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Article

Introduction

There is growing evidence that iron plays an important role 
in the development of neurodegenerative diseases such as 
Alzheimer’s disease (AD). One of the reasons is an altered 
brain iron distribution, with iron accumulation in AD 
plaques (LeVine 1991; Smith et al. 1997; Crichton et al. 
2002; Haacke et al. 2005; Meadowcroft et al. 2009; 
Bartzokis 2011). These disease-related changes in brain 
iron distribution are a potential marker for early in vivo 
diagnosis using magnetic resonance imaging (MRI), espe-
cially because recent advances in human MRI systems 
operating at an ultra-high magnetic field (7 Tesla and 
higher) show increased sensitivity to iron-based susceptibil-
ity contrast in the human brain that have not been observed 
before (Nabuurs et al. in press). A validated histological 
method to stain iron in brain tissue is required to correlate 

the MRI findings with histological changes in iron distribu-
tion and to study the role of iron in the development of neu-
rodegenerative diseases like AD.

Iron (Fe) is essential for the proper functioning of many 
cellular processes. Due to its capability to catalyze oxidation-
reduction reactions, iron serves as an active site in mole-
cules with critical biological functions. However, this also 
requires a strict regulation to prevent uncontrolled spread-
ing of catalytically active iron and its potential (neuro) tox-
icity (Meguro et al. 2007). This regulation is achieved by 
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Summary
Better knowledge of the distribution of iron in the brains of Alzheimer’s disease (AD) patients may facilitate the development 
of an in vivo magnetic resonance (MR) marker for AD and may cast light on the role of this potentially toxic molecule 
in the pathogenesis of AD. Several histological iron staining techniques have been used in the past but they have not 
been systematically tested for sensitivity and specificity. This article compares three histochemical techniques and ferritin 
immunohistochemistry to visualize iron in paraffin-embedded human AD brain tissue. The specificity of the histochemical 
techniques was tested by staining sections after iron extraction. Iron was demonstrated in the white matter, in layers IV/V 
of the frontal neocortex, in iron containing plaques, and in microglia. In our hands, these structures were best visualized 
using the Meguro iron stain, a method that has not been described for iron staining in human brain or AD in particular. 
Ferritin immunohistochemistry stained microglia and iron containing plaques similar to the Meguro method but was less 
intense in myelin-associated iron. The Meguro method is most suitable for identifying iron-positive structures in paraffin-
embedded human AD brain tissue. (J Histochem Cytochem 61:785–792, 2013)
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strong binding between iron and the proteins transferrin and 
ferritin. Transferrin, a transporter protein, can bind two Fe3+ 
ions. Ferritin serves as the principle iron storage protein 
capable of binding up to 4500 iron atoms in different min-
eral forms, predominantly as Fe3+ and small amounts of 
Fe2+ (Meguro et al. 2007). In organisms, iron can be catego-
rized as heme or non-heme iron. Heme iron is a Fe2+ proto-
porphyrin complex found in, for instance, hemoglobin. 
Non-heme iron consists of Fe3+ bound to ferritin or transfer-
rin and very small amounts of Fe3+ and Fe2+ loosely bound 
to organic bases, enzymes, iron sulphur proteins, and nucle-
otides. In general, nearly all non-heme iron found in the 
human body is bound to ferritin as Fe3+. The distribution of 
ferritin closely resembles the distribution of iron and there-
fore may act as a surrogate marker for iron (Grundke-Iqbal  
et al. 1990; Meguro et al. 2007).

In the normal brain, most iron is present in myelin and 
oligodendrocytes, which require iron-dependent enzymes 
to produce and maintain myelin. Myelin-rich areas such as 
white matter thus contain large amounts of iron. In the cere-
bral cortex, iron is also expected in the myelin-rich layers 
IV and V (Fatterpekar et al. 2002). In damaged brain tissue, 
microglial cells have been shown to accumulate iron 
(Schonberg et al. 2012).

