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Since its discovery as an oncogene carried by the avian acute leukemia virus MC29 in
myelocytomatosis (Roussel et al. 1979) and its cloning (Vennstrom et al. 1982), c-MYC
(MYC), as well as its paralogs MYCN and MYCL1, has been shown to play essential roles
in cycling progenitorcells born from proliferating zones during embryonic development, and
in all proliferating cells after birth. MYC deletion induces cell-cycle exit or cell death,
depending on the cell type and milieu, whereas MYC and MYCN amplification or over-
expression promotes cell proliferation and occurs in many cancers. Here, we review the
relationship of MYC family proteins to the four molecularly distinct medulloblastoma
subgroups, discuss the possible roles MYC plays in each of these subgroups and in the
developing cells of the posterior fossa, and speculate on possible therapeutic strategies
targeting MYC.

Medulloblastoma (MB), the most common
malignant brain tumor of childhood, is a

diverse and heterogeneous disease. Most fre-
quent in children between the ages 0 and 9,
this aggressive tumor can occur at any age (Louis
et al. 2007). Histopathological variants also exist
and are associated with different outcomes
(Rutkowski et al. 2005; Ellison et al. 2011b).
Most recently, transcriptional profiling identi-
fied four major MB subgroups: two associated
with pathogenic abnormalities in the Wingless
(WNT) and Sonic Hedgehog (SHH) develop-
mental signaling pathways (the WNT and SHH
subgroups), and two that are less well molecu-
larly characterized and referred to as group 3
and group 4 tumors. These transcriptional sub-
groups relate to differences in age at diagnosis,
sex, histopathology, incidence of metastatic dis-

ease, somatic variations, and provide an im-
proved prediction of clinical outcome (Fig.
1A) (Thompson et al. 2006; Kool et al. 2008;
Cho et al. 2011; Northcott et al. 2011; Taylor
et al. 2012). Despite this heterogeneity, medul-
loblastomas are still treated uniformly. Patients
receive surgery, radiation, and adjuvant chemo-
therapy, and although curative at about 70%,
this regimen leaves survivors with debilitating
side effects and fails to cure all comers (Mulhern
et al. 2005; Gajjar et al. 2006; Packer et al. 2006).
Before this suboptimal but broadly effective
treatment can be changed, an improved under-
standing of the pathogenesis of the subtypes is
needed. If therapy is to become truly tailored to
each molecular subgroup, bona fide tumorigen-
ic targets for each subgroup must be identified
and drugs developed to hit those targets.
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One such target is the MYC family of pro-
teins (MYC, MYCN, and to a lesser degree
MYCL1). These proteins are of interest because
they appear to play different roles in each of the
medulloblastoma subgroups. This relationship
to the different subtypes underscores the diver-

sityof these proteins and promises to reveal clues
about medulloblastoma tumorigenesis, espe-
cially if we can gain a better understanding of
the relationship of MYC protein function to
normal and transformed cells of the posterior
fossa, the intracranial cavity that houses the cer-
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Figure 1. Features of the human medulloblastoma subgroups and variable expression of MYC genes. (A) Clinical
and demographic features of medulloblastoma subgroups (LCA, large cell anaplastic; Mþ, positive for metastatic
disease). Number of human figures in age group row and symbols in gender row represent the relative distri-
bution in the four subgroups (for example, Group 4 [G4] medulloblastoma is most common in children and in
males) (based on data from Taylor et al. 2012). (B) MYC, MYCL1, and MYCN Log2 mRNA expression across the
four subgroups of medulloblastoma (expression data from Robinson et al. 2012 [n ¼ 74]). Group 3, G3.
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ebellum and the brain stem within which me-
dulloblastomas arise.

MYC AND THE MEDULLOBLASTOMA
SUBGROUPS

MYC proteins are associated with many cancers
and medulloblastoma is no exception. MYC,
MYCN, and MYCL1 amplifications have all
been described in medulloblastomas (Northcott
et al. 2012b). MYC and MYCN amplification
and expression have been intensely scrutinized
in medulloblastoma because highly aggressive
tumors frequently harbor MYC or MYCN am-
plification and/or overexpression (McManamy
et al. 2007; Pfister et al. 2009; Cho et al. 2011).
Classification schemes correlating expression
and amplification of these proteins to poor out-
come have been proposed (de Haas et al. 2008;
Park et al. 2012). However inconsistencies, such
as high expression in a subset of good respond-
ers, have made these criteria difficult to apply.
These discrepancies arise because MYC proteins
relate differently to each subgroup. When
viewed in this context, the relationship of MYC
to prognosis becomes clearer.

