comprehensive measurement of the
metabolome and how it changes in response to stressors, with biological payoff being an
illumination of the relationship between the perturbations and affected biochemical
pathways’ (Robertson, 2005).

The most common technologies currently employed for metabolomics are nuclear magnetic
resonance (NMR) and mass spectrometry (MS), both of which allow for the phenotyping of
a response. Pioneering work of the Imperial College group has favored NMR technologies
in metabolomics in toxicology, but for the purpose of identifying unknown PoT via
untargeted metabolomics, MS-based metabolomics appears the more suitable technology as
it allows better deduction of a substance represented by a feature in the recorded spectrum,
higher sensitivity and precision compared with NMR, and the ability to measure nearly the
whole metabolome. These advances of MS have only been available for a few years. As the
identification of metabolites for PoT deduction is especially critical for the implementation
of Tox-21c, our review will predominantly address MS-based metabolomics, although many
aspects can easily be translated to NMR.

Toxicology faces many challenges to meet the societal desire for safety science and its
regulatory use (Hartung, 2009, 2011). Demanding legislation in Europe for chemicals and
cosmetics (Hartung, 2008, 2010; Hartung and Rovida, 2009) prompts a need for change.
This is in strong contrast to the lack of major methodological changes: toxicology is
probably the only life science for which most experimental designs date back 40 to 60 years.
Certainly, details have been refined and additional techniques have been added, but the vast
majority of resources still go into treating rats and monitoring them for pathology. We have
estimated that this amounts to animal testing costs of $3 billion worldwide per year (Bottini
and Hartung, 2010). In spite of this expense, the return of investment is not satisfactory, with
only 43% predictivity of rodent toxicology for human side effects in drug development
(Olson et al., 2000) and the need to apply precautionary safety factors of 100–1000 on the
results obtained. The testing capabilities to date, owing to costs and labor, do not allow for
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the assessment of the high number of substances, e.g. medicines, pesticides and consumer
products, aiming to enter the market. A backlog of close to 100,000 substances in consumer
products that have not been systematically tested cannot be addressed in the foreseeable
future, although REACH in Europe and ongoing TSCA reauthorization in the US aim to
reduce this burden (Hartung, 2010). This does not solve the problems of novel products
(biological, functional food, cell therapies and nanoparticles), new hazards of concern
(endocrine disruption, childhood asthma, atherosclerosis, obesity, diabetes etc.), mixture
effects, or inter-individual differences (personalized toxicology). For all these, toxicology
has little to offer and it is questionable whether an expansion of current approaches will
solve the problem.

Many of these concerns culminated in the hallmark publication of the National Research
Council (NRC, 2007), which proposed moving the science of toxicology towards a
mechanistic understanding. This was also fully embraced in the development of a roadmap
for a novel approach to systemic toxicity testing (Basketter et al., 2012). The basic concept
is that drugs or toxicants cause perturbations of the concentrations and fluxes of endogenous
metabolites involved in key biochemical pathways and the response of cells to toxicants or
other stressors generally results in an adjustment of their intra- and/ or extracellular
environment in order to maintain constancy of their internal environment (homeostasis). The
principal question is: when does a normal adaptive response become abnormal (toxic)?
There are two different views on what constitutes a toxicity pathway: one assumption is that
drug- or toxicant-induced modulations are related to known metabolic pathways, which are
deranged, and if the capacity for self-correction is exceeded, they turn into hazard
manifestations. The opposing view is that the chemico–biological interaction leads to a
cascade of events, which disrupts homeostasis. We tried to explain that these are simply
different time-points in the chain of events, i.e. initially, pathways of toxicity derange
whereas pathways of defense (PoD) counteract (Hartung et al., 2012). Then a new
homeostasis under stress is established, which can result in damage if it is not stable or its
defense capacities are exhausted by continued stress. Metabolomics is typically carried out
measuring the latter, i.e. applying sub-toxic or borderline toxic doses/concentrations (or at
least measuring before a manifestation of hazard), but at times at which the biological
system has stabilized and the signatures of change can stably be measured. It will have to be
shown which is the more telling condition and which can then be used for hazard prediction.

Principles and Types of Metabolomics
Metabolomics requires highly analytical instruments because it is dealing with thousands of
small molecules with a diversity of chemical and physical properties. Many analytical
technologies have been developed and applied for metabolomics in the past decade
(Hollywood et al., 2006; Kim et al., 2011; Scalbert et al., 2009), but there are only two
technologies which meet the high requirements for these studies: nuclear magnetic
resonance (NMR) and mass spectrometry (MS).

NMR-based metabolomics—NMR technology has played an important role in
metabolism studies for more than 30 years (Wishart, 2008). The NMR-based metabolomics
approach in toxicology can be traced back to the early 1980s (Hanzlik et al., 1980;
Robertson, 2005), and it remains one of the most extensively utilized analytical approaches
in toxicometabolomics (Barba et al., 2008; Beger et al., 2010; Fukuhara et al., 2011; Liu et
al., 2011; Neerathilingam et al., 2010 ). Compared with other analytical tools, NMR has
several unique advantages, such as its simple quantitative readout and sampling capabilities.
The technology, in particular, is non-destructive, requiring no sample alteration and only a
small amount of material. Because NMR is non-destructive, it can even be used non-
invasively, as it has been applied to detect molecules in vivo (Griffin and Kauppinen, 2007;
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Serkova et al., 2008). Furthermore, the technology requires no separation, provides
structural information, and often has higher reproducibility than MS-based technology. With
developments of new technologies (e.g. flow probe and automated shimming), more than
300 samples can be handled per day (Griffin, 2003). The major limitations of NMR for
comprehensive metabolite profiling is its relatively low sensitivity and its unsuitability to
detect low-concentration metabolites. The recent introduction of some new developments,
such as cryoprobes, high field magnets (up to 900MHz) and low-volume microprobes,
however, has pushed the limits of detection for modern NMR into the 10−5–10−6M range
(Wishart, 2008). Sensitivity seems to be less of a concern today, but the time required to
acquire spectra with adequate resolution is considerably longer compared to methods like
MS. The possibility of automating metabolomics workflows is a further strength of both of
these technologies. Considering all the above, NMR will continue to be a very important
analytical tool for metabolomics study.

MS-based metabolomics—Over the past decade there has been a rapid growth of MS-
based metabolomics publications (Robertson, 2005). Because of its high sensitivity,
selectivity, and wide dynamic range, MS has emerged as a powerful tool in metabolomics
studies. The wide applications of this technique for toxicological metabolomics have been
reviewed (Beger et al., 2010; Kaddurah-Daouk et al., 2008; Patterson et al., 2010;
Robertson, 2005; Roux et al., 2011). As biological samples can be introduced to the ion-
source of MS either via direct-injection (DI) or after chromatographic/electrophoretic
separation, two major methods, hyphenated method and direct injection method, have been
used in MS-based metabolomics. Direct-injection or flow-injection analysis, especially
when used on high-resolving mass spectrometers, provides an effective way to detect and
quantify large numbers of metabolites, and was extensively utilized for metabolome
analysis. An example of this technique is described in a study of Escherichia coli
metabolism utilizing a DI-MS (Q-Tof mass spectrometry with a resolution of 8000–12 000
(FWHM) over the m/z 100–1000 range) that profiled small molecules in the impressive
number of > 1400 biological extracts per day and successfully detected > 1500 distinct ions
at a given mode from polar E. coli extractions (Fuhrer et al., 2011). The major drawback of
the direct-injection technique is the presence of ion-suppression, which resulted in the
failure to detect some metabolite ions with low ionization efficiencies. To minimize ion
suppression, a hyphenated technique was developed to physically separate the complex
analytes prior to exposure to an ion source by chromatography or electrophoresis so that
individual or less complex metabolites can be eluted from the column/ capillary with
different retention times and then analyzed with MS.