Non-heme iron (predominantly in the Fe3+ form) can be 
visualized in paraffin-embedded tissue by the classic Perl’s 
iron stain, in which soluble ferrocyanide reacts with the tis-
sue Fe3+ to form crystals that make an insoluble Prussian 
blue dye. Further enhancement can be obtained by allowing 
the Prussian blue crystal to catalyze the H

2
O

2
-dependent 

oxidation of diaminobenzidine (DAB) (Meguro et al. 2007). 
Several protocols for DAB-enhanced iron stains, using dif-
ferent pre-treatment, slide thickness, endogenous blocking, 
and reagent concentrations, have been published, but these 
different methodologies have never been directly compared 
with one another and only some staining patterns have been 
related to ferritin immunohistochemistry (IHC) (Barbeito  
et al. 2009; Butt et al. 2010; Fukunaga et al. 2010; Chen-
Roetling et al. 2011; Shpyleva et al. 2011) or checked for 
false-positive results in iron-depleted sections (Smith et al. 
2007). The DAB-enhanced histochemical iron stains 
described by Smith (Smith et al. 1997) and LeVine (LeVine 
1991) have been reported to label AD plaques. The Meguro 
method (Meguro et al. 2007) has not been described in 
human brain tissue or animal models of AD but has been 
widely used in other organs in rats, mice, and monkeys 
(Meguro et al. 2005; Meguro et al. 2007; Freret et al. 2008; 
Iwatsuki et al. 2008; Meguro et al. 2008; Butt et al. 2010; 
Winter et al. 2010; Butt et al. 2011; Shpyleva et al. 2011).

The purpose of the present study is to compare the 
Meguro, Smith, and LeVine iron staining methods for the 
detection of non-heme iron in brain tissue with AD pathol-
ogy. In addition, we investigated their correlation with the 
distribution of ferritin by IHC.

Materials & Methods

Brain Tissue Samples

One block of formalin-fixed, paraffin-embedded brain tis-
sue of the frontal cortex of 4 AD patients (60-87 years; 
Braak 6: N=2; Braak 5: N=1; Braak 4: N=1) and 4 control 
patients without dementia or evidence of AD (62-76 years; 
Braak 0) was used. Samples were handled in a coded fash-
ion to maintain anonymity according to Dutch national ethi-
cal guidelines. The brain tissue had been routinely immersed 
in buffered 10% formalin for a maximum of 6 months.

Iron Extraction

In the first experiment, the tissues of AD patients were used 
to examine the effect of iron extraction on the different 
stainings. For each patient sample, 7 serially cut 10-µm-thick 
sections were mounted onto slides. Of each of these series, 
sections 1, 3, and 5 were incubated with 250 μl 0.1 M 
Na-citrate/HCL pH 1.0 buffer (Boom BV; Meppel, The 
Netherlands). After overnight incubation, the buffer was 
aspirated from the section and its iron concentration was 
measured using the Cobas Integra 400/800 method (Roche 
Diagnostics; Mannheim, Germany). As a control, the iron 
concentration was tested in the native buffer, in buffer incu-
bated on a glass slide without tissue, and in buffer with Fe3+ 
(Menck BV; Amsterdam, The Netherlands) added as a posi-
tive control. The limits of sensitivity of the Fe elution assay 
are 0.9-179 µmol/L (Roche Diagnostics).

As a control experiment, the tissues of AD patients were 
used to test the iron extraction capability of Na-citrate/HCL 
buffer. For each patient sample, a section was incubated 
with 250 µl 0.05 M TRIS/HCL pH 1.0 buffer (Menck BV) 
and an adjacent section was incubated with 250 µl 0.1 M 
Na-citrate pH 1.0 buffer to extract iron. After overnight 
incubation, the buffer was aspirated from the section and its 
iron concentration was measured as described above.

Histological Procedures for Iron Staining

For the first experiment, the sections of AD tissue as described 
above were used. Of each patient, sections 1 and 2 were 
stained as described by Meguro et al. (2007), with an increase 
in incubation times of 25%: after de-waxing/rehydration, the 
paraffin sections were incubated for 40 min in 1% potassium 
ferrocyanide, washed, and treated in methanol containing 
0.01 M NaN

3
 and 0.3% H

2
O

2
 for 75 min. Then, the sections 

were treated in 0.1 M phosphate buffer, followed by a solution 
containing 0.025% 3,3’-DAB-4HCL (DAB; Sigma, St Louis, 
MO) and 0.005% H

2
O

2
 in a 0.1 M phosphate buffer for  

40 min. The reaction was stopped by washing.
The third and fourth sections were stained according to 

Smith et al. (1997). In short, after deparaffinization in xylene 
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and rehydration through graded ethanol, sections were incu-
bated for 15 hr in 7% potassium ferrocyanide in aqueous 
hydrochloric acid (3%) and subsequently incubated in 
0.075% 3,3’-DAB and 0.015% H

2
O

2
 for 5 to 10 min.

