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Abstract
Among the myriad of intra-cellular signaling networks that govern the cardiac development and
pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been
the focus of extensive investigations in the past decades. The four best characterized MAPK
subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic
manipulations to uncover their roles in cardiac development, function, and diseases. However,
information reported in the literature from these efforts has not yet resulted in a clear view about
the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results
have led to a perception that MAPKs are ambiguous characters in heart with both protective and
detrimental effects. The primary object of this review is to provide a comprehensive overview of
the current progress, in an effort to highlight the areas where consensus is established verses the
ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/
reperfusion injury, and pathological remodeling are the main focuses of this review as these
represent the most critical issues for evaluating MAPKs as viable targets of therapeutic
development. The studies presented in this review will help to reveal the major challenges in the
field and the limitations of current approaches and point to a critical need in future studies to gain
better understanding of the fundamental mechanisms of MAPK function and regulation in the
heart.

I. INTRODUCTION
Cellular responses to various stimuli are mediated via complex but coordinated signaling
pathways. In the heart, a cast of molecules participate in a choreographed drama of signal
transduction events during cardiac development, physiological adaptation, and pathological
manifestation. Mitogen-activated protein kinases (MAPKs) are a well-studied family of
proteins that play an integral role in these signaling events. Like any good drama, MAPK
members consist of both angels and demons that can protect or injure the heart. In this
review, we focus on our current understanding of the roles these different MAPK members
play in cardiac development, function, and diseases and discuss efforts to harness their
activities to treat heart failure.
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Highly conserved from yeast to human (429), MAPKs are involved in a diverse repertoire of
biological events including proliferation, differentiation, metabolism, motility, survival, and
apoptosis. These biological events are the culmination of signal transduction and regulation
by primarily four MAPK subfamilies including extracellular signal-regulated kinases
(ERK1/2), c-Jun NH2-terminal kinases (JNK1, -2 and -3), p38 kinase (α, β, γ, δ), and big
MAPK (BMK or ERK5) (185, 318, 329). Activation of MAPKs requires dual
phosphorylation of a Thr-X-Tyr motif (where X is either a Gly, Pro, or Glu) in the
regulatory loop (62, 330). The typical event leading to this phosphorylation is a well-
conserved three-tiered kinase cascade in which a MAPK kinase kinase (MAPKKK,
MAP3K, MEKK, or MKKK) activates a MAPK kinase (MAPKK, MAP2K, MEK, or
MKK) which in turn activates the MAPK through serial phosphorylation (Fig. 1). This
canonical activation cascade allows for signal amplification, modulation, and specificity in
response to different stimuli (120). As with many signaling pathways, complex regulatory
mechanisms are utilized to direct the functional outcome mediated by MAPKs. The
prototypic ERK1/2 pathway is found to be mainly responsive to stimulation by growth
factors (333), while JNK and p38 are collectively called stress-activated MAPKs (SAPKs)
due to their induction by physical, chemical and physiological stressors [such as ultraviolet
(UV) light, oxidant stress, osmotic shock, infection, and cytokines] (221). In addition, the
ERK5/BMK pathway is implicated in both growth and stress signaling (155). The specificity
and efficiency of MAPK signaling pathways are often dictated by specific docking and
binding partners (180, 332, 336). These include positive and negative modulators and
scaffolding proteins which help to bring upstream and downstream signaling components
together (95, 285, 318). On the other hand, selective interaction between the MKK’s
docking sites (D sites) and their cognate MAPKs helps to segregate different branches of
MAPKs into specific signaling pathways (27–29, 143, 163, 336). Once activated, MAPKs
can phosphorylate serine or threonine residues in a specific Pro-X-Thr/Ser-Pro motif on
their target proteins (377). The duration and level of MAPK signaling are subject to
negative-feedback regulation by Try, Ser/Thr, or dual-specificity phosphatases (261, 311).
The resulting balance between kinase activation and inactivation by these phosphatases adds
yet another layer of regulation by which MAPK signaling is tightly controlled to achieve the
desired outcome. While there is a large degree of specificity in different MAPK cascades,
there is also significant overlap observed among them. Both upstream activators and
downstream targets can be shared between different subfamilies, allowing for potential
cross-talk and feedback (329, 411). Likewise, some phosphatases activated by one pathway
(e.g., protein phosphatase 2A stimulation by p38) can act as a negative regulator of another
pathway (e.g., ERK), demonstrating the close connection between different signaling events
of MAPK family members (186). Furthermore, in addition to the classic kinase
phosphorylation cascades just discussed, several noncanonical mechanisms have also been
identified for MAPK activation, adding to the molecular complexity of MAPK signal
transduction (348). In short, MAPKs form complex signaling networks that can be induced
by a large array of external stimuli and can achieve highly specific cellular effects through
multitudes of regulatory mechanisms.

II. MITOGEN-ACTIVATED PROTEIN KINASE FAMILY MEMBERS
There are four classic MAPK subfamilies. Each of these family members has been studied
extensively in a multitude of cellular settings and has been reviewed in great detail by others
(31, 221, 318, 332, 333, 348). For this reason, only a brief introduction to each subfamily
will be given here. Furthermore, other atypical MAPKs, including ERK3/4, NLK, and
ERK7, are much less studied and are not discussed in this review (81).
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A. ERK1/2
First discovered in the early 1980s for its ability to phosphorylate microtubule-associated
protein-2 (MAP-2) in 3T3-L1 adipocytes in response to insulin stimulation (18),
extracellular signal-regulated kinases (ERKs) are now one of the most widely studied
signaling pathways in cellular biology. ERK1 and ERK2 are 83% identical, share most of
the same signaling activities, and, as a result, are usually referred to simply as ERK1/2.
However, these two proteins are not completely functionally redundant as demonstrated by
gene knockout experiments. ERK1 null mice have, in general, a normal phenotype (139,
312), but ERK2 null mice are embryonic lethal between E6.5 and E8.5 (139, 151, 350, 454).
ERK1/2 is ubiquitously expressed and has many diverse cellular and physiological
functions. At the cellular level, ERK1/2 regulates cell cycle progression, proliferation,
cytokinesis, transcription, differentiation, senescence, cell death, migration, GAP junction
formation, actin and microtubule networks, and cell adhesion (333). ERK1/2’s role in
cellular biology translates it into a prominent player in physiological settings, influencing
the immune system and heart development and contributing to the response of many
hormones, growth factors, and insulin. Furthermore, because of its role in so many
biological processes, ERK1/2 has likewise been shown to play a significant part in various
pathologies including cancer, diabetes, and cardiovascular disease. This extensive and
diverse functional ability is the result of ERK1/2’s ability to phosphorylate over 100
possible substrates (456).

As discussed previously, ERK1/2 is activated via a canonical three-tiered kinase cascade by
both extracellular and intracellular stimuli (Fig. 2A). Growth factors, serum, and phorbol
esters strongly activate the pathway, but it can also be activated by G protein-coupled
receptors, cytokines, microtubule disorganization, and other stimuli (140, 270, 332).
Prototypically, growth factor (such as fibroblast growth factor, FGF) binding to their
respective receptor tyrosine kinase (RTK) activates Ras which recruits and activates Raf
(MAP3K) at the plasma membrane. Once activated, Raf phosphorylates and activates
MEK1/2 (MAP2K). MEK1/2 in turn activates ERK1/2 by phosphorylation of the Thr and
Tyr residues in the conserved Thr-Glu-Tyr motif within its regulatory loop. Activated
ERK1/2 can phosphorylate downstream proteins in the cytoplasm or nucleus, including
many transcription factors.

