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Cellular differentiation, reprogramming and transdifferentiation are determined

by underlying gene regulatory networks. Non-adiabatic regulation via slow

binding/unbinding to the gene can be important in these cell fate decision-

making processes. Based on a stem cell core gene network, we uncovered the

stem cell developmental landscape. As the binding/unbinding speed decreases,

the landscape topography changes from bistable attractors of stem and differen-

tiated states to more attractors of stem and other different cell states as well as

substates. Non-adiabaticity leads to more differentiated cell types and provides

a natural explanation for the heterogeneity observed in the experiments.

We quantified Waddington landscapes with two possible cell fate decision

mechanisms by changing the regulation strength or regulation timescale (non-

adiabaticity). Transition rates correlate with landscape topography through

barrier heights between different states and quantitatively determine global

stability. We found the optimal speeds of these cell fate decision-making pro-

cesses. We quantified biological paths and predict that differentiation and

reprogramming go through an intermediate state (IM1), whereas transdifferen-

tiation goes through another intermediate state (IM2). Some predictions are

confirmed by recent experimental studies.
1. Introduction
Embryonic stem (ES) cells are pluripotent. They can proliferate to maintain

their pluripotency by self-renewing processes and differentiate into a variety

of cell-lineages under certain conditions. Recently, research has shown that

the cellular reprogramming of somatic cells to induced pluripotent stem cells

or the transdifferentiation between different cell types can be realized by

manipulating a few key genes [1–6]. These results provide possibilities for

stem cell models to be applied in regenerative medicine. However, the molecu-

lar mechanisms involved in cellular differentiation and reprogramming and the

optimal reprogramming pathway remain unknown. This demands a systematic

and global approach to investigate underlying gene regulatory networks invol-

ving marker genes characterizing different cell types and reciprocal regulations

between them.

Cells receive external noise from inhomogeneous environments and intrinsic

noise from the fluctuations of the low molecular copy number (inherent stochas-

ticity of biochemical processes such as transcription and translation processes)

[7,8]. In addition, gene state fluctuations from the binding/unbinding of the regu-

latory proteins to the promoters can be significant for gene expression dynamics.

A remarkable feature of ES cells is the large cell-to-cell variation in the expression

level of NANOG and other stem cell marker genes, showing their phenotypic het-

erogeneity, which can be crucial to the differentiation process of ES cells [9,10].

Conventionally, the binding/unbinding of the regulators to the genes was

assumed to be significantly faster than the synthesis and degradation of the
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gene products, the proteins (adiabatic limit) [11,12], which is

often observed in prokaryotic cells such as bacteria. However,

in eukaryotic cells, the effective binding/unbinding process

can be comparable or even slower than the corresponding

synthesis and degradation of proteins (non-adiabatic limit)

owing to, for example, the slow entry of regulators to the

cell nucleus, transcription initiation or epigenetics of DNA

methylation and histone modification. Non-adiabatic effects

can introduce new timescales and induce important changes,

such the appearance of non-trivial stable states and generating

additional fluctuations other than those generated by intrinsic

and extrinsic sources [13–23].

The epigenetic landscape concept was proposed by

Waddington [24] to explain the development and differen-

tiation process of cells as a metaphor, which provided a

qualitative picture with which to explain the dynamics

governing cell development. This picture has been quantitati-

vely realized via investigation of the global nature of

the network based on the probabilistic landscape framework

[23,25–29]. The state space of the underlying gene regulatory

networks is vast. For example, if the network has N genes

and each gene has M different expression levels, then the

total number of possible states is MN. Therefore, the state

space is composed of states with the combinations of all the

possible expression levels of each gene, forming different

expression patterns (such as ES marker gene NANOG and

OCT4) of the cell and characterizing different cellular pheno-

types. Although the number of possible states is huge, the

number of phenotypes are often finite. In other words, not

all the states have equal probability of appearing. Using the

landscape framework, cell types are represented by basins

of attraction on the landscape, which reflect the probability

of appearance of different cell types. Attractor states have

lower potential or higher probability and represent biological

functional states or phenotypes. So, biological processes, such

as cellular differentiation or lineage commitment, can be

understood as the transition from one attractor to another in

the state space of the underlying gene regulatory networks.

By quantifying the topography of the potential landscape,

the transition rates and paths, we can explore the global stab-

ility, kinetic speeds and the associated processes of cell fate

decision-making.

We will explore the underlying landscape of a stem

cell developmental and differentiation network with nine

core gene nodes, from both adiabatic and non-adiabatic per-

spectives, by studying the underlying regulation dynamics

and uncover the functional mechanism of transitions

for differentiation, reprogramming and transdifferentiation.