The fifth and sixth sections were stained according to 
LeVine (1991) but with an increased DAB incubation time 
of 1 hr and 45 min. Briefly, after deparaffinization and rehy-
dration, the sections were incubated in 10 mg NaBH

4
/ml 

phosphate-buffered saline (PBS), 30 min, washed in PBS, 
and incubated in 30 µg proteinase K/ml PBS with 0.1% 
Triton X-100 for 20 min at room temperature. Sections 
were washed in PBS and incubated in 1% potassium ferro-
cyanide/1% Triton X-100/0.125 N HCL for 30 min. Sections 
were washed in PBS and incubated in a mixture of 1 mg 
DAB: 5 ml 0.01 M Tris HCl pH 7.6: 10 µl 30% H

2
O

2
 for  

2 hr in the dark followed by washing in PBS.
The seventh section was stained immunohistochemically 

for ferritin using polyclonal anti-ferritin rabbit antibody at 
1:10000 (Bethyl; Montgomery, TX) overnight, followed by 
a swine anti-rabbit biotin (Dako, Glostrup, Denmark) at 
1:600 for 1 hr at room temperature. After washing with 
PBS, immunolabeling was identified using an ABC kit 
(VECTASTAIN; Vector Laboratories, Burlingame, CA) 
according to the manufacturer’s instructions and visualized 
with DAB (3’3 diaminobenzidine; Sigma). The concentra-
tion of 1:10000 for the ferritin rabbit antibody was chosen 
after testing a series of seven different concentrations: 
1:100, 1:500, 1:1000, 1:5000, 1:10000, 1:20000, 1:40000. 
The dilution of 1:10000 gave the most optimal signal com-
pared with the higher and lower concentrations.

In the second experiment, the three different methods 
and ferritin IHC were performed on tissue samples of AD 
patients and on tissue samples of control patients. The tis-
sue was cut in 10-µm-thick sections and mounted onto 
slides. Adjacent sections were stained with the Meguro, 
Smith, and LeVine methods and the ferritin IHC, as 
described above.

Scoring

All sections were scored for iron/ferritin labeling of plaques, 
microglia, white matter, and cortical layers IV and V. 
Microglial cells were defined as iron-positive cells with 
dilated cell bodies and dilated cellular processes. We and oth-
ers have shown that iron-positive cells with this morphology 
label positively for microglial immunohistochemical mark-
ers (Nabuurs et al. 2011; Schonberg et al. 2012). The inten-
sity of iron and ferritin staining in plaques and microglia was 
scored as no staining (-), intermediate staining (+), or strong 
staining (++). Labeling of myelin-associated iron in the white 
matter and in the myelin rich cortical layers IV and V was 
scored as no contrast (-), intermediate contrast (+), and strong 
contrast (++) versus the rest of the cortex. Scoring was per-
formed independently by the authors (SVD, SGVD, RN).

Results

Iron Histochemistry

The Meguro method showed the strongest contrast between 
gray and white matter in AD and control tissue (Figs. 1 and 2, 
table 1). This contrast was also seen using the Smith and 
LeVine staining methods, however, it was less pronounced. 
Cortical layers IV and V showed the most intense labeling by 
the Meguro stain, and labeling of these layers was more pro-
nounced in AD than in controls. These layers were also seen to 
a lesser extent in the Smith staining but not in the LeVine stain-
ing. Iron-containing plaques and microglia in AD tissues were 
most frequently and most intensely labeled by the Meguro 
stain. The Smith method detected less microglia and fewer iron- 
containing plaques in the cortices of AD patients. The LeVine 
method was clearly the least sensitive, showing no enhanced 
labeling of the cortical layers IV/V, only a few plaques, and no 
microglia. No iron-positive plaques or microglia were found, 
with any of the iron staining methods in control tissue.

Comparison with Ferritin IHC

The Meguro method and ferritin IHC showed a comparable 
distribution and frequency of iron-positive plaques and 
microglia in AD tissue but the plaques looked different. 
Both methods showed plaques with clustered iron-positive 
microglia, but the extracellular parenchymal plaque depos-
its were labeled differently. The Meguro method showed 
intense and sharply circumscribed labeling of extracellular 
plaque deposits, whereas ferritin IHC showed weak, diffuse 
labeling of these deposits (Fig. 2). The contrast between 
white matter and cortex and the visibility of cortical layers 
IV/V was better using the Meguro iron stain than using fer-
ritin IHC in both AD and control tissues. Higher concentra-
tions of the antibody gave more background with less 
contrast between the different layers in the cortex and 
between the white matter and gray matter.