As mentioned in section I, MAPK signaling is subject to many mechanisms of modulation
that determine the specificity and magnitude of the signaling outcome. Interactions with
scaffold proteins are one of these mechanisms. ERK has a number of known scaffold
proteins including kinase suppressor of Ras (KSR), MEK partner 1 (MP1), MAPK organizer
1 (MORG1), and β-arrestin (95). Structural studies also reveal specific docking site motifs
that help direct the specificity of ERK1/2 signaling, including the ERK docking (ED) motif,
the docking site for ERK and FXFG (DEF) motif, and the common docking (CD) motif
(332). Protein phosphatases are a third mechanism that contributes to MAPK regulation.
ERK signaling has been shown to be regulated by various phosphatases including dual-
specificity MAPK phosphatases (MKP1,-2, -3, and -4), protein serine/threonine
phosphatases (PP2A, PPM1α), and protein tyrosine phosphatases (SHP-2 PTP,
hematopoietic PTP, STEP, PTP-ε) (186, 311). The final way that MAPK activity is
regulated is by positive and negative feedback regulation from other components of the
MAPK signaling network. This includes negative regulation of ERK by other MAPKs such
as JNK and p38 (186).

B. JNK
In the early 1990s, 10 years after the discovery of ERK, JNK was discovered as a second
subfamily of MAPKs for its ability to phosphorylate microtubule-associated protein 2 in rat
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liver following cycloheximide injection. It was further detailed for its ability to
phosphorylate the transcription factor c-jun at two sites following UV radiation (159, 219,
220). JNK1, JNK2, and JNK3 are encoded by three separate genes, and alternative splicing
can produce 10 different protein sequences that share >80% homology (31). JNK1 and
JNK2 are ubiquitously expressed, while JNK3 is predominantly found in the brain, heart,
and testis (93). While there is some redundancy in the functions of the three isoforms, gene
knockout studies have shown specific roles for different JNK isoforms in vivo (41, 139).
Like ERK, JNK plays a role in a number of different biological processes including cell
proliferation, differentiation, apoptosis, cell survival, actin reorganization, cell mobility,
metabolism, and cytokine production (43, 93, 332). This translates into JNK’s physiological
role in insulin signaling, the immune response and inflammation, and its pathological role in
neurological disorders, arthritis, obesity, diabetes, atherosclerosis, cardiac disease, liver
disease, and cancer (41).

Activation of the JNK pathway occurs in response to a number of different stimuli. As a
stress-activated protein kinase, JNK responds most robustly to inflammatory cytokines and
cellular stresses such as heat shock, hyperosmolarity, ischemia-reperfusion, UV radiation,
oxidant stress, DNA damage, and ER stress (41, 332). However, they are also activated to a
lesser extent by growth factors, G protein-coupled receptors, and noncanonical Wnt pathway
signaling (140, 196, 317). Once stimulated, JNK is activated by the previously described
three-tiered kinase cascade (Fig. 2B). After the cell is stimulated, signaling occurs which
eventually leads to the activation of the first tier. The MAP3Ks that can activate JNKs are
MEKK1, MEKK2, and MEKK3, as well as mixed lineage kinase 2 and 3 (MLK2 and
MLK3) and others (332). These kinases then activate the MAP2Ks involved in the JNK
cascade, MKK4 and MKK7. MKK4/7 then activates JNK by phosphorylation on a
conserved Thr-Pro-Tyr motif. It has been shown that MKK4 has a preference for Tyr
phosphorylation while MKK7 has a preference for Thr in the TPY motif, allowing these two
kinases to work synergistically in JNK activation (227). Activated JNK has a large number
of downstream substrates, including nuclear and cytoplasmic proteins. Similar to the other
MAPKs, JNK has the ability to shuttle between the cytoplasm and the nucleus to exert its
effects depending on the specific cellular stimuli. The diversity of JNK signaling can be
conferred by signaling via more than 25 nuclear substrates and more than 25 nonnuclear
substrates for any specific stimulus (43).

JNKs, like all MAPKs, utilize the same mechanisms to impart specificity and degree of
magnitude to its signaling. Interaction with scaffold proteins such as JNK-interacting
proteins (JIP1, JIP2), JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIP3),
JNK-associated leucine-zipper protein (JLP), and plenty of SH3 (POSH) help direct the
specificity of this pathway (95). The specificity of JNK’s interaction with these scaffold
proteins and its up and downstream partners is also mediated, in part, through specific
docking sites, including D motifs, MAPK-docking sites, and others (332). Like all protein
kinases, JNK activity is also counterregulated by phosphatases including dual specific
phosphatases MKP1, -2, -5, and -7 (311).

C. p38
Around the same time that JNK was discovered, another subfamily of SAPKs from the
MAPK family was also identified. p38 was originally isolated as a tyrosine phosphorylated
protein found in LPS-stimulated macrophages (147, 148). At the same time, it was also
reported as a molecule that binds pyridinyl imidazoles which inhibit the production of
proinflammatory cytokines (229). Since then, four different p38 isoforms have been
identified, including the prototypic p38α (often referred to as simply p38), p38β (184), p38γ
(237), and p38δ (228). p38 and p38β are ubiquitously expressed, while p38γ is expressed
primarily in skeletal muscle and p38δ is found in lung, kidney, testis, pancreas, and small
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intestine (309). The four isoforms share structural similarities (>60% homology within the
group and even higher in their kinase domains) and substrate similarities as well. However,
it is unclear in vivo if activity towards a given substrate can vary between isoforms and if
each isoform also has its own set of specific substrates. This is demonstrated by gene
knockout experiments in which deletion of the p38α gene leads to embryonic lethality due
to placental and erythroid differentiation defects (286, 397), but mice carrying deletion of
any of the other three isoforms are phenotypically normal (139). Like other MAPK
subfamilies, p38 kinases also play numerous biological roles. Most prominently, p38
signaling is involved in the immune response, promoting expression of proinflammatory
cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6], cell adhesion
molecules (VCAM-1), and other inflammatory related molecules and regulating the
proliferation, differentiation, and function of immune cells (221, 342). p38 also plays a role
in many other biological functions, namely, apoptosis, cell survival, cell cycle regulation,
differentiation, senescence, and cell growth and migration (406, 459). Physiologically, this
translates into a role for p38 in chronic inflammatory diseases (rheumatoid arthritis, Crohn’s
disease, psoriasis, and chronic asthma), tumorgenesis, cardiovascular disease, and
Alzheimer’s disease (83).

As a stress-activated kinase, p38 responds to most of the same stimuli as JNK as well as
others that are specific to p38. p38 can be activated by such stimuli as UV radiation, heat,
osmotic shock, pathogens, inflammatory cytokines, growth factors, and others. Making this
pathway complicated, p38 can respond to over 60 different extracellular stimuli in a cell-
specific manner, making it challenging to elucidate its exact functional role in vivo (309).
Regardless of the exact stimuli, the canonical pathway of p38 activation is the same as for
ERK and JNK (Fig. 2C). A number of upstream kinases are implicated in the
phosphorylation cascades leading to the activation of p38, including MEKK1–4, TAK1, and
ASK1 at the MAP3K level and MKK3, -6, and, possibly, -4 at the MAP2K level. These
MAP2Ks activate p38 by phosphorylation of its conserved Thr-Gly-Tyr motif. Of
interesting note, p38 can be activated in noncanonical ways as well. One way is TAB-1-
mediated autophosphorylation (138, 399), and another is T-cell receptor-induced activation
of p38 through ZAP70 (353). Once activated, p38 can function in the cytoplasm or
translocate to the nucleus. Substrates for p38 include transcription factors, other nuclear
proteins, and cytoplasmic proteins (309).