When the effective binding/unbinding speed v decreases,

the landscape experiences a transformation from bistable

attractor states with stem cell and differentiated cell states

to multi-stable attractor states with stem cell and other

different cell states, including differentiated states, inter-

mediate states and metastable substates. This indicates

that non-adiabatic effects promote the appearance of more dif-

ferentiated cell types and provides a natural explanation

for the heterogeneity observed in the experiments [9,10],

whereas the conventional adiabatic approach cannot usually

lead to the distribution of multiple states. Heterogeneous dis-

tribution provides a window for quantifying the underlying

structures through statistics of basins and metastable basins

of the Waddington landscape from experimental measure-

ments. When mutual activation or repression regulation
strength decreases, the differentiation process proceeds

from favouring a stem cell state to favouring a differentiated

cell state via fast binding/unbinding in the adiabatic case,

which reflects changes in the topography of the underlying

landscape. This gives a quantitative Waddington downhill

landscape for development controlled by changes in regu-

lation. Regulatory changes that occur during developmental

processes have been implied in experiments investigating

the transcription factor, KLF4 [30]. The downhill trend of

the Waddington landscape as a result of regulation timescale

changes (slower) is preserved even in the non-adiabatic case

to a large extent. This shows that both regulation strengths

and regulation timescales can be used to quantify the

downhill direction and shape of Waddington landscapes of

development and differentiation. The transition rates between

different attractors are correlated with the topography of the

landscape via interposed barrier heights and serve as the quan-

titative measure for global stability and kinetic speed of cell

fate decision-making processes from one cell type (cell fate

attractor) to another. We found the optimal speeds of these

cell fate decision processes for differentiation, reprogramming

and transdifferentiation. Based on analysis of the kinetic

paths, we provide quantitative predictions on the pathways

for differentiation, reprogramming and transdifferentiation.

We quantified biological paths and predict that differentiation

and reprogramming go through an intermediate state (IM1),

whereas transdifferentiation goes through another intermediate

state (IM2). Some of our predictions are validated by experi-

mental studies. Other predictions will be tested in future

experiments. Through analysis of the underlying landscape,

we can uncover the mechanisms involved in differentiation,

reprogramming and transdifferentiation. Our predictions

regarding the biological paths can be used to guide the design

of new differentiation or reprogramming tactics.
2. Results and discussion
2.1. Epigenetic landscape
Several studies have been undertaken to investigate the land-

scape and path of cell fate decision processes based on

the corresponding gene regulatory network [25–27,31]. An

underlying gene network of human ES cells was explored

[31] via a literature search. The underlying gene regulatory

wiring is the basis for quantifying the landscape and paths

for differentiation, reprogramming and transdifferentiation.

Here, focusing on the core cellular developmental marker

genes and key transcription regulations [31–33], we con-

structed an ES cell network comprising nine nodes after

undertaking a literature search and integrating previous

known networks, as shown in figure 1a.

Following the stochastic modelling procedure outlined for

our model (see section Materials and methods), we acquired

stochastic dynamic trajectories of the stem cell developmental

gene regulatory networks with nine core genes represented by

nine variables. As a result of the statistical analysis, we

obtained the steady-state probability distribution, and further

the potential landscape, according to U ¼ 2lnPss [13,21,23,

25–27,34–40]. Here, Pss is the steady-state probability distri-

bution in the state space of relative gene expression levels.

Figure 2 shows the landscape projection in two gene

expression variable state space in terms of variable GATA6/

NANOG at different binding/unbinding speeds v (v ¼ 1000,
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Figure 1. The wiring diagram for the stem cell developmental network including nine core gene nodes and their interactions (arrows represent activation and short
bars represent repression) (a). The magenta nodes represent six marker genes for the pluripotent stem cell state (NANOG and OCT4 as major ES marker genes), and
cyan nodes represent three marker genes for the differentiation state, in which GATA6 is the marker gene of primitive endoderm (PE) state and CDX2 is the marker
gene of TE (trophectoderm) state. (b) Illustration of the computation model considering gene binding/unbinding reactions for the nine core node stem cell network.
Arrows represent activation, and short bars represent repression. A represents activator genes, and R represents repressor genes. Y represents any genes (activator or
repressor). Red regions represent operators for activation, and blue regions represent operators for repression.
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1, 0.01 separately from top row to bottom row) as well as

different mutual activation strengths fB ( fB ¼ 120, 60, 0 separ-

ately from left column to right column). The vertical axis

represents the potential landscape U, and the horizontal

axis represents the expression level of GATA6 and NANOG.

Here, NANOG is a major stem cell marker, with high

NANOG expression representing more stemness, whereas

GATA6 and CDX2 are two differentiation markers, with

high GATA6 or CDX2 representing higher differentiation.

The combinations of high stem (differentiation) cell mar-

ker expressions and low differentiation (stem) cell marker

expressions produce stem (differentiation) cell states (attrac-

tors), whereas any other combinations produce intermediate

states. Differentiation (reprogramming) can be quantitatively

represented on the landscape by the transition from a ES

stem cell (differentiation) attractor to a differentiation (ES

stem cell) attractor.
Figure 2 provides a quantitative Waddington landscape

with two possible cell fate decision mechanisms (horizontal

direction and vertical direction), where different cell types

are quantitatively represented by the potential basins on the

landscape. The horizontal direction gives a differentiation mech-

anism owing to the change of regulation strength. We can see

that, in the adiabatic case (v ¼ 1000, figure 2ad,g) with the

mutual activation strength fB (representing the strength of

mutual activation between major ES marker genes, see Materials

and methods for parameter details) decreased, the landscape

changes from a monostable attractor (ES stem cell preferred,

fB¼ 120, figure 2a), to a bistable attractor (ES and differentiation

state coexist, fB¼ 60, figure 2d), and finally to another mono-

stable state (differentiation cell state preferred, fB¼ 0, figure

2g). This demonstrates that when the mutual activation strength

decreases, the evolution of differentiation proceeds from stem

cell preferred to differentiated cell states preferred as reflected
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Figure 2. Landscape picture with respect to gene GATA6/NANOG for the stem cell network at different binding/unbinding speeds v as well as different activation
strength fB. The binding/unbinding speed v is decreased from top to bottom (v ¼ 1000 for the (a,d,g), v ¼ 1 for the central row and v ¼ 0.01 for the bottom
row). The activation strength is decreased from left to right ( fB ¼ 120 for (a – c), fB ¼ 60 for (d – f ), and fB ¼ 0 for (g – i)). ES represents stem cell attractor state
(high NANOG/low GATA6/low CDX2). DF represents differentiation attractor state. PE and TE separately represent primitive endoderm attractor state (low NANOG/high
GATA6/low CDX2) and trophectoderm attractor state (low NANOG/low GATA6/high CDX2). Other parameters are specified as: k ¼ 1 (degradation), X A
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by changes in the topography of the underlying landscape