MYC in the WNT Subgroup

The WNT subgroup of medulloblastoma is the
most curable with .90% of patients surviving
on current therapy (Ellison et al. 2005; Clifford
et al. 2006; Gajjar et al. 2006; Ellison et al. 2011a).
It is also the least common medulloblastoma
subtype, accounting for only 10%. Patients are
generally older, with an average age of about 10
years. There is an even distribution of females to
males. The histology is overwhelmingly classic,
and the tumors are very infrequently metastatic
(Fig. 1A) (Kool et al. 2012; Taylor et al. 2012).
Transcriptional profiling reveals a high expres-
sion of WNT pathway genes in these tumors
compared with the other subgroups (Thomp-
son et al. 2006; Kool et al. 2008; Northcott
et al. 2011). Next-generation sequencing studies
show that �90% of these tumors harbor acti-
vating mutations in b-CATENIN (CTNNB1),
the central orchestrator of the canonical WNT
pathway (Jones et al. 2012; Northcott et al.

2012a; Pugh et al. 2012; Robinson et al. 2012).
The only mouse model of this disease requires an
activating mutation in Ctnnb1 and loss of Trp53
(Gibson et al. 2010). Partners of CTNNB1 and
members of the canonical WNT pathway are
also frequently mutated in this subgroup (Ro-
binson et al. 2012). These data strongly support
the constitutive activation of the WNT pathway
as causal to this medulloblastoma subgroup.

In the WNTsubgroup, although MYCN and
MYCL1 have a moderately high overall expres-
sion level in comparison to group 3 and group
4, MYC expression is very high and comparable
only to that of group 3 (Fig. 1B). This is inter-
esting because, as previously noted, MYC over-
expression has been associated with a worse
prognosis (de Haas et al. 2008; Park et al.
2012). High expression in the subgroup with
the best overall survival refutes this idea and is
the primary reason that MYC expression alone
is a poor prognosticator. Moreover, unlike the
other subgroups, MYC, MYCN, and MYCL1
amplifications almost never occur in the WNT
subgroup (Fig. 2A–E) (Jones et al. 2012; North-
cott et al. 2012b; Pugh et al. 2012; Robinson et al.
2012).

MYC is a downstream target of WNTsignal-
ing and its expression is increased on the forma-
tion of a transcription factor complex through
the interaction of CTNNB1 with TCF/LEF fam-
ily proteins (He et al. 1998). It is not, therefore,
surprising that MYC expression is elevated in
tumors driven by constitutive WNT signaling.
Furthermore, many mouse models of medullo-
blastoma have been developed through en-
forced MYC and MYCN expression in various
cell types throughout the posterior fossa and
none of these results in the formation of WNT
subgroup (Zindy et al. 2007; Swartling et al.
2010; Kawauchi et al. 2012; Swartling et al.
2012). These data suggest that MYC’s relation-
ship to the WNT subgroup is not tumorigenic
or progressive, but rather a marker of enhanced
WNT pathway activity.

MYC in the SHH Subgroup

The SHH subgroup of medulloblastoma has an
intermediate prognosis and makes up �25%–

MYC in Medulloblastoma

Cite this article as Cold Spring Harb Perspect Med 2013;3:a014308 3

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



30% of all medulloblastomas. SHH subgroup
patients tend to be very young (,5 years old)
or older (.16 years old). Both males and fe-
males are equally likely to be diagnosed with
SHH medulloblastoma. All three major histo-
logic variants (nodular desmoplastic, classic,
and large cell/anaplastic [LCA]) are described
within this group (Northcott et al. 2011; Kool
et al. 2012; Taylor et al. 2012). Outcome corre-
lates with histology, and nodular desmoplastic
SHH tumors have a good overall survival,
whereas LCA tumors show a worse outcome

(McManamy et al. 2007; Ellison et al. 2011a).
Metastatic disease is uncommon but associates
with other poor prognostic features such as LCA
histology and older age at diagnosis (Fig. 1A)
(Ellison et al. 2011a). Transcriptional profiling
shows significant overexpression of SHH signal-
ing genes in this group relative to the other sub-
groups (Thompson et al. 2006; Kool et al. 2008;
Cho et al. 2011; Northcott et al. 2011). WGS and
other studies have identified numerous muta-
tions in genes that regulate the SHH pathway,
all of which result in its constitutive activation
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Figure 2. Amplifications of MYC genes in human medulloblastoma. (A) MYC and MYCN amplifications, shown
in red, and the most common recurrent subgroup mutations (missense, indels, frameshift mutations), shown in
black, relative to the four medulloblastoma subgroups. Results are reported across three genomic studies (Jones
et al. 2012; Pugh et al. 2012; Robinson et al. 2012). (B,C) MYCN and MYC amplifications relative to four
medulloblastoma subgroups across three whole genome sequencing (WGS) studies (Jones et al. 2012; Pugh et al.
2012; Robinson et al. 2012). (D,E) MYCN and MYC amplifications relative to four medulloblastoma subgroups
in 827 medulloblastomas (Northcott et al. 2012b).
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(Jones et al. 2012; Northcott et al. 2012a; Pugh
et al. 2012; Robinson et al. 2012). Numerous
mouse models of this disease have been devel-
oped by engineering mutations that activate the
SHH pathway (Goodrich et al. 1997; Hallahan
et al. 2004; Uziel et al. 2005; Zindy et al. 2007;
Hatton et al. 2008; Ayrault et al. 2010).