The magnitude of the signal and the specificity of the p38 pathway are determined by
similar mechanisms as both ERK and JNK. While scaffold proteins have been shown to be
important in p38 signaling, there have only been three such proteins identified so far:
osmosensing scaffold for MEKK1 (OSM), JIP2, and JLP (95). p38 also utilizes specific
domains, such as CD motifs, ED motifs, and D motifs to facilitate its interaction with other
proteins (332). Finally, protein phosphatases are yet another form of p38 regulation,
including dual specific MKPs (MKP1, -2, -5, -7) and protein Ser/Thr phosphatases (PP2C)
(186, 311).

D. ERK5
ERK5 is the final classic MAPK subfamily and the least studied among the four. Discovered
in the mid 1990s by two groups simultaneously, many questions remain to be answered,
although progress is rapidly being made on many fronts. The first group identified ERK5
using a yeast two-hybrid screen with the upstream activator MEK5 as the bait (25), while
the second group used a degenerate PCR strategy to clone novel MAPKs (230). The most
distinguishing feature of this MAPK is its size, 816 amino acids, making it more than twice
the size of the other MAPK family members (thus the alternative name big MAPK or
BMK). This increased size is due to a large 396-amino acid COOH-terminal extension.
While only one ERK5 gene has been identified, it undergoes alternative splicing to produce
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four different protein species: ERK5a, ERK5b, ERK5c, and ERK-T. ERK5a is the most
prominently expressed, and the other three appear to function as negative regulators of
ERK5a (268, 448). This kinase is ubiquitously expressed, and gene knockout studies show
global deletion of ERK5 is embryonic lethal due to what was initially thought to be cardiac
defects (335). However, cardiomyocyte specific inactivation of ERK5 results in normal
development, indicating that the lethality from the global knockout is due to defects in
vascular formation (154, 155). Diverse biological roles of ERK5 are also identified,
including cell survival, differentiation, proliferation, and growth. ERK5 is reported to play a
physiological role in neuronal survival, endothelial cell response to sheer stress, prostate and
breast cancer, cardiac hypertrophy, and atherosclerosis (155, 304, 424).

ERK5 is activated in response to both growth and stress stimuli. This includes a wide variety
of growth factors [epidermal growth factor, nerve growth factor, vascular endothelial growth
factor (VEGF), FGF-2], serum, phorbol ester, hyperosmosis, oxidative stress, laminar flow
sheer stress, and UV radiation (155). Whatever the activating stimuli, ERK5 follows the
same canonical three-tiered pathway as the other MAPKs (Fig. 2D). Because of the relative
paucity of investigation for this pathway, there are fewer known upstream kinases. The most
well-studied MAP3Ks are MEKK2 and MEKK3, which activate the only known MAP2K,
MEK5, which then phosphorylates and activates ERK5. Once activated, ERK5 exerts its
kinase activity on a number of other protein kinases and transcription factors in both the
cytosol and the nucleus. Furthermore, unlike other MAPKs, ERK5 has been shown to
function directly as a transcriptional activator (3, 193).

ERK5 signaling, in true MAPK fashion, is influenced by such things as scaffold proteins,
docking sites, phosphatases, and other members of the MAPK family. However, because
ERK5 is less well studied than the other MAPKs previously discussed, less is known about
these forms of regulation. Adaptor and scaffold proteins such as Lck-associated adaptor
(Lad) and Grb-2-associated binder 1 (Gab 1) as well as muscle specific A-kinase anchoring
protein (mAKAP) have all been shown to play an integral role in ERK5 signaling (424).
Furthermore, MEK5 (the MAP2K of ERK5) uses its Phox/Bem 1P (PB1) domain to bind
and tether together the upstream MAP3K (MEKK2/3) and the downstream ERK5 to
facilitate signaling (294, 295). While regulation of ERK5 activity has been shown to be
regulated by specific protein phosphatases, such as MKP1 and -3 (192) and the
phosphotyrosine specific phosphatases PTP-SL (59), much less is known about this type of
regulation than is with the other MAPKs.

III. MITOGEN-ACTIVATED PROTEIN KINASES IN HEART DEVELOPMENT
Mammalian cardiogenesis is a complex and highly coordinated biological process. With the
advancement of regenerative medicine and the utilization of stem cell therapy in treatment
of cardiovascular diseases, understanding the basic biology behind cardiac development has
become more important than ever. While there are many signaling events occurring during
development, this review will focus only on the role that MAPKs play during this process
(Fig. 3). For extensive coverage, readers are directed to a number of excellent recent reviews
on this issue (56, 108, 308, 379, 380).

During development, the heart is the first organ to form. It does so by a series of well-
defined processes that can broadly be grouped as 1) determination of cardiac cell fate at
cardiac crescent and second heart field, 2) differentiation of cardiomyocytes, and 3)
morphogenesis and growth (56, 137, 379, 396, 419) The entire process, including the
simultaneous development of the non-muscle structures of the heart, results from the
delicate balance between positive and negative regulatory signals coming from both within
the structure and from the tissue surrounding the developing heart (108, 375). Numerous
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studies in myocardial development have elucidated a number of important signaling
pathways and transcription factors that are involved in coordinating heart formation.
Induction of cardiac fate involves the integration of a variety of signaling pathways,
including Hedgehog, bone morphogenic protein (BMP), FGF, and Wnt (108). This signaling
culminates in the induction of cardiogenic transcription factors including Nkx2.5, GATA4,
serum response factor (SRF), Tbx5, and others. Much of the same signaling that activates
cardiac induction continues throughout the subsequent morphogenesis and growth (reviewed
in Ref. 51). In the following sections we look at how the various MAPK family members
participate in this process.

A. ERK1/2
Most contributions of the ERK1/2 pathway to heart development are due to its role in
growth factor signaling. FGFs are a large family of growth factors involved in a wide variety
of cellular processes during development, including proliferation, differentiation, cell
survival, apoptosis, and cell migration (50). FGF ligands differentially bind to and activate
four different FGF receptors. These activated receptor tyrosine kinases transduce their signal
through three main downstream pathways: the Ras/Raf/ERK pathway, the phospholipase C
(PLC)-γ/Ca2+ pathway, or the phosphatidylinositol 3-kinase (PI3K)/Akt pathway (85).