[23,25–27] for fast binding/unbinding in the adiabatic case.

This is the quantified Waddington landscape for differentiation

and development resulting from regulation. As we can see, the

downhill direction of the Waddington landscape is quantitat-

ively represented by the regulation strength. The gene state

starts from the stem cell basin (preferred) state, and as a result

of regulations and stochastic fluctuations evolves to the differen-

tiation preferred cell basin. In non-adiabatic limits (v ¼ 0.01,

figure 2c,f,i), similar trends are maintained by the landscape,

indicating that when the mutual activation strength is high,

the ES state is preferred (figure 2c) and when the mutual acti-

vation strength is low, the differentiation states (splitting to

primitive endoderm (PE) state and trophectoderm (TE) state)

are preferred (figure 2i). However, the dominance of the ES

state at large fB or differentiation states at small fB is not as pro-

minent as in the adiabatic case. This is because non-adiabaticity

can promote the appearance of more cell types with more het-

erogeneity. Thus, the dominant states are not as prominent as

in the adiabatic case.

Meanwhile, we found another way to formalize cell fate

commitment. Along the vertical direction (central column in

figure 2), we can see that when the regulator–gene binding/

unbinding speed, v, decreased from 1000 to 0.01, the landscape

changed from bistability to multi-stability. Under adiabatic con-

ditions (fast gene binding/unbind switch, v¼ 1000), the
landscape exhibited a bistable shape (figure 2d), where the two

stable states respectively represent the ES stem cell state and

the differentiation state (DF). Increasing the non-adiabaticity or

slowing down the effective regulator–gene binding/unbinding

(v decreased), we found that the differentiation attractor gradu-

ally splits into two new attractors. Biologically, these two new

attractors (two new differentiation states) correspond directly

to the PE state (PE state in figure 2f, with low NANOG

expression, high GATA6 expression and low CDX2 expression)

and the TE state (TE state in figure 2f, with low NANOG

expression, low GATA6 expression and high CDX2 expression)

[33]. Looking specifically at the evolution of the vertical direc-

tion, we see that the first column (figure 2a–c) indicates that by

increasing the non-adiabaticity (slowing down of effective

binding/unbinding) the cell has the potential to reach the

final differentiation state (TE and PE) from the original ES

state. The second column (figure 2d– f) shows that non-adiaba-

ticity can promote the occurrence of more differentiated cell

types. Therefore, both columns provide quantified downhill

Waddington landscapes for differentiation along the effective

binding speed direction. As we can see, the downhill direction

of the Waddington landscape is quantitatively represented

by the binding speed. The gene state starts from the stem cell

basin (preferred) state, and through binding speed changes

and stochastic fluctuations it evolves gradually to the more

differentiation-preferred cell basins. One can argue whether or
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not the regulation timescales change significantly during differ-

entiation. Owing to the heterogeneity among individual cells

[9,10], the distributions of regulation timescales seem natural.

Although the timescales do not change significantly, the individ-

ual subfigures, figure 2b– i, with fixed binding/unbinding

speeds clearly show the quantified downhill Waddington land-

scapes. The third column (figure 2g– i) shows that differentiated

cell states can differentiate to more cell types under non-

adiabatic conditions, and they have the potential to be

reprogrammed to the ES state by increasing non-adiabaticity

as reflected by the shallow ES attractor (figure 2i).
From the corresponding landscape in GATA6/CDX2

expressions (see electronic supplementary material, figure S1),

we can see the same transformation process for attractors on

the landscape with increasing non-adiabaticity. We can see

there are four attractors on the landscape of the electronic sup-

plementary material, figure S1d. Here, the high GATA6/high

CDX2 attractor is an intermediate state, corresponding to the

IM2 state in figure 3 or figure 4. We will analyse the effects of

the two intermediate states in the section on dynamical transition

paths (figures 3 and 4). In figure S1d, the two-dimensional pro-

jection from high dimensional state space (52 dimensions) will

miss information and can have the same state with different
natures (the same values in two-dimensional variables but differ-

ent in values of other 50 variables). Therefore, the low GATA6/

low CDX2 attractor from the two-dimensional projection rep-

resents both the ES stem cell state and another intermediate

state (IM1 in figure 3 or figure 4). We can see that the inter-

mediate states, as well as two new differentiation states, appear

only under non-adiabatic conditions with more heterogeneity.