MYCN and MYCL1 are highly expressed
in the SHH subgroup relative to the other sub-
groups (Fig. 1B). Moreover MYCN and MYCL1
amplification both occur in SHH medulloblas-
toma (Fig. 2A–E) (Northcott et al. 2012b).
MYCN amplification in this subgroup is associ-
ated with poor prognosis (Ellison et al. 2011a).
Additionally, combined data from WGS studies
show a strong association between MYCN am-
plification, LCA histology, and TP53 mutational
status; each are markers of poor prognosis (Jones
et al. 2012; Pugh et al. 2012; Rausch et al. 2012;
Robinson et al. 2012). These data suggest that
although MYCN expression is uniformly high
in this subgroup, MYCN amplification occurs in
more aggressive, drug-resistant tumors.

Parallels are seen in mouse models of SHH
medulloblastoma. Activation of the SHH path-
way promotes the expression and stabilization of
MYCN (Oliver et al. 2003; Thomas et al. 2009).
Enforced expression of MYCN in granule neural
precursors (GNPs) collaborates with the loss of
one copy of the Ptch1 mutant and Cdkn2c
( p18Ink4c), or with the loss of Trp53 and Cdkn2c
to accelerate SHH MB development in mice
from 9 to 3 months after birth and to increase
penetrance from 14% to 60% (Uziel et al. 2005;
Zindy et al. 2007; Ayrault et al. 2009; Kawauchi
et al. 2012). Moreover, enforced MYCN expres-
sion produces more invasive, drug-resistant tu-
mors (Kessler et al. 2009).

To the SHH subgroup, therefore, MYCN is
both a marker of enhanced SHH activity and a
harbinger of aggressivity. These activities can be
distinguished by copy number but not expres-
sion. Analogous to MYC in the WNTsubgroup,
MYCN expression increases on SHH pathway
activation, meaning that all SHH tumors show
high MYCN expression including highly curable
nodular desmoplastic tumors. However, more
predictive of prognosis, is the copy number be-
cause, when amplified, these tumors associate

with higher risk features and respond poorly to
therapy. These data suggest that MYCN, espe-
cially if amplified and intrinsically deregulated,
will induce and maintain SHH tumor progres-
sion.

MYC in the Group 3 Subgroup

Group 3 medulloblastomas have the worst over-
all survival at ,50% survival on many proto-
cols (Cho et al. 2011; Northcott et al. 2011; Tay-
lor et al. 2012). These tumors account for
�25%–30% of medulloblastoma. They occur
in infants (,3 years old) and children but not
adults. Patients are twice as likely to be male as
female. Metastases are more prevalent in this
subgroup than any other, exceeding 40% in
some studies, and LCA histology—another
high-risk feature—is also prevalent (Fig. 1A)
(Kool et al. 2012; Northcott et al. 2012a; Taylor
et al. 2012). Transcriptional profiling analysis
did not reveal appreciable signaling pathways
but enrichment for genes involved in ribosomal
biosynthesis, nucleotide metabolism, photo-
receptor differentiation, and GABAergic func-
tion (Kool et al. 2008; Cho et al. 2011). Next-
generation sequencing of 76 group 3 primary
tumors in three independent studies yielded
few recurrent mutations in this group (Jones
et al. 2012; Northcott et al. 2012a; Pugh et al.
2012; Robinson et al. 2012). However, numerous
mutations have been identified in genes involved
in the reading, writing, and erasing of epigenetic
marks. These mutations overlapped with those
found in group 4 suggesting a common trans-
forming pathway (Fig. 3A,B) (Robinson et al.
2012).