FGF signaling contributes to cardiac development in a number of different ways. During
early development, FGF signaling has been shown to be important in cardiogenic induction.
Originally thought to be due only to signaling of BMPs, induction of progenitor cells to
adopt a cardiac fate has more recently been shown to involve a cooperative interaction
between BMPs and FGFs (32, 253). In both mouse and chicken models, various FGFs have
been shown to cooperate with BMP-2 to induce mesodermal cells to adopt a cardiac cell
fate. While the exact downstream mediators of FGF signaling in cardiac fate determination
remain to be precisely elucidated, one study indicates that it may not be due to ERK
signaling. In mouse P19CL6 cells, a type of embryonic carcinoma cells which retain
mulitpotency (267), it was shown that the PI3K pathway is essential for early stage
activation of Nkx2.5 and GATA4 and subsequent cardiac differentiation in this setting
(292). Likewise, treatment of this cell line with PD98059, an ERK1/2 inhibitor, did not
prevent cardiomyocyte differentiation in one study (91) and only partially prevented
differentiation in another report (115). However, these in vitro observations may not fully
reveal what is happening in vivo. This can be illustrated by the fact that ERK1/2 signaling
has been shown to be vital to myocyte differentiation using other experimental models. In
studies using embryonic stem (ES) cells isolated from both fgfr+/− or fgfr−/− mice, it was
found that FGFR-1-deficient embryoid bodies (EBs) failed to differentiate into clusters of
beating myocytes while those with one copy of the gene appeared to differentiate normally
(94). These authors further elucidated the signaling involved in this differentiation process
and found that the MEK1/2 inhibitor U0126 blocked cardiogenic differentiation of the
fgfr+/− EBs. Interestingly, they found that use of the MEK1 inhibitor PD098059 did not
affect differentiation, which may explain the results seen in P19CL6 cells previously
discussed. The role of ERK1/2 signaling in this process was further supported by using the
PKC inhibitor GF109, as PKC is known to regulate the Ras/Raf-1/MEK/ERK cascade at
different levels (361). In the same study, GF109 also blocked cardiac differentiation of the
fgfr+/− EBs, while treatment with phorbol ester, a PKC activator, partially rescues the
differentiation of fgfr−/− EBs in a U0126-sensitive manner. These data suggest a role for
FGF signaling via ERK1/2 in cardiogenic differentiation. Likewise, recent studies using
mouse ES cells have also suggested that ERK plays a role in leukemia inhibitory factor
(LIF)-BMP-2 mediated differentiation into cardiomyocytes (331) and other lineage
commitment (215, 381). From these studies, PI3K/AKT/GSK in addition to LIF/JAK/STAT
and BMP/Smad prove to be critical factors to maintain ES cell pluripotency and self-renewal
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and keep ES cells at a so-called “ground state.” Such effect is achieved at least in part by
blocking FGF-mediated ERK activation and subsequent cell differentiation (130). While
these in vitro studies supply us with some insight regarding induction of cardiomyocyte cell
fate, it still remains to be determined what, if any, role ERK1/2 plays in FGF signaling
during cardiac cell fate determination in vivo. Along with cardiac lineage induction, FGF
signaling through the Ras/Raf/ERK pathway plays a role in morphogenesis and growth
throughout cardiac development. FGFs and their receptors are expressed throughout
development in the epicardium, endocardium, and myocardium (226, 386). In many cases,
FGF signaling has been shown to occur in both autocrine and paracrine fashions. Sugi et al.
(386) have shown that endocardium derived FGF-4 signals to the endocardium and
endocardial mesenchyme leading to proliferation and expansion of the cushion mesenchyme
during valve leaflet formation (386). While this particular study did not look at the specific
signaling events taking place, recent studies have shown that, in assays of cells from
endocardial cushions, FGF-4 treatment increases phosphorylated ERK1/2 (38, 246).
Likewise, endocardium- and epicardium-derived FGF-9 has been shown to contribute to the
regulation of myocyte differentiation and proliferation in the myocardium via FGFR1 and -2
(226). Therefore, FGF signaling may contribute to cardiac morphogenesis; however, the
connection for ERK pathway in this process remains to be further established.

Other than FGF signaling, other growth factors have also been shown to promote cardiac
differentiation via the ERK pathway. Using mouse ES cells, Chen et al. (68) have shown
that VEGF promotes cardiomyocyte differentiation in an ERK-dependent manner (68). In
this study, treatment of mES cells with either recombinant VEGF165 or VEGF cDNA
resulted in a significant increase in expression of α-myosin heavy chain (MHC), cTn-I, and
Nkx2.5. Corresponding to this, ERK1/2 phosphorylation was increased in VEGF-treated
mES cells, and treatment with PD098059, an ERK inhibitor, significantly decreased VEGF-
induced α-MHC expression. However, more in vivo evidence is needed to support a role of
VEGF-mediated signaling in cardiomyocyte differentiation. Likewise, other receptor
tyrosine kinases can utilize ERK1/2 signaling during heart development. Epidermal growth
factor receptors (EGFRs), also known as ErbB receptors (ErbB1, -2, -3, and -4), are another
group of important players in cardiac development. Genetic inactivation of ErbB receptors
(ErbB2, -3, and -4) and one of its known ligands, neuregulin-1, leads to embryonic lethality
between E10.5 and E13.5 due to cardiovascular defects in trabeculation and cardiac cushion
formation (319). ErbB receptors are known to signal in part through the ras/raf/MEK1/ERK
pathway. However, while numerous studies have verified the ERK pathway in ErbB
signaling in neonatal and adult myocytes (135), only a few studies have looked at its exact
role in embryonic heart development. One recent study by Lia and Pawson (223) has begun
to shed some light on this question. By targeted inactivation of ShcA, an adaptor protein
associated with RTKs (including ErbB receptors), they demonstrated that this protein is
involved primarily in pTyr signaling during cardiovascular development. Furthermore, ShcA
null embyros died by E11.5 with cardiovascular defects similar to those seen in the
Neuregulin-1-, ErbB2-, and ErbB4-deficient embryos, including a thin left ventricular
myocardium associated with decreased trabeculation and defective formation of the cardiac
cushions. In these embryos, a significant decrease in phospho-ERK was observed in regions
that correlate with cardiovascular development and the normal pattern of ShcA expression.
These findings indicate that ERK signaling indeed might be part of the ErbB signaling
during development.

One other area in cardiac development that has definitively pointed to the role of ERK1/2
signaling is during valve development. Normal valve formation involves a process by which
endocardial cushions are initially formed in the atrioventricular canal (AVC) and the out-
flow tract (OFT), followed by cell proliferation and differentiation and the eventual
morphological remodeling (16). Development of cardiac cushions is a result of endothelial-

ROSE et al. Page 8

Physiol Rev. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mesenchymal transdifferentiation (EMT) from a subset of endothelial cells. During this
process, ErbB signaling is critical for integration of signals from the extracellular matrix to
regulate cardiac cushion proliferation and EMT (16). As discussed previously, inactivation
of ErbB and the corresponding ERK signaling results in disruption of cardiac cushion
formation. In the cardiac jelly, hyaluronic acid (HA) has been shown to induce ErbB
signaling (269). Camenisch et al. (60) have shown that in embryos deficient for Has2, an
enzyme responsible for HA synthesis, endocardial cells overlaying the cardiac cushion
forming area display reduced EMT and migration (60), a phenotype rescued by a
constitutively active Ras. Likewise, the same study found that transfection with a dominant
negative Ras was able to block the ability of HA to promote EMT.