The most extensively used hyphenated MS approaches are GC (gas chromatography) and
LC-MS (liquid chromatography-mass spectrometry). Gas chromatography combined with
electron ionization (EI) mass spectrometry is the most developed technology for metabolite
profiling. During electro-ionization, analyte molecules are ionized and fragmented in the gas
phase (10−1 to 10−4 Pa) by interaction with 70 eV electrons generated from a hot filament
and accelerated through a 70V electric field (Beran and Kevan, 1969). As the fragmentation
is reproducible, these fragment ions form the ‘chemical fingerprints’ (‘features’) of the
analyte. Therefore, many commercially available libraries with thousands of standard EI
spectra can be used for rapid identification of analytes. Using this platform, more than 300
chemically diverse metabolites have been detected in a single run, including amino acids,
organic acids, sugars and fatty acids (Jonsson et al., 2005). One prerequisite for GC-MS
analysis is the need of volatile analytes that are stable at high temperature during the whole
analysis. Generally, some non-volatile metabolites (e.g. sugars, amino acids) can be
converted into volatile compounds by derivatization. Although chemical derivatization
improves the coverage of metabolites, an additional source of variability in metabolomics
may be introduced by such processing.
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Liquid chromatography coupled to soft ionization mass spectrometry has also emerged as a
powerful tool in metabolomics. Unlike GC-MS, which uses a high energy for ionization,
LC-MS utilizes a so-called ‘soft ionization’ technique that preserves the intact molecular
information, which is critical for identification. One can easily obtain the molecular weight
of the intact molecule based on the protonated/deprotonated ions ([M + H]+, [M-H]-).
Electrospray ionization (ESI) is the most widely used soft ionization technique in LC-MS.
Owing to the development of high resolution mass analyzers over the past decade [e.g. time-
of-flight (TOF), orbitrap and Fourier transform – ion cyclotron resonance (FT-ICR), the
mass-to-charge ratio (m/z) of ions can be measured with accuracy within ppm range, which
greatly decreases the number of elemental compositions of the ions and facilitates the
identification based on the exact masses (Robertson, 2005). Compared with other platforms,
LC-MS exhibits better sensitivity, selectivity, and a broader dynamic range. LC-MS,
therefore, has been increasingly applied in metabolomics research over the past years,
particularly in toxicology studies (Chen et al., 2007; Crockford et al., 2006; Singh, 2006;
Wang et al., 2009; West et al., 2010). The major bottleneck for LC-MS based metabolomics
studies is the availability of the searchable mass spectra libraries for identification of
unknown compounds. Currently, there are few libraries (e.g. human metabolome database,
METLIN and MassBank) that are publicly available for LC-MS-based metabolomics. The
development of new databases/libraries based on mass accuracy, retention time, and MS/MS
spectra will play a crucial role in global metabolite profiling.

The most recent development in the hyphenated MS technique is capillary electrophoresis-
mass spectrometry (CE-MS). Compared with GC-MS and LC-MS, CE-MS has several
unique advantages, such as small injection volume requirements, short analysis time and
high separation power. In particular, since the metabolites are separated by charge and size,
CE-MS can be used to analyze cations, anions, and even neutral molecules in a single run,
which makes it a very promising technique for global metabolomics (Shulaev, 2006). CE-
MS has been applied in both targeted and untargeted metabolomics research (Monton and
Soga, 2007; Ramautar et al., 2009, 2011; Soga et al., 2003).

In addition to the most widely used techniques described above, several new techniques
have been developed over the past few years. Desorption electrospray ionization (DESI) and
direct analysis in real time (DART) are two techniques that ionize analytes under open
atmospheric conditions and require almost no sample separation and minimal preparation.
The applications of these two relatively new techniques in metabolomics have been
reviewed (Gowda et al., 2008; Han et al., 2009; Werner et al., 2008). Another new
technology, imaging mass spectrometry (IMS), has recently been used (Amstalden van Hove
et al., 2010; Franck et al., 2009; Li et al., 2008; Sugiura and Setou, 2010). Using IMS, one
can determine the distribution of hundreds of small molecules at complex surfaces (tissue,
for example) in a single analysis without destroying the cellular and molecular integrity.
Currently, there are two commonly used IMS techniques, secondary ion mass spectrometric
(SIMS) imaging and matrix-assisted laser desorption ionization (MALDI) IMS. Both of
these have been successfully applied in direct tissue imaging for assessing localization of
metabolites, which may provide more accurate structure information for biomarker
discovery. Although these new techniques have not been used as extensively as GC-MS and
LC-MS, the apparent advantage in not needing chromatography makes these techniques so
attractive that they could be useful analytical tools for high-throughput metabolomics.

In summary, there is no single analytical tool, which could be suited to precisely identify
and quantify thousands of small molecules of interest. The selection of the most suitable
analytical tool is generally a compromise between sensitivity and selectivity. As illustrated
in Fig. 1, NMR provides good selectivity and rapid analysis time, but has relatively low
sensitivity, which limits this technology to the analysis of only concentrated metabolites.
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GC-MS is more sensitive than NMR, but suffers from lower selectivity. Additional chemical
derivatization steps are needed for the analysis of some non-volatile/polar metabolites,
which usually cost more time and introduce more variance. LC-MS offers both high
sensitivity and selectivity. By choosing two complementary columns (reverse phase column
and HILIC column), LC-MS can be used to analyze non-polar and polar metabolites. On the
other hand, this technique requires relatively longer analysis time compared to NMR
technology. Therefore, a combination of different analytical technologies is needed in order
to obtain a better coverage of the metabolites with a broad range of polarities and molecular
weights.

Approaches for metabolomics—Generally, there are two major approaches used in
metabolomics studies: targeted and untargeted (global). A targeted approach is used to
determine the relative abundances and concentrations of specific sets of metabolites. In
order to conduct this type of analysis, information about the exact structure of the metabolite
must be available in advance (Cui et al., 2008; Kopka et al., 2005; Smith et al., 2005;
Wishart et al., 2007). The targeted approach represents a quantitative analysis as it involves
the comparison of the analytes to the authentic compounds. This method is well established
in metabolomics and it also has many applications in toxicology (Begriche et al., 2011; Li et
al., 2011; Lin et al., 2011a; Southam et al., 2011). One major disadvantage of the targeted
approach is that one must know the metabolites of interest a priori so that the given
compounds could be used as standards for absolute quantitation. Therefore, this approach is
dependent on the availability of a purified form of the known metabolite and is not
applicable for the identification of new metabolites.

In contrast, untargeted metabolomics is the comprehensive study of all metabolites in a
biological sample, which is sometimes called ‘global metabolome analysis’ (Griffiths et al.,
2010). This approach aims to find differing metabolites based on their relative quantitation
and annotation of as many chromatographic/spectroscopic peaks (‘features’) as possible
(Robertson, 2005). For example, in MS-based untargeted analysis, the initial raw data
acquired with MS may produce hundreds even thousands of mass signals. This global
metabolome analysis usually requires efficient data reduction using chemometric methods
for identification of statistically significant metabolites. The untargeted approach is mainly
used in mechanistic studies, hypothesis generation, biomarker discovery and diagnostics
(Chen et al., 2011a; Issaq et al., 2011; Lucio et al., 2010; Wang et al., 2012; Woo et al.,
2009). The disadvantage of untargeted metabolomics is that this approach is a relative
quantification, not an absolute one. Furthermore, some of the significant features/peaks are
not identifiable.