MYC is more intricately linked to this sub-
group than to any other. In group 3 tumors,
MYC is significantly more highly expressed
compared with SHH and group 4, but not the
WNT subgroup (Fig. 1B). MYC amplifications
occur at a much higher frequency (10%–17%)
than in anyother subgroup (Fig. 2A–E) (North-
cott et al. 2012b). MYCN amplifications also oc-
cur in this group albeit much more infrequently
(2%–4%) (Fig. 2A–E) (Northcott et al. 2012b).
These MYC and MYCNamplifications occur in a
mutually exclusive fashion suggesting that they
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may have overlapping functions in this setting
(Fig. 2A) (Northcott et al. 2012a).

Two MYC-driven mouse models of group 3
MBs have been generated. Our model was gen-
erated by enforced expression of the wild-type
MYC gene in GNPs purified from Trp53-null
mice (Kawauchi et al. 2012); the other relied
on enforced expression of a partially stabilized
mutant of MYC (MYCT58A) with a dominant-
negative form of Trp53 in CD133/prominin 1-
positive neural stem cells (NSCs) (Pei et al.
2012). The resultant tumors showed that the
LCA phenotypes were highly aggressive, and
transcriptionally resembled group 3 MB. MYC
withdrawal caused complete tumor regression
(Pei et al. 2012). These data suggest that MYC is
a significant contributor to the initiation, main-
tenance, and progression of this disease (see
Gabay et al. 2013).

Of note, many mouse models of MB, in-
cluding these MYC-driven group 3 models, re-

quire the loss of Trp53 function; yet somatic
mutations of TP53 occur mostly in WNT and
SHH medulloblastoma and are associated with
MYCN rather than MYC amplification (Pfaff
et al. 2010; Rausch et al. 2012). The absence of
these mutations in group 3 tumors means that
TP53 loss is not required for human tumor ini-
tiation, that another cooperative genetic event
assists tumor initiation, or that the TP53 path-
way is in some other way compromised. To clar-
ify this question, an analysis of TP53 protein
expression and function and its regulation in
human primary medulloblastoma samples
grown as neurospheres or xenografts is warrant-
ed (Milde et al. 2012; Zhao et al. 2012).

MYC in the Group 4 Subgroup

Group 4 medulloblastomas have a similar prog-
nosis to SHH tumors. They account for �40%–
50% of medulloblastoma, occur mainly in chil-
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dren but can occur in adults, and, similar to
group 3, predominantly occur in males. Most
group 4 MBs have a classic histology (Fig. 1A)
(Kool et al. 2012; Northcott et al. 2012a; Taylor
et al. 2012). Transcriptional profiling revealed
enrichment for genes of neuronal differentia-
tion and glutamatergic receptors (Kool et al.
2008; Cho et al. 2011). Next-generation se-
quencing identified recurrent mutations in the
molecular machinery that reads, writes, and
erases epigenetic marks (described below),
some overlapping with those found in group 3
tumors (Fig. 3A,B) (Jones et al. 2012; Northcott
et al. 2012a; Pugh et al. 2012; Robinson et al.
2012).

Group 4 tumors generally have low MYC and
MYCN expression compared with the other sub-
groups (Fig. 1B). However, mean MYCN expres-
sion levels are still comparatively high when
compared with mature cerebellum and exist at
comparable levels to fetal cerebella (Swartling
et al. 2010). This implies that a certain level of
MYCN may be required for tumor maintenance.
In addition, MYCN amplifications occur in
some group 4 tumors and these, like group 3,
appear to be mutually exclusive with epigenetic
mutations (Fig. 3A) and to other amplifications
(Northcott et al. 2012a; Robinson et al. 2012).
This suggests that, although rare, MYCN ampli-
fication may initiate group 4 medulloblastoma.

Mouse cerebellar NSCs from postnatal day
0, but not from embryonic day 16, transduced
with a partially stabilized form of MYCN
(MYCNT58A) produce SHH-independent me-
dulloblastoma (Swartling et al. 2012). Similar-
ly, when conditional MYCNT58A expression is
targeted to neural cells from postnatal day 1
through adulthood, mice develop group 4-like
MBs (Swartling et al. 2010, 2012). These tumors
enter senescence on removal of stabilized
MYCNT58A (Swartling et al. 2010). These exper-
iments show the influence of the timing of the
oncogenic stimulus and its requirement for tu-
morigenesis (see Gabay et al. 2013).

This temporal association draws parallels to
the peak age of this disease occurring in older
children rather than infants and implies that
there may be a finite period during which cer-
tain cell pools are particularly vulnerable to tu-

morigenesis. These data suggest that MYCN
plays a role in initiation and maintenance of
group 4 medulloblastoma.