Other evidence for the role of ERK in valve development comes from situations where there
is an overactivation of Ras. Neurofibromin (NF1) functions as a Ras-specific GTPase
activating protein (GAP) to inactivate Ras activity. NF1 mutations cause the autosomal
dominant disorder neurofibromatosis. Among other manifestations of the disease, ~2% of
neurofibromatosis patients have been reported to suffer from cardiovascular malformations
(245). NF1-deficient mice die in utero at E14.5 with severe cardiac defects including
enlarged cardiac cushions and double-outlet right ventricles (54). Using cushion tissue
explants from nf1−/− embryos at E10.5, Lakkis and Epstein (224) identified a Ras-dependent
increase in EMT as the cause of the enlarged cardiac cushion. They further demonstrated
that adenovirus transfection of the nf1−/− cushion explants with a dominant-negative form of
Ras inhibited EMT while the transfection of wild-type explants with a constituently active
form of Ras increased EMT.

In addition to NF1 mutations, missense mutations in Ptpn11, which encodes for the protein
tyrosine phosphatase Shp2, have been discovered in 50% of individuals suffering from
Noonan syndrome, an autosomal dominant disorder characterized by congenital heart
defects, most commonly pulmonary valve stenosis (306, 400). Shp2 is generally a positive
regulator of RTK signaling, and its recruitment is necessary for Ras activation, although the
underlying molecular mechanisms remain unclear. By expressing a gain-of-function mutant,
Ptpn11D61G, Araki et al. (14) were able to recapitulate many of the characteristics of
Noonan syndrome in mice. Approximately 50% of the Ptpn11D61G transgenic embryos
manifested multiple cardiac defects, the severity of which depended on the number of copies
of the mutant transgene gene. Furthermore, increased levels of phospho-ERK in the cardiac
cushion of Ptpn11D61G embryos were accompanied by an increase in cell proliferation and a
decrease in apoptosis. These findings are in good agreement with similar findings by Krenz
et al. (212), in which expression of a slightly different gain of function mutant, Shp2
(Q79R), resulted in proliferation of valve primordia mesenchymal cells in an ERK1/2-
dependent manner. Furthermore, it has recently been shown that an inducible knock-in of
Ptpn11D61G also overactivates ERK signaling in endothelial-derived cells, leading to
extended EMT, a phenotype previously seen in the mouse model of Noonan syndrome (13).

In addition to valve defects, Nakamura et al. (296) have demonstrated that Shp2 gain-of-
function mutations in cardiomyocytes during embryonic development lead to defects in
ventricular compaction and ventral septal defects but have no impact when expressed after
birth. Expression of the Shp2 mutant in embryonic cardiomyocytes resulted in specific ERK
activation without any change in the activity of any of the other MAPKs or in the Akt, JAK/
STAT, or RhoA pathways. Furthermore, cardiac defects observed in the Shp2 mutant
embryos were rescued by crossing with ERK null allele (296). In addition to Shp2,
mutations in other components of the Ras signaling pathway including K-Ras (63, 302,
363), Sos1 (343), and Raf1 (315, 334) are also found in cases of Noonan syndrome. Finally,
mutations in H-Ras, K-Ras, B-Raf, and MEK1/2 have also been discovered to be involved in
other genetic disorders with cardiac developmental defects, such as LEOPARD syndrome,
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cardio-facio-cutaneous (CFC) syndrome, and Costello syndrome (10, 302, 345). This is
covered in more detail by several excellent reviews (11, 37, 364, 408).

While much evidence suggests that the ERK1/2 pathway plays an important role in cardiac
development at various stages, several key questions remain to be clarified. The specific
contribution of ERK1/2 pathway in cardiac development remains to be fully investigated in
vivo. Genetic deletion of ERK1 does not affect cardiac development while ERK2 deletion is
embryonic lethal, but that is due to developmental defects of extraembryonic ectoderm and
ectoplacental cone, not the cardiovascular system (139). Temporally regulated, cell-specific
targeted and multiloci genetic perturbation may be required to unravel the full function of
ERK in different stages of cardiac development. Furthermore, the direct and indirect
interaction between ERK pathway and other signaling pathways, such as AKT (359) and
BMP (111), will also need to be examined as the compensatory feedback regulation among
these players may contribute to the delicate outcome of heart development (111, 130, 139,
359). Therefore, there is much more to learn regarding the exact role the ERK1/2 signaling
plays in cardiogenesis.

B. JNK
The role that JNK plays in heart development is best characterized for its function in
noncanonical Wnt signaling. Wnts are a large family of secreted proteins that are involved in
many developmental processes including proliferation, differentiatation, cell migration, cell
fate determination, and establishment of cell polarity (298). Wnt ligands promote signal
transduction through their receptors, the frizzled family of transmembrane proteins. In
canonical Wnt signaling, the cytoplasmic protein Dishevelled removes the inhibitory effect
of glycogen synthase kinase 3 (GSK3) on β-catenin, which subsequently translocates to the
nucleus and activates transcription (reviewed in Refs. 35, 110, 130). Wnt can also signal
through noncanonical pathways, one mediated through Ca2+/PKC signaling and the other
mediated through Rho/JNK (418).

Both canonical and noncanonical Wnt signaling have been implicated in heart development.
During early heart formation, a delicate mix of canonical Wnt activation and inhibition is
thought to inhibit cardiogenesis in areas not fated to become heart tissue and promote
induction of cardiac cell fate in areas where it is (79). More relevant to this review,
noncanonical Wnt signaling by Wnt11 has been found to be required for the adoption of
cardiac cell fate. Overexpression of Wnt11 in chick embryo posterior mesoderm, which
normally does not adopt a cardiac fate, led to ectopically differentiated cardiomyocytes
(109). Likewise, Pandur et al. (316) were able to block early cardiac gene expression in
Xenopus using either a dominant negative Wnt11 mutant or a Wnt11 morpholino.
Conversely, they were able to induce cardiac gene expression in pluripotent animal caps by
treatment with wild-type Wnt11. In the same study, Wnt11 treatment led to an increase in
phospho-JNK levels, and that inhibition of JNK signaling prevented Wnt11 induction of
cardiac cell fate. Similarly, Wnt11 treatment of P19 cells, a mouse embryonic carcinoma
cell line which can differentiate into cardiomyocytes with DMSO treatment, led to an
induction of early cardiac genes GATA4 and Nkx2.5 and expression of cardiac-specific
protein α-MHC (316). Promotion of cardiac differentiation via Wnt11 signaling has been
shown in a number of settings. Recent studies using mouse ES cells have further
demonstrated the role of Wnt11 during induction of cardiac cell fate (405, 412). However,
the exact role of JNK was not investigated in these studies. In studies involving a population
of circulating human endothelial progenitor cells, which have been shown to differentiate
into cardiomyocytes under specific culture conditions, Wnt11 treatment increased the
number of cells expressing α-sarcomeric actinin and troponin I (211). However, this was
found to be dependent on noncanonical signaling via the PKC pathway with no involvement
of JNK. Interestingly, it has been shown that noncanonical Wnt11 signaling is able to

ROSE et al. Page 10

Physiol Rev. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



promote adult unfractionated bone marrow mononuclear cells (BMMNCs), which retain
some cells in an uncommitted state, to adopt a cardiac phenotype (123). Treatment of
BMMNCs with Wnt11 induced expression of cardiac specific genes (Nkx2.5, GATA-4, α-
and β-myosin heavy chain, and cardiac troponin T) which was partially abolished by the
JNK inhibitor SP600125. Furthermore, noncanonical Wnt signaling has also been implicated
in the differentiation of cardiomyocytes from adipose-derived murine stromal vascular cells,
but neither JNK nor PKC was directly implicated in the process (313).