Therefore, our results clearly reflect the effects of non-adia-

baticity on the cellular developmental process, which promotes

the appearance of multiple differentiation states (PE and

TE) and intermediate states. This provides another cellular

differentiation or reprogramming mechanism induced by

non-adiabaticity. Recently, slow (non-adiabatic) NANOG

switching was suggested to mediate distinct cell fate decisions

[9,10,23,33]. However, it is worthwhile noting that the network

used for the studies before [9,10,23,33] includes some hypothe-

tical regulation links, such as GATA6 and CDX2 mutually

repressing each other, and the acquired double differentiation

state were marked separately by the expression of GATA6
and CDX2. The possibility that the mutual repression leads

to the occurrence of double stable differentiated states cannot

be completely precluded because mutual repression is a

source of bistability. In our studies, mutually repressed
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GATA6 and CDX2 links are not used in the core network,

because, as yet, there is supporting experimental evidence.

We also obtained the double differentiation states. Therefore,

our results indicate that the occurrence of double differen-

tiation states (one differentiation state becoming two

differentiation states) can be purely due to the increase in

non-adiabaticity or the slowing down of the gene binding/

unbinding speed rather than due to direct regulation links.

We quantified the Waddington landscape for differentiation

and reprogramming of a core gene regulatory network [25,26].

A dynamic Bayesian network (DBN) method was used to

explore the underlying gene regulatory network of hESC [31]

and a bistable landscape emerges. Based on the underlying

gene regulatory network [31], our previous work [27] uncov-

ered the potential landscape and dynamic paths for cellular

differentiation and reprogramming of human stem cells in

the adiabatic case with fast regulatory binding to the gene.

In this work, we explored the network landscape from the

non-adiabatic perspective, by looking at the changes to the

speed of regulator–gene binding/unbinding.

Therefore, we obtained Waddington landscapes in both

directions (regulation strength and regulation timescale)

shown in figure 2. Both result in bias from the stem cell

state towards the differentiated states. This provides the

direction or time arrow of the development. The timescale

changes appear to produce more substate basins, thus indi-

cating a possible mechanism for the heterogeneity observed

in the experiments.
In addition, the mutual repression regulation strength, fR,

was also changed to investigate its influence on the topography

of the landscape (see electronic supplementary material, figure

S2). We found that under non-adiabatic limits (third row),

when fR is large the ES state is preferred and when fR is small,

the differentiation states (splitting to PE and TE) are preferred.

This might be because increasing mutual repression (most of

the repression in the network are mutual repression) is advanta-

geous to the ES state, because many ES marker genes self-activate

each other. Therefore, decreasing the repression strength of

regulations may represent another mechanism of differentia-

tion dynamics, characterized by the ES attractor becoming less

stable and differentiation attractors (PE and TE) becoming more

stable on a landscape under non-adiabatic limits.

We also changed the self-activation strength for both the

ES marker and the differentiation marker (figure 3) to explore

the impact on the landscape topography. We can see that at

slow regulatory binding/unbinding (non-adiabatic limits,

third row), the landscape of larger self-activation is different

from that of lower self-activation regulation. More basins of

attractions appear on the landscape. This indicates the

appearance of more cell types. Many of them are shallower

basins and they are often clustered in the state space. These

basins of attractions are often metastable and can represent

cell types or cell subtypes (smaller and shallower basins

representing cell subtypes within larger and deeper

basins representing cell types). The metastable basins and

stable basins of cell types and subtypes that emerge from
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non-adiabaticity provide a possible mechanism for the

heterogeneous distribution of the gene markers in develop-

ment and differentiation [9,10]. On the other hand, by

experimentally measuring the heterogeneous distribution,

one can infer the structure of the underlying landscape topo-

graphy such as basin distribution, sub-basin statistics, etc. In

this way, we can use experiments to explore the global mech-

anisms of differentiation and reprogramming. We see that the

cell might control the number of differentiation cell types by

changing the self-activation strengths for both the ES marker

and the differentiation marker.

We can see that the parameter changes will influence the

shape of the landscape, and can be explained well (changing

self-activation strength in figure 3, changing repression strength

in the electronic supplementary material, figure S2 and chan-

ging the equilibrium constant in the electronic supplementary

material, figure S3). This validates the robustness of the model.