Bioinformatics and Pathway identification
Omics techniques tend to generate variable-heavy data sets and clever bioinformatics and
statistics are the keys to their success. It is no longer appropriate and possible to manually
analyze these data. This section will therefore focus on data formats, data processing,
statistics, available free software packages, and pathway analysis.

Along with several proprietary data formats that are platform-unique, several open file
formats (e.g. netCDF, mzXML and mzDATA) have been developed which are more or less
supported by the different platforms. The Seattle Proteome Center and Wikipedia host web
pages with extensive overviews and descriptions of proprietary data formats, possible
converters, and open file formats (Seattle Proteome Centre, 2012; Wikipedia, 2012).

Numerous statistical methods that are particularly appropriate for mining and interpreting
metabolomics data and are especially suitable for the so-called ‘large P small N problem’
(more variables/metabolites than observations/samples) are available. Most of the methods
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are multivariate statistics methods for extracting information from large tables of data, but
several machine learning approaches have become more and more popular. In general, the
pattern recognition methods used in metabolomics can be divided into two categories:
‘unsupervised’ (clustering) and ‘supervised’ learning (classification). Both approaches have
a long history in biometry. Whereas unsupervised learning is used to find structures in a
collection of unlabeled (multivariate) observations, supervised learning approaches are used
to find a mathematical function based on a training set that predicts the reference
classifications (labels) of the observations in the training set and/or distinct test sets.

The typical unsupervised statistical techniques used in metabolomics are principal
component analysis (PCA) and several clustering approaches. Typical supervised statistical
techniques are partially least squares projections to latent structures (PLS) and machine
learning approaches. Let X be a data matrix of N rows (observations like analytical samples,
biological individuals, etc.) and P columns (variables may be of spectral or chromatographic
origin, or other sources). In addition, for supervised learning a class label (classifier such as
‘control’ and ‘treated’) for each row may be available.

Preprocessing: normalization, transformation, missing values and filtering—
Usually, the data matrix is first centered to the mean and scaled to the same variances,
typically by a Z-transformation or a combination of mean centering and Pareto scaling
(Eriksson et al., 1999). This is necessary as several multivariate methods such as PCA or
PLS are maximum variance projection methods and non-normalized variables with large
variance have stronger weights and are more likely to be addressed in the modeling than low
variance variables. By scaling all variables to the same scale, no variable is allowed to
dominate over the others. For the Z-scaling, the centering can be done by calculating the
average value and standard deviation of each variable (column), subtracting the mean from
the data, and dividing by the standard deviation. The Pareto scaling divides by the square
root of the standard deviation instead of the standard deviation itself. Some people prefer the
Pareto scaling because the Z-scaling can increase the noise of features of low signal
variation. A more detailed overview of centering and scaling is given in van den Berg et al.
(2006).

In addition, a log transformation of the data can help reduce heteroscedasticity, as the log
transformation reduces large values more than small values. In addition, it renders a skewed
distribution more symmetric. Presence of heteroscedasticity can invalidate inferential
statistics that assume that variances of the error term do not vary with the effects being
modeled (e.g. linear models such as linear regression, ANOVA).

The last important preprocessing step is deciding how to deal with missing values, e.g.
metabolites that could not be detected in a subgroup of samples. This is common in
metabolomics and important because few types of statistics can cope with missing values
and, in most cases, it is unclear if the reason for the missing value is a concentration below
the detection limit or other experimental causes. Simple methods for replacing missing
values are the replacement by the mean or median of the metabolite concentrations over all
samples, which are in the same group (e.g. control group) or the imputation from the nearest
neighbors. More advanced techniques include Probabilistic PCA, Bayesian PCA, or Singular
Value Decomposition (Stacklies et al., 2007; Steinfath et al., 2008).

As with other omics technologies, preprocessing should include a (non-specific) filtering to
improve the data quality, exclude non-relevant metabolites, and improve the power of the
following statistics by reducing the multiple testing problem. An overview of possible
filtering techniques and practical examples are given in Table 1.
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Initial statistical analysis: unsupervised techniques—Initial analyses start usually
with PCA (Fig. 2D) on the entire dataset to gain an overview of class separation, trends and
outliers. The basic idea of PCA is dimension reduction, which means to present multivariate
data tables as a low dimensional-plane, usually consisting out of two to three dimensions.
PCA finds lines, planes, and hyperplanes in the P-dimensional space that approximate the
data as well as possible.

By using PCA, a data table X is modeled as X=T × P’ + E. The term T × P’ models the
structure and E is the residual matrix that contains the noise. The principal component scores
are the columns of the score matrix T. The meaning of the scores is given by the loadings of
the first, second, …, components building up the loading matrix P. Two PC define a model
plane, a window in the P-dimensional variable space. It is possible to visualize the P-
dimensional variable space by projecting all observations onto this two-dimensional
subspace. The co-ordinate values of observations on this plane are called scores and the plot
is therefore called a score-plot. It can be used to show similarities and dissimilarities
between the observations and to detect outliers. For an overview, the scores of the first two
dimensions (principle components) are usually inspected. In addition, moderate outliers can
be detected by inspecting the model residuals (Robertson and Lindon, 2005). A more
detailed overview on PCA is given by Jackson (2003).

A second important statistical toolset for finding structures in unlabeled observations is
cluster analysis (for a more detailed overview see Kaufman and Rousseeuw, 2005). The
question behind cluster analysis is how to organize objects into groups whose members are
in some way similar. There are two basic clustering strategies – non-hierarchical clustering,
sometimes called partitioning methods, and hierarchical clustering. Hierarchical clustering
can be further divided into agglomerative and divisive clustering. In agglomerative
clustering, each object starts in its own cluster with one single element, and in each step of
an iterative procedure the two closest clusters are merged until all objects are in one cluster.
The result is a tree that can be shown as a dendrogram (Fig. 2E). To get a desired number of
clusters, the tree is simply cut at the desired height. In contrast, divisive hierarchical
clustering starts with all objects in a single cluster, and at each step of the iterative process
the most heterogeneous cluster is divided into two separate clusters until all objects are in
their own cluster.

Non-hierarchical clustering – e.g. k-means – partitions data on one level only by a series of
iterations. Normally, single object exchanges or moves are proposed and the resulting
change in some clustering criteria is then computed and the change is accepted if it improves
the criteria. The process is repeated until a number of iterations are made. For example, the
k-means method partitions the samples into k-groups, so that the sum of squared distances
from the objects to the assigned cluster is minimized.

All cluster methods have in common that the user has to specify, in advance, the distance (or
similarity) algorithm between two measurements (e.g. city-block or Manhattan, Euclidian,
Chebychev distances) and, for hierarchical techniques, the distance measured between each
pair of objects (e.g. single, complete linkage). Before computing the distances, the data
matrix needs to be centered and scaled as described above. For partitioning algorithms, the
number of clusters typically needs to be specified as well. As it is well known that none of
the clustering techniques are always optimal (or, in other words, how well the algorithm
works depends on the data), several different clustering techniques should be applied in
parallel and the results compared. Finally, the results are shown in a heatmap based on the
computed between-object distances with dendrograms at the sides of the heatmap (Fig. 2E).
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Initial statistical analysis: supervised techniques—Typical supervised statistical
techniques applied in metabolomics are partial least squares projections to latent structures
(PLS; Wold et al., 2001) and several supervised machine learning approaches (For a recent
introductionary overview see Korman et al., 2012; Malley et al., 2011).