Along with promoting adoption of cardiac cell fate, JNK signaling has been implicated in
the morphogenesis of the developing heart. Zhou et al. (467) have reported that
noncanonical Wnt11 signaling is required for proper outflow tract development in mouse
(467). Using a combination of in situ hybridization and cell culture experiments, these
authors identify JNK-mediated transcription of Tgfb2 as a downstream signaling event
responsible for Wnt11-mediated morphogenesis. The combination of these findings would
indicate that noncanonical Wnt signaling plays a clear role in determining cardiac cell fate
and organ morphogenesis. What’s not clear is the extent that JNK signaling plays in Wnt
function. JNK-deficient mice (either single gene knockouts or combinations thereof) display
no significant defects in cardiogenesis (139). Therefore, the role of JNK signaling in cardiac
development remains a correlative observation associated with noncanonical Wnt signaling,
and its specific role in cardiac development remains speculative.

C. p38
While p38 has been shown to have an integral role in skeletal muscle development (198), its
function in cardiac development has not been as extensively studied. Recent studies point to
a possible role for p38 in BMP signaling during cardiac development. Other than Smads,
BMPs can also signal via activation of the MAPK pathways (417). While p38 activation in
response to BMP signaling has been shown, little work has been done to elucidate what, if
any, role this particular downstream pathway plays in BMP-mediated regulation of cardiac
development, including cardiac induction (32, 365), as well as OFT and ventricular
formation (417). TAK1, a known MAPK upstream of p38 which can be induced by BMP
(283), regulates a number of transcription factors, including MEF2C, GATA-2, and ATF-2,
all critical to cardiac development (282, 355). While this correlation exists, work is just
beginning to be done to better delineate p38’s role in cardiac development.

The idea that p38 is an important factor in cardiomyocyte differentiation is supported by a
number of other recent studies. For example, p38 activity is required for cardiomyocyte
differentiation of P19CL6 cells, and this is mediated via its activation of the transcription
factor AP-1 (115). Interestingly, this same study, which demonstrated that ERK inhibition
only partially blocked cardiomyocyte differentiation, also showed a cooperative role
between p38 and ERK in the AP-1 activation necessary for differentiation. Further evidence
of the importance of p38 in cardiomyocyte differentiation comes from the discovery that p38
promotes cardiogenesis over neurogenesis in ES cells (12). Aouadi et al. (12) reported that
p38 activity appeared to be critical to promote cardiogenesis from embryonic body (EB) and
to suppress spontaneous neuronal differentiation (12), thus implicating a role for p38 in
early switch between cardiogenesis and neurogenesis. This is further supported by the
evidence that p38-mediated activation of Hsp25 is required for cardiac differentiation from
P19 cells while P19 differentiation into neurons had no such requirement (91). p38 has also
been implicated in ROS-mediated cardiac differentiation from mES cells (99, 235, 432).
While many studies have indicated that p38 is needed to promote cardiac differentiation of
ES cells, two recent studies have demonstrated that use of the p38 specific small molecule
inhibitor SB203580 at concentrations <10 μM promotes the differentiation of human ES
cells into cardiomyocytes (142, 442). Interestingly, when they use the p38 inhibitor at
concentrations ≥15 μM, cardiogenesis was strongly inhibited. Furthermore, p38 activity in

ROSE et al. Page 11

Physiol Rev. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ES cells undergoing cardiac differentiation has been shown to be a phasic event, with peak
activity between days 3 and 10 of differentiation (100). When p38 was inhibited between
days 3 and 7, cardiac differentiation was shown to be greatly reduced, while inhibition from
day 5 on had only a slight effect. This is supported by a study in P19 cells which showed
that p38 activity is only required during a particular window early in the differentiation
process (91). This could reconcile some of the conflicting findings as the requirement of p38
activity during cardiac differentiation can be highly specific at different phases. Indeed,
Engel et al. (112) have demonstrated in vivo p38 activity in the developing rat heart is
biphasic; however, they only examined this during the later stages of gestation (E12-E21).
Many of the transcription factors that are known to be involved in cardiac development,
including GATA4 (403), MEF2C (149), and SRF (157), are known targets of p38. However,
to date, no one has fully investigated p38’s role in regulating these key players during
cardiac development. Immortalized E9.5 myocytes from p38α−/− embryos have diminished
capacity to fully differentiate (158). However, expression of cardiac-specific genes GATA4
and MEF2C are not changed, indicating that their early expression is not p38 dependent.
Still, these cells lack nuclear localization of MEF2C and exhibit a decrease in expression of
some marker genes of cardiac differentiation, including ANF and myocardin. This suggests
MEF2C at least in part contributes to p38-mediated regulation of cardiac differentiation.

Unfortunately, while cell culture studies have strongly implicated p38 as an important player
in cardiogenesis, there is little to no in vivo data supporting this hypothesis. As mentioned
previously, p38α−/− embryos are embryonic lethal due to defects in placental angiogenesis.
However, cardiac-specific deletion of p38α results in normal development of the heart
(139). As in vitro studies have shown, there seems to be a requirement for p38 activity at a
very specific time during the developmental process. Since the cardiac specific knockout
animals were created using the cre-lox system, by the time that the promoter driving the
expression of the cardiac-specific cre is expressed p38 activity may no longer be an absolute
requirement. Furthermore, total knockout of other p38 isoforms (β, δ, γ) produced no
apparent cardiac phenotypes (Rose, Foster, and Wang, unpublished results; Ref. 139). To
fully investigate the functional role of p38 in cardiac development, temporal inactivation of
individual p38 isoforms or in combination will be needed.

D. ERK5
The role of ERK5 in cardiac development is more established. Deletion of either ERK5 or
its upstream activator, MEK5, is embryonic lethal at approximately E10 due to an
underdeveloped myocardium, disorganization of the trabeculae, and vascular defects (335,
423, 449). Subsequent studies utilizing targeted deletion of ERK5 in either endothelial cells
or cardiomyocytes have shed more light on the role of ERK5. While endothelial cell specific
deletion recapitulated the phenotype seen in the global knockout mice, mice with myocyte
specific deletion developed normally (154). This suggests that the abnormal phenotype in
ERK5 null animals is mostly secondary to vascular defects. Indeed, ERK5 null endothelial
cells display abnormal morphology and survival, leading to dysfunctional vasculature and
hemorrhage when the genetic inactivation is achieved in adult animals (154).

While the embryonic defects appear to be due to ERK5’s role in endothelial cells, this does
not rule out the possibility that perhaps ERK5 activity in cardiomyocytes is required prior to
expression of the cardiac specific gene (α-MHC) that is driving cre expression in the
previous studies. ERK5 is a known activator of MEF2A, -C, and -D (194, 195, 451). As
such, it is plausible that it may play a role in the early stages of cardiac differentiation, prior
to the expression of α-MHC. Recent work in rat cardiac myoblasts has shown that retinoic
acid (RA), a known promoter of proliferation during heart development, induces ERK5
activity and nuclear translocation, resulting in increased cellular proliferation (338).
Therefore, ERK5 has an established role in vascular development, and its role in
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cardiomyocyte differentiation and proliferation is unclear. Further research needs to be done
to better elucidate a more exact role for ERK5 in heart development.