MYC IN THE DEVELOPING POSTERIOR
FOSSA

The cerebellum is a unique brain structure be-
cause, unlike the rest of the brain, granule neu-
ral progenitors actively proliferate after birth
(Roussel and Hatten 2011). Cerebellar progen-
itor neurons arise during embryogenesis from
the ventricular zone and the upper rhombic lip
(URL) to form the cerebellar anlage (Fig. 4).
During this time, neural progenitors are also
born in the lower rhombic lip (LRL) on the floor
of the fourth ventricle and express the Blbp gene
(Gibson et al. 2010). The neural progenitors
within the ventricular zone of the cerebellar an-
lage migrate radially outward and give rise to
Bergman glia and Purkinje cells, which are post-
mitotic by birth. Conversely neural progenitors
from the upper rhombic lip give rise to GNPs
that rapidly proliferate after birth in the external
granule layer (EGL) of the developing cerebel-
lum, exit cycle, and migrate inward. Once the
GNPs cross the Purkinje cell layer they come
to rest and form the internal granule layer (IGL)
as postmitotic neurons (Roussel and Hatten
2011). The white matter within the core of the
mature cerebellum contains neuronal stem cells
expressing CD133/prominin that are capable of
generating new neurons during the life of the
organism.

MYC, MYCN, and MYCL expression in the
developing posterior fossa appears to be cell
context dependent (Fig. 4). GNPs express
MYCN, but not MYC, in their proliferative
phase in response to SHH. Neuronal progeni-
tors in the Purkinje cell layer and in the ventric-
ular zone express MYCL but not MYCN or
MYC (www.cdtdb.neuroinf.jp/CDT/Top.jsp).
MYC is expressed in brain lipid-binding protein
(BLBP)-positive glial and LRL neural progeni-
tors and possibly in CD133/prominin NSCs
that reside in the white matter (Wey et al.
2010). This differential expression of MYC and
MYCN by distinct cerebellar progenitors lends
credence to the argument that the different me-
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dulloblastoma subgroups arise from distinct
cerebellar progenitors. Indeed SHH subgroup
medulloblastomas originate from GNPs and
overexpress MYCN, whereas WNT subgroup
medulloblastomas emanate from LRL precur-
sors and overexpress MYC. However, attempts
to identify precursors of group 3 and group 4
medulloblastomas through enforced expression
of MYC or MYCN into identical cerebellar pre-
cursor cells yielded some intriguing differential
effects depending on the gene used, which sug-
gests that the two paralogs influence the cellu-
lar program in different ways (Kawauchi et al.
2012).

Rapid proliferation of GNPs is mediated by
SHH, which is produced by Purkinje cells. By
binding to its receptor PATCHED (PTCH1),
SHH directly activates MYCN transcription via
GLI transcription factors (Kenney et al. 2003).
The MYCN requirement for cerebellum devel-
opment was shown in a Nestin-Cre transgenic
mouse. Conditional deletion of Mycn in early
neural stem and progenitor cells of this mouse

led to profound cerebellum defects, in part ow-
ing to the failure to suppress two cyclin-depen-
dent kinase inhibitory proteins (CKIs), p18Ink4c

and p27Kip1 (Knoepfler et al. 2002). Remark-
ably, these cerebellar defects could be partially
rescued by the loss of the two CKIs suggesting
that MYCN inhibition of p18Ink4c and p27Kip1

expression is required for proper cerebellar de-
velopment (Knoepfler et al. 2002; Zindy et al.
2006; Hurlin 2013).

Although MYC is not expressed in GNPs,
the conditional loss of Mycn in neural progen-
itors induces Myc in GNPs, which partially
compensates for the loss of Mycn, whereas loss
of both Myc and Mycn leads to the complete
absence of the EGL and GNPs (Zindy et al.
2006). This functional redundancy implies
that MYC and MYCN may have similar roles.
These homologs contain conserved MYC boxes,
and similar basic helix-loop-helix (bHLH)-zip-
per structures that recognize the same DNA mo-
tif when dimerized with MAX (see Eisenman
2013; Rahl and Young 2013). Knock-in of
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Figure 4. Expression of MYC genes during mouse cerebellar development. At embryonic day E13.5, GNPs that
migrate from the upper rhombic lip (URL) and form the external granule layer (EGL) and GABAergic neural
progenitors in the cerebellar ventricular zone (VZ) express MYCN. MYC is found expressed in precerebellar
neuron progenitors in the lower rhombic lip. At P7, whereas the GNPs in the EGL continue to express MYCN,
the Purkinje cell layer, composed of Bergman glia and Purkinje cells, expresses MYCL and CD133/prominin-
positive multipotent progenitors. At P21, all GNPs have exited cycle, no longer express MYCN but do express
MXD (see Eisenman 2013), and have migrated through the Purkinje cell layer to reside as postmitotic neurons
in the internal granule layer (IGL) that, like Purkinje cells, express MYCL (www.gensat.org; www.cdtdb.neuroinf.
jp/CDT/Top.jsp; Allen Brain Atlas). CD133/prominin-positive multipotent progenitors are marked with a
“MYC?” because this is suspected but not known. Prom1, prominin 1.
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MYCN into the MYC locus rescues murine de-
velopment, strongly suggesting major function-
al redundancy (Malynn et al. 2000).