PLS has the ability to analyze data with many noisy, collinear, and even incomplete
variables, modeling a relation between the measured data matrix X and Y in a linear
multivariate model, whereas Y is normally an artificially designed matrix that describes the
class label, doses, or time points. The data should be symmetrically distributed and have a
constant error term. The data is often log-transformed, and z-transformed as described
above.

Unfortunately, the power and robustness of traditional parametric statistical approaches –
such as PCA, PLS, or linear models like t-tests, ANOVA, or other regression models – are
dependent on assumptions about the (multivariate) distribution of the test data and, like any
other parametric model, requires complete and correct specification of interaction and higher
order terms. It is well known that violations of these assumptions or model specifications,
such as non-normality, variance heterogeneity, non-specified variable interactions, or
censored observations, can lead to inflated type I errors, loss of power and/or selection of
wrong variables for the test statistics (see, for example, Kleensang et al., 2010). However, it
is nearly impossible in complex metabolomics datasets to meet all these criteria and specify
a parametric model including the complete and correct specification of interaction and
higher order terms. Machine learning approaches are more tolerant of departures from a
strict set of largely unverifiable assumptions (for an overview, see Malley et al., 2011) and
have been applied successfully to various biomedical and other problems for variable
selection and prediction, especially in cases of large numbers of predictors for a categorical
response variable (Heidema et al., 2006). They are fully non-parametric, essentially make no
distributional assumptions, and do not require a specified model as a starting point.

Moreover, the fact that they can be applied to a wide range of prediction problems, even if
they are nonlinear and involve complex high-order interaction effects, makes them – within
a very short period of time – important data analysis tools. These tools perform well in
comparison to many other standard methods (Diaz-Uriarte and Alvarez de Andres, 2006;
Heidema et al., 2006). A large variety of different machines are available which include
random forests, k-nearest neighbors, support vector machines and neural networks, but will
not be described here in more detail.

Free metabolomics analysis software packages—Several free software packages
are available for the analysis of metabolic datasets. Some of them focus on the necessary
preprocessing steps such as peak detection, alignments, and identification, and the
implemented inferential statistical tools are more or less limited: AMDIS (Stein, 1999),
MetAlign (Lommen, 2009), met-Idea (Broeckling et al., 2006) and mzMine 2 (Katajamaa et
al., 2006; Pluskal et al., 2010).

Most of the recently developed software packages are implemented in the R system for
statistical computing (R Development Core Team, 2006) as a combination of XCMS (Smith
et al., 2005, 2006) for peak detection, peak grouping, and retention time correction and
several other R add-on packages which are widely considered to be the most complete, up-
to-date collection of statistical approaches. Several of these software packages are web-
based to allow users to avoid learning the sometimes ‘beastly’ R programming language.
Famous examples are MeltDB (Neuweger et al., 2008) from the Bielefeld University
(Germany) and MetaboAnalyst (Xia et al., 2009) from the University of Alberta (Canada).

Bouhifd et al. Page 9

J Appl Toxicol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Also, XCMS alone is available as a web-based application: XCMS online (Tautenhahn et
al., 2012).

Current developments focus on pathway analysis and visualization tools – for example,
MetaboAnalyst and MeltDB with its modules MetPA (Xia and Wishart, 2010a, 2010b; Xia
et al., 2012) and MSEA (Persicke et al., 2012), and MPEA (Kankainen et al., 2011).

Pathway enrichment analysis—Through knowledge of biochemical pathways and gene
regulatory networks, metablomics can be linked to pathway analysis. Already in 2002, Fiehn
(2002) proposed that metabolomics results can be connected to the genotype through known
biochemical pathways and gene regulatory networks. In comparison to other omics
techniques, metabolomics is much closer to the phenotype than transcriptomics or
proteomics, because these omics approaches only indicate the potential for
pathophysiological or other changes. Several feedback mechanisms are simply not reflected
in protein concentration or gene expression changes. Pathway analysis, however, can only
be performed under the assumption that drug or toxin induced modulations are related to
upfront known metabolic pathways. Several pathway information databases are available.
Typical examples are The Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et
al., 2006, 2008) and WikiPathways (Kelder et al., 2012). While enrichment analysis has
become a very successful tool to link transcriptomics and proteomics results to pathway
analysis (Mootha et al., 2003; Subramanian et al., 2005), Metabolite Set Enrichment
Analysis (MSEA) are still in their infancy and only a few specialized software packages are
available as listed before.

These approaches are in general based on two classes of statistics plus interactive
visualization for the interpretation of the results, which are mainly based on the ideas and
statistics from Gene Set Enrichment Analysis (GSEA). An overview of enrichment tools in
the context of transcriptomics can be found in Huang et al. (2009).

The first class is singular enrichment analysis, where a set of ‘interesting’ metabolites is
preselected (e.g. differentially expressed metabolites between control and sample selected
by fold change or t-test p-value), and by comparing the amount/fraction of ‘interesting’
metabolites in a given pathway with the amount/fraction of ‘interesting’ metabolites that
should occur by chance, a test of over- or underrepresentation in pathways can be calculated
by Fisher’s exact test or hypergeometric distribution. However, applied to metabolomics it is
difficult to decide about the ‘right’ metabolite reference background for the calculations.
This is important because the estimation of the amount/fraction of ‘interesting’ metabolites
occurring by chance directly impacts the enrichment p-value. The number of estimated
metabolites in eukaryotic cells ranges from 4000 to 20 000 and up to 200 000 in the entire
plant kingdom (Fernie, 2004, 2007). But how many of them can be detected depends on
your experimental setting and platform.

The second approach takes into account all metabolites without selecting ‘interesting’
metabolites. The test statistic is calculated from the rank order based on fold change or t-test
P-value of all metabolite members in the pathway, and p-values can be obtained by Monte-
Carlo permutations of the test statistic.

One problem for both approaches compared with their use in transcriptomics is the much
higher fraction of missing values for metabolomics, but it is largely unclear at the moment
whether this only affects the power of the statistics or the robustness as well. In addition, as
pointed out by Huang et al. (2009): ‘Due to the complexity of biological data-mining
situations, in its current state, the analysis of large gene lists with the current enrichment
tools is still more of an exploratory data-mining procedure rather than a pure statistical
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solution’. It is also unclear at the moment how, and to what extent, different omics sources
can be combined systematically and statistically for pathway analysis.

Quality Assurance
Obtaining information-rich data sets from the emerging data streams, -omics, among others,
is believed to produce important knowledge about disease and mechanisms of toxicity. This
conceptual framework offers many opportunities for modern toxicology; many challenges,
however, need to be addressed to ensure a sufficiently robust and informative outcome.
Metabolomics information may be generated using diverse technological platforms,
complex biological systems, and various analytical and computational methods (Castle et
al., 2006), producing different data types and formats. It then becomes clear that measures
and procedures for ensuring the quality of the data generated are necessary. We have to
distinguish between quality assurance as best scientific practice for within-laboratory use
and the regulatory use, which will typically require formal validation and acceptance of the
method and a formal quality regime such as Good Laboratory Practice. Quality systems
(QS) were developed originally for industrial production but they were increasingly
introduced in many other sectors and organizations to establish a formal structure for
establishing quality criteria. Examples of implementation in scientific and regulatory
organizations are the US EPA Guidance for Developing Quality Systems for Environmental
Programs (EPA, 2002) and the EPA Requirements for Quality Assurance Project Plans
(EPA, 2001). Elements of a quality system include organizational structure, responsibilities,
resources, methods, data management, processes and quality. We will focus on the quality
elements. It is beyond the scope of this article to detail QS, and guidelines as well as an
abundant review literature are available (such as the ISO 9000-series on quality
management).