Iron Extraction

None of the three investigated procedures showed staining 
of any cell or structure in tissue after iron extraction (Fig. 
3), but all showed their usual staining pattern in the parallel 
section without iron extraction as a pre-treatment. Only the 
LeVine method showed a light background staining and 
lacked contrast between white matter and gray matter.

The buffer incubated with tissue showed much higher 
iron concentrations than buffer incubated on a glass slide 
without tissue, confirming iron extraction (Table 2).

Iron extraction with Na-citrate/HCL buffer gave better 
results compared with the TRIS/HCL buffer on the tissue. 
However, after adding Fe3+ to the buffer, the results were 
better using TRIS/HCL as a buffer.
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Discussion

To our knowledge, this is the first study to provide a direct 
comparison of three frequently used histochemical iron stains 
on human paraffin-embedded AD brain tissue and simultane-
ously investigate changes in the distribution of ferritin. We 
evaluated their ability to stain iron-containing plaques and 
microglia as well as myelin-associated iron. The method 
according to Meguro et al. (2007) resulted in the most robust 
and intense labeling of these iron-containing structures.

We are not aware of earlier studies using the Meguro 
method to visualize iron in human brain tissue, but it has 
been described for the detection of iron in paraffin-embedded 
tissue of rats, mice, monkeys, and guinea pigs (Meguro  
et al. 2005; Freret et al. 2008; Iwatsuki et al. 2008; Meguro 
et al. 2008; Butt et al. 2010; Winter et al. 2010; Butt et al. 
2011; Shpyleva et al. 2011).

The Smith method (Smith et al. 1997) showed moderate 
amounts of microglia and plaques with less intensity than 
the Meguro stain. The staining of cortical layers IV and V 

Figure 1.  Comparison of the Meguro (1), Smith (2), LeVine (3) method and ferritin IHC (4) in control patients (A and B) and AD 
patients (C and D). (A) Whole section of a control patient; (B) 20× magnification of A; (C) whole section of an AD patient; (D) 20× 
magnification of C. Arrows indicate examples of iron-positive plaques; arrowheads indicate examples of microglia; double arrows 
show layers IV/V of the cortex. Bars A, C = 5000 µm; bars B, D = 100 µm.
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was weak. With this method, plaques have been demonstrated 
on 6- to 8-µm paraffin sections (Smith et al. 1997; van Duijn 
et al. 2011). Labeling of iron in microglia has not been 
described in earlier reports. This method differs to that 
described by Meguro et al. in its exclusion of the methanol-
NaN

3
-H

2
O

2
 treatment step between the ferrocyanide and 

DAB amplification step as well as the much longer (overnight 
vs. 30 min) incubation time, with a 7-fold higher concentra-
tion of ferrocyanide, and a shorter incubation with DAB at a 
3× higher concentration. How these differences result in a less 
intense labeling of iron-positive structures than that by the 
Meguro method remains unclear. For the protocol used by 
Smith et al., methacarn fixation has been described to result in 
better iron labeling than formalin fixation. We performed the 
Smith protocol on formalin-fixed tissue because in our and 

most other laboratories, tissue is routinely fixed by formalin; 
thus, a general iron staining method should be optimized pref-
erably for formalin fixed tissue.

The last technique, published by LeVine (1991), showed 
the least intense staining of the scored characteristics or no 
staining at all. Earlier studies showed plaques using this 
method on 60- to 100-µm free-floating sections (LeVine 
1997; Meadowcroft et al. 2009) and iron-containing microg-
lia in multiple sclerosis brains (LeVine 1997). No results of 
iron in layers IV/V have been reported using this method. 
The most likely explanation for the inferior labeling of 
plaques in the LeVine method compared to the other stains 
is our use of 10-µm de-paraffinized sections on glass slides, 
whereas the LeVine method has been developed for 60- to 
100-µm free-floating sections (LeVine 1991; LeVine and 

Figure 2.  Comparison of the Meguro (1), Smith (2), LeVine (3) method and ferritin IHC (4) on AD tissue. (A) Whole section; (B) 
10× magnification; (C) 40× magnification of 2; (D) 40× magnification. Arrows indicate examples of iron-positive plaques; arrowheads 
indicate examples of microglia; double arrows show layers IV/V of the cortex. Bar A = 5000 µm; bar B = 200 µm; bars C, D = 50 µm.
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Torres 1992; LeVine and Torres 1993). The absence of 
labeling of cortical layers IV and V may be due to the 
aggressive pre-treatment releasing iron from the myelin, 
which is slightly increased compared to the other layers.