2.2. Dynamical transition paths for differentiation,
reprogramming and transdifferentiation

In order to demonstrate the cell states and the transitions

between different cell types in the complete state space, we pro-

jected the expression level of the nine marker genes to binary

states (in total 29 cell states). For example, the stem cell ES

state is represented by the binary number 1 1 1 1 1 1 0 0 0

(respectively characterizing expression level of nine marker

genes, 1 for high expression, 0 for low expression). Here, the

nine marker genes correspond to the six stem cell ES marker

genes: OCT4, SOX2, NANOG, SOX2, KLF4, PRDM14, and

three differentiation marker genes: GATA4, GATA6 and

CDX2. In the same way, the PE differentiation state is denoted

by 0 0 0 0 0 0 1 1 0, and the TE differentiation state is denoted

by 0 0 0 0 0 0 1 0 1. Figure 4 shows the differentiation, reprogram-

ming and transdifferentiation process under non-adiabatic

conditions (v ¼ 0.01, fR ¼ 60, fA ¼ 10, fB ¼ 60) represented by

234 cell states (nodes, characterized by expression patterns of

the nine marker genes) and 263 transition paths (edges) between

the different cell states (produced by CYTOSCAPE v. 3.0.0 [41], see

the electronic supplementary material, for methods acquiring

transition paths). The sizes of the nodes and edges are respect-

ively proportional to the probability of the corresponding

states and transition paths. Red nodes represent states that are

closer to the stem cell ES state in terms of gene expression pat-

terns (two deep red nodes represent two major stem ES

states). Blue nodes (two deep blue nodes represent two major

differentiated PE states) and green nodes (two deep green

nodes represent two major differentiated TE states) separately

represent states that are closer to the PE and TE (two different

differentiation states, marked respectively by GATA6 and

CDX2) states. In particular, we exhibited the nine dimensional

kinetic paths (biological paths). The green and magenta paths

denote kinetic paths for differentiation and reprogramming

respectively, and blue paths represent transdifferentiation

between the PE differentiation state and the TE differentiation

state. Additionally, we note that two classes of other high prob-

ability states (the light yellow and light blue nodes) exist on the

transition path figure. They separately represent two inter-

mediate states, which are low GATA6/low CDX2 (double

low, IM1 state) state and high GATA/high CDX2 state

(double high, IM2 state).

Figure 4 also provides another landscape perspective for stem

cell differentiation, reprogramming and transdifferentiation.
Here, the ES stem cell state quantified on the landscape by a

basin of attraction has high NANOG, low GATA6 and low

CDX2 expressions. The PE differentiation state quantified on

the landscape by another basin of attraction has low NANOG,

high GATA6 and low CDX2 expressions and TE differentia-

ted state quantified on the landscape by yet another basin of

attraction has low NANOG, low GATA6 and high CDX2

expressions. We can see that the major stem cell attractors or

basins are surrounded by some smaller sub-basins of high simi-

larity to the stem state but relatively lower probability or higher

potential. These sub-basins can jump in and out of the major

basins with larger weights and, from there, finally converge to

the most stable stem cell attractor (large deep red nodes). The

states in the stem cell cluster seem to converge to the major

stem cell attractor through the major basins. Substate conver-

gence leads to the major basin. So the picture is much like a

funnel from the substate basins to the major basins and finally

to the most stable stem cell basins. This shows the robustness

of the stem cell state. In the same way, the TE differentiation

attractor state (green nodes, bottom left of the figure) and PE

differentiation attractor state (blue nodes, bottom right of the

figure) are also both characterized by large basins surrounded

by a cluster of smaller basins. The smaller substate basins in

each cluster can make transitions to their corresponding major

basins. Therefore, the states in each cluster seem to converge to

the major differentiation attractors. The major attractors then con-

verge to the corresponding most stable differentiated state

attractors. This again is analogous to the funnels from the

substate basins to the major basins and finally to the correspond-

ing most stable differentiated state basins. It shows the robustness

of two differentiation attractor states. The distributed substate

basins for stem and differentiated state clusters provide the

physical basis for explaining the experimentally observed hetero-

geneous population distribution of the marker gene expressions.

In addition, focusing on the transition paths, we find that

for differentiation and reprogramming processes, cells go

through intermediate state 1 (IM1, low NANOG/low

GATA6/low CDX2), and for transdifferentiation (transition

from PE to TE or from TE to PE) cells go through intermedi-

ate state 2 (IM2, low NANOG/high GATA6/high CDX2). For

differentiation, we predict that the cell needs to go through

the intermediate state 1, before differentiating to either the

PE state or TE state. This is consistent with our previous

work on cellular differentiation and reprogramming under

adiabatic limits [27]. Additionally, except for going through

the IM1 state, the cell has another option, which is to undergo

direct differentiation (green path from ES to PE, also seen in

figure 5) without passing through any intermediate states.

This direct differentiation path needs to be confirmed by

experiments. For the reprogramming process, we predict

that the cell also needs to go through the IM1 state (low

NANOG/low GATA6/low CDX2) before reaching the ES

state. Recent work has confirmed our prediction [42,43].

Regarding cellular transdifferentiation, our prediction is

consistent with the results supported by experiments in

mouse embryo cardiac fibroblast cells that transdifferentiation

may pass through a double positive intermediate state (marker

genes for two differentiation states both have high expression

levels) [42–44]. Considering that we used different cell devel-

opmental and differentiation networks to those used in

previous studies [43], this indicates that cells may adopt

some common mechanisms in cell fate decision processes for

differentiation, reprogramming and transdifferentiation.
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Figure 5. Illustration for major attractors and transition paths of cell fate
decisions in non-adiabatic slow binding/unbinding conditions (v ¼ 0.01). ES
represents stem cell attractor state (high NANOG/low GATA6/low CDX2). PE
and TE separately represent the primitive endoderm attractor state (low
NANOG/high GATA6/low CDX2) and the trophectoderm attractor state (low
NANOG/low GATA6/high CDX2). IM1 and IM2 separately denote intermediate
attractor state 1 (low NANOG/low GATA6/low CDX2) and intermediate attractor
state 2 (low NANOG/high GATA6/high CDX2). It can be seen that both dif-
ferentiation and reprogramming processes go through the IM1 attractor state,
and the transdifferentiation process goes through the IM2 attractor state. In
addition, differentiation can also follow a direct path not going through the
IM1 attractor state ( path from ES to PE).
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At the bottom of figure 4, we can see a side branch, where

green nodes (TE states) and blue nodes (PE states) can make

mutual transition through cyan nodes (IM2 state). This rep-

resents a branch or side pathway for transdifferentiation. In

the upper right corner, there is another side branch, where

blue nodes (PE states) can transform to red nodes (ES states).

This represents a branch or side pathway for reprogramming.