IV. MITOGEN-ACTIVATED PROTEIN KINASES IN HEART FUNCTION AND
DISEASE

Cardiovascular diseases affect one in three adults in the United States and account for
approximately one-third of all deaths (1). Heart failure, in particular, has become a major
cause of mortality and morbidity. Better understanding of the molecular mechanisms behind
these diseases will allow for better treatment options in the future. The following sections
focus on the role of MAPKs in various pathological aspects of cardiac diseases, with
particular emphasis on hypertrophy, cardiac remodeling, and myocardial cell death.

Cardiac hypertrophy is a common response to external stressors, including mechanical
overload, neurohor-monal stimulation, and oxidative stress. Hypertrophy can be a
compensatory response to augment contractility and maintain cardiac output without adverse
pathology. However, when stressors persist, this compensatory process can evolve into a
decompensated state with profound changes in gene expression profile, contractile
dysfunction, and extracellular remodeling (101, 369). Although physiological versus
pathological hypertrophy can be clearly differentiated by a number of qualitative and
quantitative parameters, the underlying mechanisms and their interrelationship remain
controversial. Most importantly, the signaling mechanisms mediating the critical transition
from compensated hypertrophy to decompensated heart failure remain poorly understood
(104, 133, 369). Furthermore, while some cardiomyopathies are genetic and others
idiopathic, many are the result of some sort of insult or injury to the myocardium.
Myocardial ischemia and/or infarction due to partial or complete occlusion of a coronary
artery and the subsequent reperfusion of the tissue (ischemia-reperfusion or IR) are among
the most significant causes of injury to the heart. Most of the efforts in the past have focused
on the underlying mechanisms of IR-induced myocardial injury or on cardiac protection
offered by preconditioning or postconditioning (23). The signaling mechanisms involved in
these events (injury versus cardiac protection) are distinctly different. However, recent work
has shown that protective events are diminished in various pathological conditions
commonly associated with cardiovascular disease (hyperglycemia, hypertension, cardiac
hypertrophy, aging, obesity), pointing to the importance of understanding the signaling
pathways involved (24). Finally, pathological manifestations in end-stage failing hearts
share many common features regardless of the underlying etiologies, such as ventricular
wall thinning, chamber dilation, cardiomyocyte dropout, and dramatically increased
interstitial fibrosis (103), suggesting that intracellular signaling pathways elicited by
different stressors may converge to some common targets. As highly conserved signaling
pathways, MAPKs may be common mediators in these pathological remodeling processes.
Although this review focuses primarily on MAPK function in cardiomyocytes, we fully
appreciate the importance of other cardiac cell types in the development of heart failure.
Normal cardiac function and pathological remodeling involve fibroblasts, the coronary
vascular system, and inflammatory cells. Due to the limited scope of this review, the role of
MAPKs in these other cell types is not discussed. However, given their importance in
cardiac pathologies, the reader is directed to a number of excellent reviews regarding these
topics (33, 131, 136, 160, 259, 325, 346). In this review, we highlight recent progress made
in understanding these intricate roles for MAPKs in different aspects of hypertrophy,
cardioprotection versus myocardial cell death, and general cardiac remodeling events,
including chamber dilation, fibrosis, and changes in structural proteins and ion channels, as
summarized in Table 1. Although much of the recent progresses are made through advanced
wizardry of genetic manipulation in model organisms such as mice, it is important to
appreciate some of the limitations of this powerful approach. Genetic manipulation through
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complete knockout and nonphysiological overexpression can produce a phenotype that may
not truly reflect the functional role of the targeted molecule or pathway in a particular
pathological condition. Compensatory, secondary, or off-target effects can arise from such
nonphysiological manipulation to obscure correct interpretations. In addition, some of the
genetic manipulation itself can lead to unwanted side effects, including cytotoxicity of GFP,
Cre, and tamoxifen induction (58, 170, 206). Therefore, results from genetic studies should
be interpreted with plenty of caution by taking into account some of these caveats.

A. ERK1/2
1. Cardiac hypertrophy—Many studies have implied a role for the Ras/Raf/MEK1/ERK
signaling pathway in promoting cardiac hypertrophy. Hunter et al. (175) initially showed
that transgenic expression of a constitutively active Ras (H-Ras-V12) in mouse heart led to
left ventricular hypertrophy associated with cardiomyocyte hypertrophy but not increased
cardiac fibrosis. Subsequently, Zheng et al. (466) observed characteristic features of familial
hypertrophic cardiomyopathy (HCM) in another H-Ras-V12 transgenic model, including
fetal-gene induction, myofilament disarray, and interstitial fibrosis which led to diastolic
dysfunction (466). While both of these studies used the same constitutively activated H-Ras-
V12 mutant, different promoters were used to drive its expression (MLC-2v versus α-MHC,
respectively), possibly reflecting dose-dependent effects of Ras signaling driving
hypertrophy versus cardiomyopathy. Gene expression profiling in temporally regulated
αMHC-H-Ras-V12 transgenic mice suggests that overactivation of this pathway induces
early response genes, loss of mitochondria function, and alteration in ion channel proteins,
all of which lead to pathological changes in the extracellular matrix, reduced cardiac output,
and electrophysiological abnormalities (276). Ras mRNA expression in HCM patients
identified a positive correlation with the severity of hypertrophy (188). Likewise, patients
suffering from so-called RAS/MAPK syndromes, a group of autosomal dominant disorders
linked to mutations causing augmented Ras/Raf/MEK/ERK activity (e.g., Noonan and
LEOPARD syndromes), exhibit hypertrophic cardiomyopathy (11). Finally, in response to
mechanical unloading afforded by use of a left ventricular assist device (LVAD), reverse
remodeling and reduction in myocyte hypertrophy in the post-LVAD heart is associated
with decreased ERK activity (124). Conversely, an endogenous inhibitor of the ERK
pathway, Sprouty-1, has been reported to be induced in human hearts during hypertrophy
regression following LVAD support (174). Overexpression of MEK 1, the upstream
activator of ERK1/2, has shown similar overactivation of Ras. Constitutively active MEK1
leads to cardiomyocyte hypertrophy in vitro, while dominant negative MEK1 attenuates this
response (414). In vivo, cardiac-specific expression of constitutively activated MEK1 also
promotes hypertrophy (57). However, unlike Ras overactivation, the MEK1 transgenic heart
has no increase in fibrosis and displays preserved cardiac function, suggesting MEK-ERK
may not be the critical downstream signaling pathway for Ras-induced pathological
remodeling.

Complimentary to these gain-of-function approaches, Harris et al. (150) have demonstrated
that inhibition of the ERK pathway via dominant negative Raf attenuated hypertrophy and
fetal gene induction in response to pressure overload. Likewise, Yamaguchi et al. (444) have
shown that cardiac specific deletion of c-raf-1 leads to heart failure without hypertrophy in
the absence of external stress. Both groups found that, while there was an apparent lack of
hypertrophy, there was a significant increase in apoptosis associated with Raf inactivation.
This is consistent with the observation that overactivation of the ERK pathway causes both
hypertrophy and a partial resistance to apoptosis (57). However, the antiapoptotic activity of
Raf appears to be primarily due to Raf binding to and directly suppressing the proapoptotic
kinases Ask1 and Mst2 independent of MEK/ERK activities (65, 66, 444). Similar results
were also obtained when the protein tyrosine phosphatase Shp2 was deleted from the
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myocardium. As discussed previously, Shp2 is an essential component of RTK signaling
through the Ras/Raf/MEK/ERK pathway, and a gain-of-function mutation in this protein
causes craniofacial and cardiovascular defects in Noonan syndrome. Deletion of Shp2 in the
myocardium leads to dilated cardiomyopathy without transition through hypertrophy at
baseline or following pressure overload associated with diminished ERK activation (209).
These findings, specifically the onset of dilated cardiomyopathy without transitioning
through hypertrophy, are similar to what was observed in the c-raf-1 knockout animals.
Furthermore, GSK3α has been shown to block cardiac hypertrophy both in vitro and in vivo
via inhibition of ERK signaling (462). While all of these findings strongly suggest that ERK
contributes to hypertrophy in the myocardium, one study by Purcell et al. (328) suggests that
reduction in ERK activity is not sufficient to prevent hypertrophy in response to various
forms of hypertrophic stimuli in vivo. Achieved by either overexpression of dual specific
phosphatase 6 or deletion of ERK (ERK1−/− or ERK2+/−), these modifications led to an
increase in apoptosis without a significant impact on hypertrophy. These results suggest that
ERK activity is an important pathway for cardioprotection but that cardiac hypertrophy can
proceed via ERK-independent mechanisms.