However, MYC and MYCN also possess long
stretches of nonrelated amino acid sequences,
which raises the possibility that they are func-
tionally diverse. Indeed, enforced expression of
MYC or MYCN in Trp53-null GNPs induced
two distinct groups of MBs: group 3 and SHH,
respectively (Kawauchi et al. 2012). Why these
two very similar proteins induce two completely
different MB groups is not known. Experiments
swapping different regions of the MYC and
MYCN proteins to assess which regions are re-
sponsible for MB outcome and identifying dif-
ferences in MYC- versus MYCN-associated co-
factors will be required to establish the basis
for distinct functions of MYCN and MYC. In
addition, chromatin immunoprecipitation fol-
lowed by next-generation sequencing (ChIP-
seq) could be used to identify different MYC
and MYCN genomic-binding sites, which will
be highly informative toward understanding the
emergence of distinct MBs.

MYC PROTEINS AND THE EPIGENETIC
LANDSCAPE IN MEDULLOBLASTOMA

Only recently has a role for epigenetic modifiers
in regulating medulloblastoma genesis been
suggested. First, high-resolution single-nucleo-
tide polymorphism (SNP) genotyping identi-
fied novel genetic events in genes that target
H3 lysine 9 (H3K9), a repressive chromatin
mark found in postmitotic cells consistent
with transcriptional silencing (Northcott et al.
2009b). Second, MLL2 and MLL3 mutations
were found to be the next most common muta-
tions in a cohort of medulloblastoma after
PTCH1 (Parsons et al. 2011). When WGS was
combined with transcriptional profiling, sub-
group-specific epigenetic events became appar-
ent (Jones et al. 2012; Northcott et al. 2012a;
Pugh et al. 2012; Robinson et al. 2012). Most
epigenetic mutations identified in the WNT
subgroup can be functionally linked to CTNNB1,
substantiating that WNT pathway genetic
anomalies remain the central driver (Robinson
et al. 2012). Similarly, the epigenetic events

identified in the SHH subgroup might be ex-
pected to cooperate with activating mutations
in the SHH signaling pathway. However, it is
the overlapping epigenetic events in group 3
and group 4 that will shed light on the mecha-
nism by which these tumors develop; a mecha-
nism that appears to involve the MYC genes.

The highest percentage of mutations in his-
tone modifiers was found in KDM6A, the his-
tone H3 lysine 27 (H3K27me) demethylase (Fig.
3A) (Northcott et al. 2012a). KDM6A associates
with the MLL2 and MLL3 H3-K4 methyltrans-
ferases, which are also recurrently mutated along
with CHD7, and ZMYM3 whose function fur-
ther influences H3K4 methylation (Robinson
et al. 2012). This clustering of mutations around
the machinery that initiates, maintains, and
erases H3K27 and H3K4 methyl marks appears
to drive a stem cell-like phenotype of preserved
H3K27 trimethylation coupled with impaired
H3K4 methylation (Fig. 3B). An investigation
of other genes that influence these histone sig-
nals revealed that EZH2, the H3K27 methyl-
transferase, was overexpressed in a large subset
of groups 3 and 4 medulloblastomas. As expect-
ed of enzymes with opposing functions, gain of
EZH2 expression was seen in tumors that lacked
inactivating KDM6A mutations (Robinson et al.
2012). Furthermore, both group 3 and group 4
human tumors and MYC-driven group 3 mu-
rine MBs had higher levels of H3K27 methyla-
tion than SHH or WNT human or murine tu-
mors (Fig. 3C) (Robinson et al. 2012; Campbell
and White 2013; Dubuc et al. 2013).