In addition, the left branch of the figure represents that TE

states (green nodes) and IM2 states (cyan nodes) can transform

to each other and eventually approach the major TE stable state

(large deep green nodes). These side pathways have lower

probabilities than the major pathways discussed.

To display figure 4 in a more understandable way, we

provide a corresponding illustration (figure 5), describing

major basins of attractors and transition paths on the quantified

Waddington landscape of the cell fate decision-making pro-

cess under non-adiabatic conditions (v¼ 0.01). In total, there

are five major stable attractor states for the non-adiabatic stem

cell network. ES represents the stem cell attractor state. PE

and TE separately represent the PE attractor state (high GATA6

expression/low CDX2 expression) and TE attractor state

(low GATA6 expression/high CDX2 expression). IM1 and IM2

separately denote intermediate attractor state 1 (low NANOG/

low GATA6/low CDX2) and intermediate attractor state 2 (low

NANOG/high GATA6/high CDX2). We can see that the differ-

entiation and reprogramming processes both go through IM1

attractor state, and the transdifferentiation processes both go

through IM2 attractor state. In addition, differentiation can also

be realized directly from the ES attractor state to the PE attractor

state (green path from ES to PE) not going through the IM1

attractor state.

We have previously quantified the reprogramming paths for

a core gene regulatory network [25,26]. A strategy to find
reprogramming recipes was suggested based on DBN methods

[31]. Some of the reprogramming recipes found are consistent

with experiments. Here, for a different mechanism with non-

adiabatic slow regulation binding (regulators binding to the

gene), we quantify the kinetic paths for differentiation, repro-

gramming and transdifferentiation (the transition between

different differentiation cell states). The method presented

here of quantifying the reprogramming and transdifferentia-

tion paths is general and can be applied to other realistic large

underlying gene regulatory networks.

2.3. Kinetic speed from mean first passage time
In order to quantify the dynamics of differentiation,

reprogramming and transdifferentiation, we further investi-

gated the kinetics or speed of different processes according to

the mean first passage time (MFPT), which is shown in figure

6a,b. MFPT reflects the average transition time of the system

jumping from one attractor to another attractor in the state

space of the gene regulatory network, and therefore can be

used to quantify the ability of the cells switching from one cell

type to another (for example, from stem cell to differentiated

cell in the development and vice versa in the reprogramming).

We can see that for differentiation, reprogramming and trans-

differentiation, the MFPT (figure 6a,b) first decreases and then

increases when the binding/unbinding speed v increases.

Under non-adiabatic conditions (slow binding/unbinding

speed v), the dynamics of the system is controlled by the slow

binding/unbinding events because that is the rate limiting

step. Therefore, increasing binding/unbinding speed v will

accelerate the kinetics for all transitions of state, including differ-

entiation, reprogramming and transdifferentiation. For large v

values, owing to the frequent binding/unbinding events, the

dynamics of the system is determined by the topography of

the resulting effective potential landscape. MFPTs are deter-

mined by the potential barrier between different cell attractor

states. Therefore, at faster binding/unbinding speeds, the

MFPT becomes larger with the increase of v, because the poten-

tial barriers between the ES state and the differentiation state (at

large v, only one differentiation state exists) increase, which we

can see from the landscape change from figure 2e (v ¼ 1) to

figure 2d (v ¼ 1000).

This means that the cell has an optimal speed for differen-

tiation, reprogramming or transdifferentiation at a specific

speed v of regulatory binding/unbinding to the gene, which

indicates that by changing v (owing to the change in some

epigenetic process such as histone modification, DNA methyl-

ation or slow transcription initiation and entry to the cell

nucleus, etc.) cells might not only control the appearance of

more differentiation states and therefore heterogeneity, but

also adjust transition speed among different cell types (differ-

entiation speed, reprogramming speed or transdifferentiation

speed). This prediction needs to be confirmed by future exper-

iments, and can be used as a potential guideline to design

cellular differentiation, reprogramming or transdifferentiation

with optimal speeds.
3. Conclusion
In summary, we developed a model to study epigenetic

dynamics and uncovered the underlying landscape of a

stem cell developmental network. With slower effective regu-

latory binding/unbinding to the gene (when the binding/
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unbinding speed v is decreased, leading to the increase of

non-adiabaticity), the global topography of the landscape

of cell development gradually changes from bistability to

multi-stability, and therefore we witness the effects of non-

adiabaticity (slow binding/unbinding switch) on the appear-

ance of more cellular differentiation types. This provides

possible mechanisms for the experimentally observed hetero-

geneous distribution of gene markers in differentiation and

development [9,10]. On the other hand, the experimentally

observed heterogeneous distribution allow us to uncover

the underlying structure of the Waddington landscape in

terms of statistics of stable and metastable basins of attraction

representing the emergence of cell types and cell subtypes.

We found that when the activation or repression regulation

strengths become lower, the evolution of differentiation

proceeds from favouring stem cell states to favouring differen-

tiated cell states, which is reflected by the changes in the

topography of the underlying landscape [23,25–27] for fast

binding/unbinding in the adiabatic case. This trend is largely

preserved even in the non-adiabatic case.