Using the Meguro technique, the contrast between white 
and gray matter and between cortical layers IV/V and the 
other cortical layers was more intense than using ferritin 
IHC. This may be due to problems with antigen retrieval in 
myelin-containing tissue. A problem of antibody sensitivity 
seems unlikely because intracellular microglial staining is 
very strong and frequent in ferritin IHC, similar to that 

observed with the Meguro iron stain. The differences 
between the Meguro iron stain and the ferritin IHC remained 
when higher or lower ferritin antibody concentrations were 
used. Alternatively, there may be a true difference between 
the presence of iron and ferritin in myelin due to a relatively 
high non-ferritin-bound iron pool in the white matter and in 
cortical layers IV/V. Oligodendrocyte differentiation from 
oligodendrocyte precursor cells and myelin synthesis 
requires high iron concentrations, presumably because high 
amounts of enzymes with iron at their active sites are neces-
sary (Todorich et al. 2009). The different labeling of plaques 

Figure 3.  The Meguro (A), Smith (B), LeVine (C) methods with iron extraction as a pre-treatment (1) and without iron extraction as 
a pre-treatment (2) on AD tissue. Bars A–C = 5000 µm.

Table 1.  Comparison of LeVine, Smith, Meguro Iron Staining Methods and Ferritin Immunohistochemistry. 

Plaques Microglia
Layers IV/V  
AD Tissue

White Matter  
AD Tissue

Layers IV/V 
Control Tissue

White Matter 
Control Tissue

Meguro +/++ ++ +++ ++ ++ +++
Smith + + + + ++ +
LeVine + - - + - +
Ferritin +/++ ++ + + = + +

Each score represents the aggregated result of the four patients. For iron-positive plaques and microglia: - = no staining; + = intermediate staining; 
++ = strong staining. For contrast between cortical layers IV/V and the other cortical layers and for contrast between white and gray matter: - = no 
contrast; + = intermediate contrast; ++ = strong contrast. AD, Alzheimer’s disease.
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by the Meguro method and ferritin IHC is possibly caused 
by binding of iron to some of the many molecules other than 
ferritin in the extracellular compartment of plaques 
(Grundke-Iqbal et al. 1990; Connor et al. 1995).

The specificity of the tested histochemical iron stains was 
checked by using sections depleted of iron in acid buffer as 
a negative control. The absence of iron staining in these 
iron-depleted sections confirms the results of another study 
using the Smith protocol on iron-depleted sections (Smith et al. 
2007). Staining of other metals in brain is not completely 
excluded by these experiments, but other studies report the 
absence of DAB oxidation in reaction products of ferrocya-
nide with copper, zinc, or magnesium (Meguro et al. 2003; 
Meguro et al. 2007; Roschzttardtz et al. 2009). All this infor-
mation supports that the modified, DAB-enhanced Perl’s 
stainings used in this study are specific for iron ions.

Detailed knowledge of iron distribution in brain tissue 
may be of value for improving in vivo (MRI) diagnostics in 
AD and for a more complete picture of the pathogenesis of 
AD. In addition, it may also reflect normal brain aging 
(Bartzokis, Tishler, et al. 2007; Pfefferbaum et al. 2010) and 
the presence of other neurodegenerative diseases such as 
Parkinson’s disease (Loeffler et al. 1995; Brar et al. 2009), 
Lewy body disease (Tuite et al. 1996; Golts et al. 2002), and 
Huntington’s disease (Bartzokis, Lu, et al. 2007; Rosas  
et al. 2012). Although the present study was done on AD 
brain tissue, the results may be of use for the choice of iron 
stain in these other neurodegenerative diseases.

In conclusion, the results of this study suggest that the 
Meguro method is the best technique to stain iron in 10-mm 
formalin-fixed paraffin sections of human brain tissue. 
Ferritin IHC is a good alternative for demonstrating iron in 
microglia and, to a lesser amount, plaques but is somewhat 
less suitable for staining myelin-associated iron.
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