Transposing QS to research activities involving biological testing and analytical methods,
method validation, and quality control would be the foundation of such a system. In general,
method validation through laboratory studies ensures that the performance characteristics of
the method meet the requirements for the intended application and provides an assurance of
reliability during normal use. Method validation may be driven by regulatory requirements
but it also provides good science, and allows quality control and assurance. While this is
well accepted and widely applied in laboratory services and research and development
(R&D), in academia many, if not most, researchers make little use of quality systems and
method validation studies (Krull and Swartz, 1999). There are various reasons for this and
they are detailed in (Mathur-De, 2000), where the author analyzes the scope and limitations
of quality systems for research centers. It is not our intent to suggest that academic research
should meet all regulatory guidelines, but we believe that in such interdisciplinary and
rapidly evolving disciplines, the implementation of minimum and fit-for-purpose quality
measures would be beneficial for monitoring and evaluating the quality of test methods and
for assuring the accuracy and reliability of the test results.

In this part we will briefly describe the state-of-the-art in regulatory requirements for
method validation and list some guidelines that may be of interest in metabolomics studies.
We will then propose a general scheme for a quality system in a research project and advise
some practical measures specific to metabolomics studies.

The principle of the validation of analytical methods is widespread in all the domains of
activities where measurements are made. There are various regulatory documents and
guidelines of normative character released by regulatory bodies [International Conference
on Harmonization (ICH), the US Food and Drug Administration (FDA), the European
Medicines Agency (EMEA), the International Organization for Standardization (ISO)] and
other documents related to good practices [Good Laboratory Practices (GLP), Good
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Manufacturing Practices (GMP)]. For example, ICH has developed a text on the validation
of analytical procedures (ICH, 1995). The FDA has proposed guidelines on analytical
procedures and methods validation (FDA, 2000). A common ground for all these documents
is the parameters for validation. They are defined by ICH (1996) and by other organizations
and typically include: precision, accuracy, linearity, range, ruggedness, limit of detection,
limit of quantitation, selectivity and specificity.

In addition, for toxicity testing, guidelines were primarily developed by three organizations:
the Organisation for Economic Cooperation and Development (OECD), the European
Centre for the Validation of Alternative Methods (ECVAM) (Hartung et al., 2004) and the
Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM).
Criteria to be addressed in a validation exercise include (OECD, 2005): test definition
(including purpose, need and scientific basis), relevance of the test method, repeatability and
reproducibility, inter-laboratory transferability, predictive capacity and applicability domain.
Although questions arise about whether the validation process, as it has been formalized
over the last two decades, might meet the challenges of emerging methods and technologies
especially in toxicity testing (Hartung, 2007, 2010; Leist et al., 2012), a pragmatic approach
would be to adapt some of the principles and criteria listed above for ensuring some degree
of quality in metabolomics studies.

In order to devise a quality system, let us first illustrate a scheme for the different stages of a
scientific activity within a research project.

Figure 3 depicts the different elements of a quality controlled research project. It combines
scientific and technical competences in addition to processing a task. It could also be divided
into stages, starting with planning and management, then design and implementation, and
finally analysis and review. The scientific rationale and objectives are the central part of the
research activity and should be well-defined prior to any practical execution. A precise
experimental design takes into account the resources, deadlines, and expected outcomes. It is
also very dependent upon the available technical competences. We can note that this
workflow is iterative, which illustrates the exploratory nature of scientific research. Indeed,
once the results are generated, a process of review allows the modification, refinement, or
optimization of the objectives and associated experimental design, and the drawing of
conclusions in line with the projected objectives. Quality measures include a definition of a
management organizational structure with identified roles and responsibilities. A well-
documented project definition document notes the scientific rationale and objectives, all
methods and standard operating procedures (SOP), methods and tools for results derivation,
and any relevant information for an effective operation (such as the acceptance criteria and
performance standards).

Taking into account the structure of a research project and the principles of regulatory
validation of analytical methods and of the validation of alternative methods, we can list
some elements that lay the groundwork for quality control:

• Definition of the scientific rationale, purpose, and objectives

• Description of the scientific relevance

• Applicability domain

• Experimental design and planning

• Technical description of test methods, including:

• Optimization and specification of the test measurements

• Development of standard operation procedures
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• Description of the methods and tools to derive and interpret results

• Definition of the acceptance criteria

• Implementation of quality assurance procedures

More specifically, for metabolomics studies, a typical workflow, as shown in Fig. 4,
involves a series of tasks ranging from sample preparation, data acquisition,
(pre-)processing, statistical analysis, metabolite identification and knowledge inference
(such as identification and validation of pathways of toxicity).

The first step in the quality assurance process, as devised earlier, is to provide a clear
description of the biological context, including the rationale, purpose and objectives, as well
as the relevance of the metabolomics study (or test method). It also describes the method
limitation and its applicability domain. The experimental design and planning will depend
on the metabolomic approach adopted. Indeed, many approaches are currently used in
metabolomics studies, ranging from fingerprinting to non-targeted profiling to targeted
analysis (Robertson et al., 2011). In addition, clear and comprehensive standardized test
method protocols are used together with standard operating procedures (SOP). This should
include a description of the test system, sampling and treatment conditions, endpoint(s)
assessed, measurements taken, specialized equipment or supplies that may be needed,
measures of variability, the way in which the results are calculated and expressed, and the
use of positive and negative controls and other performance checks. As numerous literature
is available that gives valuable details of aspects related to the technical description of the
test methods (OECD, 2005), we will focus on the implementation of quality procedures.

The metabolomics society has initiated an initiative to formulate a minimum of reporting
standards that describe the experiments, called the Metabolomics Standards Initiative (MSI)
(Castle et al., 2006). It follows the general ‘workflow’ model in metabolomics: from a
description of the study design to sample workup, data acquisition, processing and export,
and bound together by controlled vocabularies and relationships between the terms used.
Five areas were identified that together describe metabolomics experiments: biological
sample context, chemical analysis, data analysis, ontology and data exchange. A comparable
initiative called ArMet (Jenkins et al., 2004) proposed a framework for the description of
plant metabolomics experiments and their results with a formal data description for plant
metabolomics that supports the results and the experimental metadata. We can note that
these initiatives are in line with the proposed quality assurance process proposed here,
especially with regard to definitions, specifications and reporting. Moreover, we suggest the
drafting of a study definition document that includes all this relevant information to facilitate
standardization and assist in data exchange.

Besides documentation and reporting, the quality measures should take into account the
variability of the data generated. In general, variability reflects a combination of biological
and analytical variability. Biological variability depends on factors inherent to the sample
itself (genetics, environment, behaviorand health status), and effects introduced by the
choice of the sampling procedure and its execution. Analytical variability results from issues
in sample acquisition and storage, laboratory-related errors (including methodological
errors, instrument imprecision, inconsistent or impure reagents and matrix effects), as well
as errors related to the design of the experiment. These can result in bias or systematic errors
and can also result in decreased reproducibility (Shurubor et al., 2005).

In this regard, many factors contribute to variability and influence the quality of the
metabolomics data. The procedures used in sample collection, preparation and handling can
affect the extracted metabolites. Optimized and consistent extraction protocols, as well as
adequate sample storage, limits the variability in the metabolites extraction and analysis
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(Zhou et al., 2012). SOPs should be optimized for the specific metabolomic application and
well documented. All the steps relevant to the sample preparation should be detailed enough
to allow an unambiguous execution of the procedures. They should contain the important
elements for the execution of the procedure, such as the equipment needed and a list of tasks
in logical (chronological) order in accordance with the laboratory resources and practices.
The SOPs contain the exact procedures of sampling, sample treatment, sample storage and
metabolite extraction. Critical elements affecting the nature and quantities of the metabolites
should be highlighted, such as the storage temperatures at different phases of the procedures,
the exact quantities of sample and reagents used, etc. Any deviation from the SOP should be
justified and documented.