Based on the analysis of dynamic transition paths between

different phenotypes, we predict that cellular differentiation

and reprogramming need to go through a specific intermediate

state (IM1, low NANOG/low GATA6/low CDX2), and trans-

differentiation between two different differentiation states

(PE and TE) needs to pass through another specific inter-

mediate state (IM2, low NANOG/high GATA6/high CDX2

state). Our predictions are consistent with recent experimen-

tal studies. Meanwhile, we also propose more experiments

regarding the pathways of cell fate decisions-making processes

to test these predictions. By calculating MFPT between differ-

ent cell types, we provide an avenue to acquire information

regarding transition rate or kinetic speed for the changes

of the cell types through differentiation, reprogramming as

well as transdifferentiation, which can be directly tested from

the experiments.
It should be noted that the stem cell network we used

comprises only certain general biological gene markers and

their mutual regulations for stem cell development and

differentiation. With more biological details added into the

ES developmental network, such as incorporating core

marker genes that guide primitive ectoderm to further differ-

entiate into the primary germ layers, it is anticipated that we

can discover more intricate mechanisms in cell fate decision

processes through exploring potential landscape and kinetic

paths. Our work has provided a general framework to

explore the landscape and paths of gene regulatory networks

from adiabatic and non-adiabatic perspectives. In principle,

with enough gene interaction details, one can construct

a more comprehensive ES network considering neural dif-

ferentiation types, endodermal or other differentiation cell

types. With these networks constructed, we believe that

our landscape and path framework can be used to quan-

titatively investigate the corresponding differentiation,

reprogramming and transdifferentiation processes in terms

of other differentiation cell types. Additionally, a recent

study reported that OCT4 has a dual function in cell fate

decision processes, acting as an important factor for repro-

gramming and self-renewal [45], but also actively controlling

cell state transitions during entry into and exit from the

naive pluripotent state [46]. Our current model cannot explain

this phenomena. We may need more details regarding

gene regulation (more genes and more links between

OCT4 and other marker genes) added into the ES network

to uncover the mechanism of the dual function of OCT4

from a landscape perspective.

Our approach offers a general way to investigate the

global properties—landscape topography, transition rate,

kinetic path—of gene regulatory networks using information

on interaction directions (activation or repression) from both

transcriptional and epigenetic perspectives. In particular, we

provide an approach to investigate landscape and biological
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paths of high dimensional systems under non-adiabatic slow

binding conditions often found in eukaryotic cells. Our

approach can be applied to other gene regulatory networks

or protein networks.
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4. Material and methods
4.1. Model for the stem cell developmental network
We constructed an ES cell network comprising nine core nodes

by searching the literature and integrating previous known net-

works, as shown in figure 1a [31–33]. By comparing a human

ES cell network [31] and a mouse ES cell network [33], we can

see that they have some common core gene regulatory inter-

actions. For example, the main ES marker genes include OCT4,

SOX2 and NANOG; the major differentiation marker genes

include GATA6 and CDX2; and the dynamics of system is

mainly governed by the mutual repression between OCT4 and

CDX2 (determining the TE lineage), and mutual repression

between NANOG and GATA6 (determining the PE lineage).

We extracted these core gene regulatory links and kept some

genes, are vital to self-renewal with experimental evidence

(KLF4 and PRDM14) [30], and formed our ES network. Some

previous work also showed that over-expression of NANOG

promotes maintenance of cell pluripotency [32,33,47].

This network includes nine gene/protein nodes and their

interactions (totally 30 links including 17 activation links and

13 repression links), in which red arrows represent activation

and blue bars represent repression. There are six marker genes

for the pluripotency state (iPS state or stem cell state) and three

marker genes for the differentiation state, which are separately

coloured in purple and cyan. Positive feedback loops between

OCT4, SOX2 and NANOG (stem cell marker) maintain their

expression to promote continuous ES cell self-renewal. The

high expression of NANOG, GATA6 and CDX2 separately

characterize the ES cell state, the PE state and the TE state. So,

the TE lineage is determined by the antagonism between OCT4

and CDX2, whereas the balance between GATA6 and NANOG

determines the PE lineage [33].

The ES marker genes include OCT4, SOX2, NANOG,

OCT4SOX2, KLF4, PRDM14, and the differentiation marker

includes GATA4, GATA6, CDX2. Previous studies have

suggested that the expression of GATA6 in mouse ES cells results

in their differentiation into PE [48], and the expression of CDX2

induces ES cells to differentiate into TE [49]. Therefore, we define

GATA6 as a PE marker and CDX2 as a TE marker.

Overall, the ES stem cell marker genes and differentiation

marker genes have mutually repressed regulation effects,

which means that high expression ES marker genes repress the

expression of differentiation marker genes, and high expres-

sion differentiation marker genes repress the expression of ES

marker genes. Some of these genes have self-activation regulations

to their own expression, such as NANOG, GATA6, CDX2, etc.

These marker genes constitute a major stem cell gene regu-

latory network, which orchestrates some important cellular

functions, such as cell differentiation, reprogramming and transdif-

ferentiation. For instance, transcription factors OCT4, SOX2 and

NANOG play important roles in the early development of cells

and in the propagation of undifferentiated ES cells [50]. The pro-

teins OCT4 and FOXD3 are transcriptional regulators expressed

in ES cells. Downregulation of OCT4 is an essential requirement

during gastrulation for proper endoderm development [51].

Figure 1b provides an illustration of our simulation model. The

reactions in the network include degradation reaction, synthesis

reaction and binding/unbinding reactions from gene regulation.