Thus, group 3 and group 4 MBs retain the
H3K27 trimethyl marks by loss of the demethy-
lator KDM6A, gain of the methylator EZH2, and
interference with H3K4 methylation by mutat-
ing MLL2, MLL3, ZMYM3, and CDH7 (Fig. 3B).
The predicted effect is the preservation or pro-
motion of a stem-cell-like state preventing tu-
mor cells from differentiating. The amplifica-
tion of MYC and MYCN is mutually exclusive
with these recurrent mutations in epigenetic
regulators raising the possibility that MYC and
MYCN amplification could affect epigenetic
marks that promote maintenance of the undif-
ferentiated state (Fig. 3A) (see Chappell and
Dalton 2013).
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Indeed MYC genes have been implicated in
chromatin and epigenetic regulation. They reg-
ulate transcription by recruiting histone acetyl-
transferases (HAT) (McMahon et al. 2000) and
other chromatin-modifying factors (Eilers and
Eisenman 2008). Changes in MYC levels have
been shown to have widespread effects on chro-
matin marks (Knoepfler et al. 2006). Impor-
tantly, MYC has also been shown to induce
EZH2 expression in other cancers (Koh et al.
2011; Salvatori et al. 2011). Given that MYC
and EZH2 maintain self-renewal, and that bind-
ing of MYC induces robust regulation of Sox2
(Lin et al. 2009), it was not surprising to find
“stemness” markers such as Oct4, Sox2, and
Nanog, all associated with aggressive cancers
(Chang and Hung 2012), in mouse group 3
MB cells (Kawauchi et al. 2012).

MYC AND MicroRNAS IN
MEDULLOBLASTOMA

MYC genes and microRNAs regulate each other.
MicroRNAs (miRs) are 20- to 22-nucleotide-
long RNA molecules that repress translation
by interacting with the 30-untranslated region
of target mRNAs (He and Hannon 2004). Al-
though the principal consequence of MYC
activation is microRNA repression, MYC also
induces microRNAs that, in part, mediate its
function (see Thomas-Tikhonenko and Psathas
2013).

MYC Regulation of MicroRNAs

MicroRNAs encoded by the miR-17 � 92 and
miR-106b � 25, but not the miR-106a � 363,
clusters are overexpressed specifically in human
and mouse SHH MBs (Ferretti et al. 2009;
Northcott et al. 2009a; Uziel et al. 2009). The
miR-17 � 92 cluster, also called OncomiR1,
was first identified in Em-MYC-induced B-cell
lymphomas (He and Hannon 2004) and found
to be regulated by Mycn in SHH-treated cere-
bellar neural progenitors (Northcott et al.
2009a) and by MYC proteins in other cancers
(Mendell 2008). The miR-17 � 92 cluster is a
member of a family of three clusters including
two paralogs, miR-106b � 25 and miR-106a �

363, which are encoded on different chromo-
somes and express microRNAs that share seed
sequences (Ventura and Jacks 2009). Consistent
with its high expression in SHH MB, enforced
expression of the miR-17 � 92 cluster, together
with mutation of Ptch1þ/2, accelerates the on-
set and penetrance of SHH MB (Uziel et al.
2009). Although the true direct targets of miRs
from the miR-17 � 92 cluster remain unknown
in medulloblastoma, we found that the miR-17
� 92 cluster, but not the other two paralogs, was
dispensable for embryonic cerebellar develop-
ment but essential for SHH MB development
in the mouse because its loss in Ptch1þ/2 mice
completely suppressed tumor development (F
Zindy and MF Roussel, unpubl.). Tumor pro-
gression can be inhibited by using anti-miR 8-
mer tiny locked nucleic acids (LNAs) that target
the seed sequence of miR-17/20 and miR-19a/b
in SHH MB cells in vitro and in animals bearing
flank or cortical SHH MB allografts (Murphy
et al. 2013). SHH MBs with the highest expres-
sion of these miRs are the most sensitive to LNA
treatment, indicating that tumorcells are addict-
ed to miR expression. These data suggest that
LNAs targeting the miR-17 � 92 cluster family
could be used therapeutically in SHH MB and
other cancers that overexpress members of this
cluster family. Besides the miR-17 � 92 cluster
family, the miR-183 � 96 � 182 cluster was also
found in MYC-amplified MBs to regulate cell
survival, proliferation, and migration (Weerar-
atne et al. 2012). Interestingly, miR-182 pro-
motes metastasis, a hallmark of aggressive MBs
(Bai et al. 2012).

Three other microRNAs are differentially
regulated in MYC-overexpressing MBs com-
pared to MBs in which MYC is not overex-
pressed (Ferretti et al. 2009). However, whether
these microRNAs are directly regulated by MYC
is as yet unknown.

MicroRNA Regulation of MYC

Assessment of somatic copy number aberra-
tions across 1087 unique primary MBs also
identified translocations fusing MYC to micro-
RNAs, including PVT1 (encoding microRNA
miR-1204) in group 3 MB, clearly linking

M.F. Roussel and G.W. Robinson

10 Cite this article as Cold Spring Harb Perspect Med 2013;3:a014308

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



MYC and microRNA expression. In this trans-
location, the first exon/intron of PVT1 that in-
cludes miR-1204 is linked to exons 2 and 3 of
MYC leading to high levels of expression of both
miR-1204 and MYC in these MBs (Northcott
et al. 2012b). MiR-1204 has been implicated as
a candidate oncogene in combination with
MYC (Shtivelman and Bishop 1989; Carramusa
et al. 2007; Northcott et al. 2012b).