Quality control procedures also include the estimation of the stability of the analytical
procedure, the use of standards, error estimation of data reproducibility and criteria for data
inclusion (and exclusion). Regular instrument calibration should be planned and performed.
For MS, for example, resolution, sensitivity, retention time alignment, mass calibration and
mass accuracy should be reported (Lindon et al., 2005a). Measures of quality are mainly
contained in the experimental design, where the use of sufficient biological replicates helps
minimize the random errors, estimate the overall method precision and allows a robust
statistical analysis. Blank samples, which are analyte-free and prepared exactly as the test
samples, give an idea of the overall levels of contamination and carryover. ‘QC samples’
may be used during a metabolomics experiment. Usually, they are prepared by mixing equal
volumes of all samples present. This pooled sample provides a representative ‘mean’ of all
analyzed metabolites (Gika et al., 2007). When injected at regular time intervals, it also
provides a mean for estimating the stability of the analytical method. ‘QC samples’ may also
be used for establishing acceptance criteria of the data. Another quality factor of the
experimental design includes the randomization of the samples. This procedure ensures that
no bias is introduced by preparing and analyzing replicate samples jointly. Nevertheless,
care should be taken that randomization does not provide significant additional carry-over.

Besides analytical and biological variability, data quality is highly dependent on the data
analysis, the algorithms applied and their parameters. Once the metabolite data are acquired,
they are handled in order to prepare and reduce analytical instrument raw data (e.g. MS
chromatograms) to data matrices for further analysis. The details of the steps involved were
developed earlier in this paper and in another review paper (Sugimoto et al., 2012). Usually,
a series of tasks are performed ranging from low-level processing (background correction,
feature detection, normalization, alignment, etc.) to higher level processing consisting of
various tools and methods for interpretation and visualization of the pre-processed data. This
typically includes statistical analysis tools such as multivariate analyses to reveal, for
example, differences between groups of samples. The most important sources of error in
data analysis are the incorrect peak integration and alignment and the feature discrepancies
in the biological replicates (Brodsky et al., 2010). Owing to the multiplicity of algorithms
and approaches used and the variety of parameters applied, it is difficult to advise on a
standard quality control procedure. However, for a quality controlled data processing
workflow, all data manipulation steps should be documented and consistently applied when
needed (e.g. in the same study). Adequate quality checks and manual curation are usually
necessary in this type of processing. An example for quality control framework of data
analysis is given in (Brodsky et al., 2010). Typically, the QC approach is based on
discrepancies between replicate samples. After normalization, the overall quality of each
replicate group is characterized by correlation coefficients between samples before
removing sample outliers.

In summary, the value of information derived from metabolomics studies is directly related
to the quality of data generated. Although many initiatives have been presented, such as for
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standardizing the reporting of metabolomics analyses or for ensuring quality in specific
tasks of the metabolomics workflow, no general framework for quality assurance has been
presented. By adapting some elements and the general principles from well established
procedures, we provided here a general scheme for quality control implementation starting
with a clear definition of the scientific basis of the study and the documentation and
reporting of information on the methods and protocols used, whether they are biological,
analytical or for data processing.

Practical Use of Toxicometabolomics
Metabolomics is increasingly used as a tool in toxicology. Compared with other omics
approaches (genomics, transcriptomics and proteomics), it has several advantages. As
mentioned earlier, it is closer to the phenotype and does not necessarily preprocess samples
allowing further analyses. Metabolomics measures the final outcome after a toxic insult in a
cascade of events, such as alterations of genes, transcripts, proteins and finally metabolites.
Owing to the biological complexity, changes in one of them may or may not lead to changes
in the others. Determining the final alteration (metabolites) enhances the possibility of
understanding the actual toxicity and to associate the effects to adverse outcomes or
phenotypic changes. Moreover, the time and costs for a single run are lower compared with
other omics technologies. While chromatography adds some variability, mass detection is
very accurate for enabling substance identification; the latter is further enhanced by MS/MS
techniques. Besides, it is believed that the number of metabolites is fewer than the amounts
of genes and proteins, making it easier to examine (van Ravenzwaay et al., 2007; Hartung et
al., 2012). However, some can be difficult to identify owing to limitations of current
databases.

Initially, metabolomics was mainly used for measurements of bio-fluids (e.g. blood, serum
and urine), but it is also applicable to several other systems such as breast milk (Kalantzi et
al., 2004), saliva (Bertram et al., 2009), sweat (Kutyshenko et al., 2011), spinal fluid (Crews
et al., 2009), breath air (Kanoh et al., 2005), tissue (Coen et al., 2012) and cell cultures (Ellis
et al., 2011; van Vliet et al., 2008; West et al., 2010). The use of metabolomics approaches
has increased over the years for, in vivo, in vitro and in clinical applications. This chapter
will introduce some applications of toxicometabolomics.

In vivo whole animal studies—Early 2000, Robertson and Bulera (2000) suggested the
use of metabolomics as a new technique for rapid toxicity screening. Shortly after, the
Consortium for Metabonomic Toxicology (COMET) was formed between five
pharmaceutical companies and the Imperial College of Science, Technology and Medicine
(IC), in London, UK (Lindon et al., 2005b). The consortium performed metabolomic studies
to predict liver and kidney toxicity using urine and serum samples from rodents after 7 days
of exposure to 147 compounds. The generated database still serves as a useful tool in the
area of drug discovery and development within these companies (Bollard et al., 2010;
Spagou et al., 2011). The chemical industry has also recognized metabolomics as a useful
tool for toxicity testing. In 2012, Metanomics Health, a BASF Group company, launched
their new MetaMap®Tox database (van Ravenzwaay et al., 2012). The database has been
developed over several years, testing more than 500 chemicals (28-day rat studies) to
generate metabolomic patterns for different toxicological targets (e.g. liver, kidney, thyroid,
testes, blood, nervous system and endocrine systems). The metabolomic approach suggests
toxicological mode of actions at an early state and can, therefore, speed up safety decisions
and lower the cost through reduced animal studies. MetaMap®Tox is routinely used at
BASF and is also offered as a customer service.
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Blood, serum and urine are the most commonly-used samples for in vivo metabolomics
studies, but the technique can be applied to other bio fluids or tissue samples. One example
is a metabolomic study of liver samples from mice showing that polychlorinated biphenyls
(PCBs) induce non-alcoholic fatty liver disease (Shi et al., 2012). The same association has
been observed in epidemiological studies (Cave et al., 2010). In most studies however, tissue
samples are only analyzed as a complement to bio-fluid measurements and give limited
additional information (Coen et al., 2012; Shi et al., 2012).

Metabolomics is not only a useful tool for screening; it has increased the mechanistic
knowledge within several areas of toxicology (Coen et al., 2007, 2012; van Ravenzwaay et
al., 2007; Shima et al., 2011; Sieber et al., 2009; Coen et al., 2012) and the approach has
been used to gain information about differences between genders, strains, age and species
(Zhang et al., 2009a, 2009b; Qiao et al., 2011). In addition, toxico-metabolomics has shown
to be a promising tool for safety assessment in newly identified challenges such as nano-
materials (Bu et al., 2010; Tang et al., 2010) and dissimilar individual susceptibilities owing
to diverse gut flora (Nicholson et al., 2012; Romick-Rosendale et al., 2009).