Assume any gene Y from the network has an activation regulation

from gene A and a repression regulation from gene R, then gene Y
has six reactions in total, as follows:

XY �!kY F; Oij
Y �!

gij
Y XY

O0j
Y þ 2XA �!hA O1j

Y ; O1j
Y �!fA O0j

Y þ 2XA

and Oi0
Y þ 4XR �!hR Oi1

Y ; Oi1
Y �!fR Oi0

Y þ 4XR;

Here, X represents protein concentration or relative gene

expression level. Oij represent the status of the promoter. For

the gene state index ij, the first index i ¼ 0(1) stands for the acti-

vator protein A unbound (bound) to the promoter; the second

index j ¼ 0(1) stands for the repressor protein R unbound

(bound) to the promoter. gij
Y is the synthesis rate of the protein

Y when the gene Y is in state ij. The parameter k represents

degradation rate.

For a network with n nodes and m edges (activation or

repression links), there will be (2 � n þ 2 � m) reactions in

total, where m represents total regulation numbers, and n is the

number of nodes. For the current nine-node network, we have

78 reactions, based on which we implemented stochastic simu-

lation [52] to simulate the dynamics of the system.

The prefactor 2 in the rate equations indicates that activator A

binds to promoters as a dimer, and 4 indicates that repressor

R binds to promoters as a tetramer. We assume that activator

A binds to promoters as a dimer, and repressor R binds to pro-

moters as a tetramer. So far, we do not have the corresponding

experimental evidence for this assumption. Therefore, this is a

general choice of parameters and an assumption. Without

other direct experimental results, we believe this is a reasonable

assumption. We hope new experiments can be performed soon,

upon which the regulation parameters in this mode can be

amended. So, the binding rates have the form: 1/2hAnA(nA 2

1) for the activators, and 1/4! hRnR(nR21)(nR22)(nR23) for the

repressors. Here, the binding/unbinding rate of the gene states

is defined as: vA ¼ fA/k, vR ¼ fR/k, and the equilibrium con-

stants are: XA
eq ¼ fA/hA, XR

eq ¼ fR/hR. The parameters are set as:

the protein degradation rate k ¼ 1, the equilibrium constant, indi-

cating the ratio between unbinding and binding speed, are set as

XA
eq ¼ 600, XR

eq ¼ 2000.

In the network, there are two kinds of activation links. One is

targeting genes which have both an activation and repression

input. For this kind of activation, the activation constant is set

fA ¼ 10 (class A activation). The other activation links target

genes that only have activation links (no repression links). For

this class of genes, we set the activation constant as fB ¼ 60

(class B activation), in order to keep the overall synthesis rate

for all genes at the same level. The repression constant is set as

fR ¼ 60, and the basal protein synthesis rate is f0 ¼ 5. Genes have

a maximum protein synthesis rate when they are bound by acti-

vator A and unbound by repressor R: g10
Y ¼ f0 þ fA þ fR ¼ 75. The

minimum protein synthesis rate appears when promoters are

unbound by activator A and bound by repressor R:

g01
Y ¼ f0 ¼ 5. In the same way, the other two classes of synthesis

rates are: g00
Y ¼ f0 þ fR ¼ 65 (activator off, repressor off), and

g11
Y ¼ f0 þ fA ¼ 15 (activator on, repressor on). See table 1 for par-

ameters of reactions. For class B activation, we designate the two

synthesis rates (high/low) as f0 ¼ 5 for the activator being off,

and f0 þ fB ¼ 65 for the activator being on. We can find from

the network links that the activation regulations for class B ( fB)

all belong to the mutual activation between ES marker genes.

In simulation, the initial protein concentration is set as

Xinitial ¼ 50 for all nine genes, and the initial promoter state is

set as ij ¼ 00 (no activator or repressor bound) for all nine genes.
4.2. The selection of parameters in the model
We first select the parameter regions in adiabatic conditions (fast

gene binding/unbinding speed, v ¼ 1000). The parameter values

are chosen according to the following criteria:



Table 1. Parameter values for the model.

k f0 fA fB fR vA 5 vR X A
eq X R

eq

1 5 10 60 60 0.01 600 2000
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(i) We chose parameter values according to previous studies

[21–23] considering non-adiabatic simulation for gene

regulatory system.

(ii) The degradation, activation and repression strength are

assumed to be uniform for different variables and have

the same magnitude, because, so far, there is no infor-

mation regarding the regulation strength of stem cell

networks; this should come from the detailed biochemis-

try reactions involved in cellular development. Here, the

degradation constant for every gene is set as k ¼ 1, and

the protein synthesis rate for every gene is set as

fA ¼ 10 (activation open), fR ¼ 60 (repression close).

(iii) Parameters were chosen that satisfied some biological

constrains, including producing a stable steady state and

either bistability or multi-stability, because the purpose

was to explore cellular differentiation, reprogramming

and transdifferentiation dynamics (multi-stable states).

In this way, the parameters chosen produced a relati-

vely balanced bistable landscape (figure 2d, v ¼ 1000, other
parameters are as table 1), separately representing the ES state

and the differentiation state, under adiabatic conditions (fast

gene binding/unbinding speed, v ¼ 1000). Then, we expanded

the same parameter selection to non-adiabatic conditions (vertical

direction of figure 2, decreasing v, corresponding to the change

from figure 2d,e, to f ). In addition, for horizontal direction, the

other parameters were changed in isolation (figure 3: changing

self-activation strength; electronic supplementary material, figure

S2: changing repression strength; electronic supplementary

material, figure S3: changing equilibrium constant) from the

default parameter values (table 1) to investigate the effect of

these parameters on the landscape.
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