MYC can also be regulated by microRNAs
in MBs. The miR-33b gene located at 17p11.2,
a genomic locus frequently deleted in group 3
MB, was recently found to be up-regulated by
lovastatin and, in turn, to repress MYC expres-
sion in two human cell lines (DAOYand D283)
derived from MYC-driven primary MB patient
samples (Takwi et al. 2012). In DAOY cells, loss
of miR-512.2 correlated with increased MYC
expression (Lv et al. 2012). Primary human
medulloblastomas should be similarly investi-
gated.

THERAPEUTIC STRATEGIES
FOR MEDULLOBLASTOMA

Since its first identification, MYC has resisted all
attempts to be “drugged.” However, because
deprivation of MYC and MYCN in group 3
and group 4 models either induce senescence
or apoptotic cell death (Swartling et al. 2010;
Pei et al. 2012), several strategies are being con-
sidered to suppress MYC function either by reg-
ulating its expression or preventing its binding
to partner proteins.

Because MYC requires MAX for efficient
transcription (Blackwood and Eisenman 1991)
preventing the interaction between MYC and
MAX may suppress MYC function as was shown
in MYC-transformed chicken fibroblasts (Berg
et al. 2002). Unfortunately, inhibitors of the
MYC/MAX interaction have not been suitable
for therapy and further efforts are warranted to
identify therapeutically viable small molecule
antagonists of MYC/MAX dimerization (see
Eisenman 2013).

Epigenetic modifiers are being considered
as targets for the treatment of different cancers,
including MBs. As described above, many epi-
genetic modifiers that regulate the function of

histones, including histone H3, are mutated or
overexpressed in human MBs. EZH2 inhibitors
have already been shown to be effective in treat-
ing lymphomas (McCabe et al. 2012). Given the
high expression of EZH2 in many group 3 and
group 4 MBs, it will be important to establish
the effectiveness of EZH2 inhibitors in preclin-
ical testing in existing mouse models and in
primary human xenografts. Histone deacetylase
(HDAC) inhibitors, including vorinostat, are
currently in clinical trials in pediatric patients
with malignant brain tumors, and a recent
study found that a novel human group 3 MB
cell line was highly sensitive to HDAC inhibitors
alone and in combination with radiation (Milde
et al. 2012).

Another intensely studied potential thera-
peutic target is BRD4, a BET-family bromodo-
main protein, which was identified as the top hit
from a shRNA screen of epigenetic modifiers in
MYC-driven lymphomas and in acute myeloid
leukemia (AML) (Blobel et al. 2011; Zuber et al.
2011a,b). BRD4 is recruited to acetylated his-
tones to stimulate transcriptional elongation
and modify chromatin-regulating complexes
(Rahman et al. 2011). BRD4 positively regulates
MYC transcription by binding to the MYC pro-
moter. BRD4 inhibition by JQ1, which com-
petitively binds to the acetyl-lysine recognition
motif, effectively induced regression of MYC-
driven multiple myeloma and B-cell lympho-
mas (Filippakopoulos et al. 2010; Nicodeme
et al. 2010; Delmore et al. 2011). Other BRD4
inhibitors are also being evaluated as potential
therapeutics for the treatment of MYC-driven
cancers (see Bradner 2013).

Because MYC up-regulates cell metabolism
by, for example, increasing folate pathway activ-
ity and nucleotide synthesis, small molecule in-
hibitors of these pathways may also be suitable.
This approach will require the screening of li-
braries of small molecules using MYC-driven
mouse models of MB, which should be forth-
coming (see Dang 2013).

Finally, microRNAs that are overexpressed
or underexpressed in MYC-driven medulloblas-
toma might be used therapeutically in these tu-
mors. MicroRNAs are not predicted to cross an
uncompromised blood–brain barrier and alter-
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native modes of delivery, such as nanoparticles
or intraventricular administration, should be
investigated.

CONCLUDING REMARKS

The relationship of the MYC family of genes to
medulloblastoma is widespread but subgroup
specific. Although promoting proliferation in
all the subgroups, the MYC genes play different
roles in each. Fittingly, these differences appear
to reflect the distinct roles MYC genes play in
hindbrain development. The role in the initia-
tion, maintenance, and progression of the ag-
gressive group 3 medulloblastomas as well as
toward the progression of SHH subgroup
make the MYC genes and their regulators very
inviting therapeutic targets for MBs for which
current therapies are inadequate.
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