Although the probability is low that a single metabolite will be able to predict certain
toxicity, metabolomic studies clearly show that a pattern of several changed metabolites can
provide knowledge of target toxicity and give us a better mechanistic understanding. A
strength of toxicometablomics studies lies in the context of systems biology (multi-omics)
approaches, where metabolite profiles can help resolve questions that arise if one had only
done a genomics-based study. One example of such integrated analysis software is the
GeneSpring-Integrated Biology software platform (Agilent Technologies, Santa Clara, CA,
USA) which allows the co-analysis of differential gene expression and metabolomics data.
GeneSpring-IB is configurable for various multi-omics data analysis combinations. It
imports raw data, performs a variety of statistical analyses, conducts pathway analyses,
integration and visualization.

Clinical applications—Metabolomics is used extensively in clinics for diagnosis,
prognosis and therapeutic evaluation of several diseases. The biggest impact of
metabolomics in clinical applications is in the field of oncology (reviewed by Spratlin et al.,
2009). Biofluids are more commonly used than tissue samples. Aside from the complexity in
sample collection, tumors can be difficult to evaluate owing to their heterogeneity.
Metabolomics analysis of samples from patients have identified promising biomarkers that
can be used to detect several kinds of cancers such as bladder (Cao et al., 2012; Jobu et al.,
2012), colorectal (Nishiumi et al., 2012), breast (Slupsky et al., 2010), ovarian (Garcia et al.,
2011; Slupsky et al., 2010;), kidney (Ganti and Weiss, 2011; Lin et al., 2011b), liver (Chen
et al., 2011b) and lung cancer (An et al., 2010). In addition, metabolomics has been useful in
cancer research for therapeutic evaluations (Chung et al., 2003; Tenori et al., 2012) and in
mechanistic understanding (Adinolfi et al., 2012; Denkert et al., 2012; Klawitter et al.,
2011).

Furthermore, metabolomics has enhanced the research in other medical areas such as liver
diseases (Kalhan et al., 2011; Wang et al., 2012), kidney diseases (Sato et al., 2011; Sun et
al., 2012), respiratory diseases (Kanoh et al., 2005), diabetes (Ament et al., 2012; Brugnara
et al., 2012; Lanza et al., 2010), obesity (Ament et al., 2012), cardiovascular diseases (Senn
et al., 2012), multiple sclerosis (Smolinska et al., 2012), inflammatory bowel disease
(Stephens et al., 2012) and neurodegenerative diseases (Johansen et al., 2009; Sato et al.,
2011). Metabolomics has evidently shown to be a useful tool for examination, identification
and for gaining information about numerous diseases. Toxicants contribute to many of these
diseases, and their roles might be elucidated in the respective models and patient
populations.
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In vitro studies—In vitro approaches are increasingly recognized in toxicology. In 2007,
the National Research Council published Toxicity Testing in the 21st Century: a Vision and
a Strategy (NRC, 2007). The report proposed a paradigm shift in toxicology, where current
animal tests should be replaced by in vitro cell systems combined with new, promising
techniques such as metabolomics. In vitro and metabolomics are still not intensively applied
but are increasingly used and have shown to be very promising in toxicology. One
advantage of cell-based metabolomics is that both extracellular and intracellular metabolites
can be measured. Metabolites detected in extracellular samples (cell culture media), can be
associated to in vivo identified biomarkers from bio-fluids, while the intracellular samples
(cell lysate) can provide information about the toxic mechanisms on the cellular level. The
main studies are still performing measurements of cell culture media, but the assessment of
intra-cellular metabolites is constantly increasing.

One promising approach is the use of human embryonic stem cells in combination with
extracellular metabolomic analysis. The model has shown potential to predict several
teratogenic compounds (Cezar et al., 2007; Kleinstreuer et al., 2011; West et al., 2010). The
use of human cells is of high value, as it can provide information about human toxicity and
will prevent the need for inter-species extrapolation.

Moreover, measurements of intracellular metabolites have shown promising results in the
assessment of neurotoxicity (van Vliet et al., 2008), renal toxicity (Ellis et al., 2011),
hepatotoxicity (Ruiz-Aracama et al., 2011), mitochondrial toxicity (Balcke et al., 2011),
lung toxicity (Vulimiri et al., 2009) and the toxicity of cell-penetrating peptides (Kilk et al.,
2009). One of the main challenges of using cell lysate is the extraction procedure. Several
groups, including ours, have spent a lot of time exploring the best methods to achieve
robust, reproducible and effective data (Dietmair et al., 2010; Meyer et al., 2010).

The latest concept in in vitro toxicology is the development of human-on-a-chip (Hartung
and Zurlo, 2012). Multiple cell culture chambers with diverse cell types are connected with
fluidic channels to mimic multi-organ interactions. The interaction of the organs is essential
for their function and the chip is foreseen to mimic the human body and to better predict the
toxicity of chemicals and drugs (Sung et al., 2010). The approach has also been applied in
the ‘metabolomics-on-a-chip’ assay where liver and kidney cells have been successfully co-
cultured and are able to predict organ specific toxicity (Shintu et al., 2012).

Pathways of toxicity—Combinations of omics techniques, for example, metabolomics
and transcriptomics, are believed to be valuable in the identification of PoT or adverse
outcome pathways (Hartung and McBride, 2011). The term PoT was coined to distinguish
molecularly defined pathways from the toxicity pathways/adverse outcome pathways, which
are typically reported in a narrative form. Metabolites that are changed can be associated
with metabolic pathways using available databases such as KEGG and WikiPathways.
Adding information from transcriptomics or proteomics will confirm and give a broader
knowledge about the perturbed pathways (Parman et al., 2011). One of the first integrated
transcriptomics and metabolomics studies showed that the combination was more sensitive
in detecting chemically induced hepatotoxicity and enabled the generation of new
hypotheses on the cellular mechanism (Heijne et al., 2005b). However, the use of
metabolomics alone has already shown to reveal information on possible PoT in several
areas such as, ecotoxicology (Ankley et al., 2009; Santos et al., 2010), obesity (Xie et al.,
2012), developmental toxicity (West et al., 2010), hepatotoxicity (Shintu et al., 2012), cardio
toxicity (Wang et al., 2012) and toxicity of cell-penetrating peptides (Kilk et al., 2009).

Metabolic flux analysis is another recently used tool in in vitro toxicometabolomics studies,
though it is more advanced in plant physiology. Cells in flux studies are fed with carbon-
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labeled substrates that, owing to metabolic activity, are distributed throughout the metabolic
pathways. Analysis of the labeled metabolites can provide a better insight into cellular
physiology. Furthermore, it can provide information about interactions between cellular
metabolism and detoxification pathways (Boslem et al., 2011; Iyer et al., 2010).

Metabolomics in combination with in vitro systems is a promising tool in the search for PoT
to better predict and understand toxicity in humans. It can lay the foundation of a Systems
Toxicology approach (Hartung et al., 2012).

Discussion
Metabolomics use in toxicology is rapidly increasing. As a technology capturing the
phenotypic change on molecular level, it lends itself to characterization of the impact of an
agent on the body’s physiology. Table 2 compares it to the other most prominent omics
technologies currently in use in toxicology. It can be used on bio-fluids as well as tissues
and their cultures. The small sample volume requirements are ideally suited for work with
small rodents or tissue cultures. In contrast to transcriptomics, the costs of single
measurements are much lower, allowing more replicates, concentrations or time-points to be
assessed. The relatively small number of metabolites and the very well-established
biochemical pathways connecting them allow for a superior background for interpretation.
This review focuses on LC-MS and GC-MS as bioanalytical analysis techniques and not on
NMR. However, many aspects of quality assurance and applications in toxicology can be
directly translated.

Metabolomics makes a true Systems Toxicology assessment possible – one that is not
possible by traditional animal tests. However, we need to be aware that metabolic responses
are in a flux with timing of metabolic responses probably also being characteristic for
individual toxins and their concentrations. This is very different than the much longer
turnover of mRNA and proteins. For modeling in Systems Toxicology approaches, this flux
needs to be addressed, but the respective ‘fluxomics’ is only emerging.

The relatively high throughput of metabolomics enables us to ask more questions in parallel.
For example more doses, replicates or time-points from close to the onset of initial
biomolecular events (chemico-biological interaction) to the manifested toxicological effect,
can be assessed. It also provides very direct mechanistic insights. Studies can focus on
intracellular changes, but also on other bio-fluids, allowing less invasive measurements and
incorporation into current guideline studies and human trials. Low dose effects that do not
give results in animals on the level of (histo)pathology can be monitored. But as with other
omics data, this might indicate that non-relevant effects of agents are being discerned. While
it could be an extremely powerful tool to identify alerts of biological responses overlooked
in the respective apical tests, it presents a significant danger of misclassification. It will have
to be shown whether the advantages and disadvantages outweigh each other.

Regulatory acceptance for metabolomics data is largely unclear, but interest is high. New
guidelines for submission and use of such data will be necessary, which will take some time.
Taken together, metabolomics represents an enabling technology – not a game-changer on
its own, but a core technology for implementing Tox-21c, the most promising revolution in
regulatory toxicology in decades.
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Figure 1.
Relative sensitivity and selectivity of different analytical tools for metabolomics.
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Figure 2.
Illustration of the large data reduction involved in a typical toxicometabolomics study.
Metabolomics data are usually represented in their raw form as (A) chromatograms, i.e. 3D
matrix of masses, retention times and intensities. Depending on the experiment study design
and the strategy adopted (untargeted approach in this case), (B) biological replicates
representing different conditions are acquired and using specialized software, (C) mass
signals or “features” are extracted and aligned across all samples. Statistical analysis tools
highlight variability and/or similarity between and within the different groups, e.g. (D)
Principle components analysis (PCA) and (E) Hierarchical clustering The result may be
displayed as a list of differentially abundant metabolites with corresponding p-value, fold
change, etc. and (F) putative identity of the relevant metabolites established before
confirmation using standard compounds and inclusion in a pathway enrichment analysis.
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Figure 3.
General workflow of a research project adapted and modified from Mathur-De (2000).
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Figure 4.
Typical metabolomics workflow.
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Table 1

Examples of preprocess filtering techniques including examples and rationale.

Filter by Examples Rationale

Abundance Features with low intensities are excluded (e.g. 5000 counts) Improve data quality

Frequency Features needs to be present in > 60% of the samples Improve data quality

Feature variability Features with high variability within group will be excluded
(e.g. CV >30%)

Improve data quality

Fold change Features with fold change of e.g. ≤ 1.2 between groups will be
excluded

Samples with low variation across groups are
not relevant for the further analysis

Annotation in pathway
libraries

Features that are not annotated will be excluded Pathway enrichment analysis are only possible
if features are annotated
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Table 2

Comparison of advantages, limitations and developmental needs for different omics technologies used in
toxicology.

Transcriptomics / genomics Proteomics Metabolomics

Advantages - High throughput
sequencing techniques
allow the cost and time
efficient sequencing of
complete genomes

- Study of
polymorphisms can
give insight into the
role of genetics in
toxicology and explain
differences in
susceptibility

- Gene arrays allow the
simultaneous gene
expression analysis of
thousands of genes

- Availability of gene
arrays with complete
genomes including the
human

- Sensitive endpoint of
toxicity since gene
expression changes
often occur at an early
stage

- Important role of
proteins in cell
homeostasis

- Quantitative analysis

- 2D gel electrophoresis
is routinely applied

- iTRAQ simplifies
quantitative
measurements of a
protein mixture

- MS-based approaches
allow the
identification of
proteins

- Sensitivity, specificity
and low costs of
protein arrays

- Protein arrays allow
the simultaneous
analysis of thousands
of proteins

- Analysis of protein-
protein interactions

- Protein profiling can
be performed in cells,
tissues and non-
invasively in body
fluids (blood plasma,
serum)

- Shown to generate
protein biomarkers for
in vivo toxicity

- Allows the simultaneous
measurement of
hundreds of metabolites

- The omics science
considered to be the
closest to the phenotype

- NMR analysis is robust,
non-invasive,
quantitative and allows
structural identification
of metabolites

- MS analysis is sensitive,
quantitative and detects
a high number of
metabolites

- Availability of public
and commercial
databases with
annotated metabolites

- Both in vitro cell
cultures and in vivo
tissue and non-invasive
blood, urine applications

- Shown to predict in vivo
liver and kidney toxicity

Limitations - Genome sequencing
alone is not enough
since polymorphisms
play an important role

- Alterations in gene
expression do not
always lead to adverse
health effects

- Gene array analysis
can overlook modest
changes in gene
expression

- Limited
reproducibility
between gene-array
experiments

- Gene arrays are semi-
quantitative and data
needs confirmation by
quantitative techniques

- Often difficult to
translate genomics
results to in vivo or

- Complexity and
instability of the
proteome

- Large number of
proteins and possible
post-translational
modifications

- Limited detection of
low abundance and
highly acidic or basic
proteins by 2D gel
electrophoresis

- Limited
reproducibility
between 2D gel
electrophoresis
experiments

- Not all proteins in a
sample can be
identified

- Limited availability of
antibodies for the
detection of the large

- Low sensitivity of NMR

- Limitations for
metabolite identification
using MS-based
approaches

- In vivo approaches are
influenced by variability
factors, e.g. age, gender,
diet, stress, housing
conditions, health status

- In vitro approaches are
influenced by variability
factors, e.g. cell culture
conditions, metabolic
competence, media
formulations, serum
additions, treatment
vehicle

- Quenching and
metabolite extraction
procedures limit the
detection of metabolites
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Transcriptomics / genomics Proteomics Metabolomics

human toxicity or
disease

- Genomics often
requires proteomics
and metabolomics
follow-up studies

amounts of existing
proteins

- Requires costly NMR or
MS technologies

- Complexity of the data
analysis and
interpretation, e.g.
metabolic pathways

Developmental needs - Develop improved
data analysis and
interpretation methods
for gene array data

- Link related genes to
cellular pathways

- Integrate genomics
data with proteomics
and metabolomics data
in the systems biology
approach

- Identify genes that can
be used as early
biomarkers for toxicity

- Need for quality gene
expression data in
public databases

- Apply proteomics
approaches to study
mechanisms of
toxicity in vitro

- Map the human
proteome including
human protein
functions

- Develop improved
data analysis and
interpretation methods

- Standardize methods
to allow data exchange
and comparison

- Integrate data with
genomics and
metabolomics data
into a systems biology
approach

- Annotate proteomics
data in public
databases

- Translate in vivo
protein biomarkers to
human health effects

- Continue generation of
recombinant
antibodies for protein
array development

- Explore in vitro
approaches for pathway
identification to support
“the vision”

- Improve and validate
quenching and
extraction procedures
for optimized detections

- Standardize methods to
allow data exchange and
comparison

- Develop guidelines to
reduce external
variability factors

- Develop improved data
analysis and
interpretation methods

- Extend the annotation of
metabolomics data in
public databases

- Integrate data into a
systems biology
approach

- Translate in vivo and in
vitro biomarkers into
clinical utility

Modified from van Vliet, 2011. Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st
century. ALTEX 28: 17–44.
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