In addition to growth factor-mediated signaling through RTKs (77), signaling via G protein-
coupled receptors (GPCRs) has also been shown to promote cardiac hypertrophy (352), and
in a number of settings, this has been shown to be mediated via ERK signaling. β-
Adrenergic agonists promote cardiomyocyte hypertrophy via direct interaction between
ERK and β-arrestin (30, 352). Interestingly, signaling from β-adrenergic receptors, which
can lead to detrimental effects in the failing heart, utilize β-arrestin to transactivate RTK
signaling via ERK (305). This β-arrestin-dependent, G protein-independent signaling by
those receptors is thought to be cardioprotective. This is exemplified by the recent discovery
that carvedilol, a nonsubtype-selective β-adrenergic receptor antagonist that has been shown
to be particularly effective in treatment of heart failure, promotes signaling via β-arrestin-
dependent ERK1/2 activation in the absence of G protein activation (431). Likewise, other
GPCRs, including α-adrenergic receptors (217, 437, 438), angiotensin receptors (9, 452),
and endothelin receptors (70, 84, 197, 255, 457), have been shown to signal through ERK to
promote cardiomyocyte hypertrophy. In addition to arrestin-mediated ERK activation,
Wright et al. (435) provided another evidence that nuclear targeted α-adrenergic receptor
might activate ERK located in caveolae, although the underlying molecular basis remains
unclear. More recently, Lorenz et al. (252) have identified heterotrimeric G protein-
mediated autophosphorylation of ERK as yet another hypertrophic signaling mechanism
leading to ERK activation. In these studies, activation of Gq-coupled receptors was
sufficient to mediate a protein-protein interaction between Gβγ and ERK, leading to
autophosphorylation and translocation to the nucleus and activation of prohypertrophic
substrates. This novel autophosphorylation-mediated ERK activation was sufficient to
induce hypertrophy both in vitro and in vivo and was also shown to be present in failing
human hearts. Finally, a recent report by Cervante et al. (64) suggests that crosstalk of
GPCRs can be orchestrated by arrestin to achieve spatiotemporal activation of ERKs in
nucleus versus cytoplasm, leading to different functional outcome. In addition to ligand-
mediated mechanisms, Ras activation can be facilitated by direct oxidative modification of
its thiol groups (217, 446), thus providing another possible molecular link between oxidative
stress and the onset of cardiac hypertrophy. In short, Ras-Raf-MEK1-ERK1/2 pathway is
generally regarded as a prohypertrophic and prosurvival pathway that can be a significant
but not a necessary signaling component in cardiomyocyte hypertrophy.

2. Cardioprotection versus myocardial cell death—The cardioprotective effects of
two classes of drugs commonly used to treat cardiac related diseases, Ca2+ channel blockers
and β-adrenergic receptor blockers, have been reported to be mediated in part through
ERK1/2 activity (210). In vivo studies in which c-Raf-1 activity in the heart was lost showed
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an increase in apoptosis both at baseline and in response to pressure overload (150, 444).
Similarly, the Molkentin group has identified specific MEK-ERK2 signaling as a mediator
of cardioprotection (247). In response to ischemia-reperfusion injury, MEK transgenic
hearts were better protected from injury and apoptosis than wild-type controls, an effect that
was lost when ERK2 was specifically deleted. Indeed, ERK1/2 signaling has been identified
as one of the major components of the RISK (reperfusion injury salvage kinase) pathway.
As a result of this idea, a plethora of studies have subsequently shown that activation of the
ERK pathway by various stimuli leads to cardioprotection during reperfusion (reviewed in
Ref. 152). While the role of ERK signaling in preventing reperfusion-induced injury is well
established, its role in preconditioning is less well understood, and conflicting results have
been reported (107, 153). ERK’s cardioprotective role has also been investigated in relation
to the chemotherapeutic agent doxorubicin (DOX). DOX is known to induce myocardial
damage, including cardiomyopathy and myocyte apoptosis (395). While the mechanism of
DOX-induced cardiac damage is multifaceted, downregulation of ERK1/2 activity has been
suggested to play a role. Indeed, DOX-induced cardiotoxicity was prevented by the
administration of substrates that increased ERK1/2 activity (383, 436). Conversely, recent
work done in cultured myocytes has suggested a functional link between ERK1/2 and p53
actually promotes apoptosis in response to DOX (248).

While much work has been done identifying upstream activators of cardioprotective ERK1/2
signaling, much less is known regarding the exact mechanism by which it imparts this
protection. Multiple mechanisms may exist for prosurvival effects of ERK1/2. Work by Das
et al. (90) has shown that the protective effect of ANG II-mediated preconditioning is due in
part to ERK1/2 dissociating from caveolin. Similarly, ERK1/2 has been shown to play a role
in cGMP-dependent protein kinase (PKG)-mediated cardioprotection in response to IR (87,
89). ERK1/2 activation in this case resulted in increase expression of inducible nitric oxide
synthase (iNOS), endothelial NOS (eNOS), and Bcl-2. ERK1/2 has also proposed to exert
its cardioprotective effects by phosphorylating and activating the transcription factor
GATA4, which can then increase the expression of antiapoptotic proteins in neonatal
ventricular myocytes (15, 205, 241, 284). However, recent work has shown that this does
not hold true in adult cells. While GATA4 still promotes survival, it was found not to be
downstream of ERK1/2 signaling in response to α1-adrenergic receptors, a previously
described survival pathway in cardiomyocytes (171, 172). ERK1/2 may also promote
survival of cardiomyocytes by interacting with other signaling pathways. IL-10 mediated
ERK1/2 activation was shown to inhibit TNF-α-induced apoptotic signaling by blocking
IKK phosphorylation and subsequent NFκB activation (96). Likewise, ERK1/2 has also
been shown to compensate for loss of Akt activity in postinfarct myocardium and promote
cardioprotection in response to erythropoietin (272). Finally, ERK1/2 has been found to
suppress gap junction permeability in response to mitoKATP channel opening during IR,
thus reducing myocardial damage (293). As noted above, the ERK-independent
cardioprotective activity of Raf is mediated through direct suppression of proapoptotic
kinases, Ask1 and Mst2 (65, 66, 444). In short, Ras-Raf-MEK-ERK1/2 may exert strong
cardioprotective effects via multiple downstream targets, but much remains to be done to
delineate their specific contribution under particular circumstances.

3. Cardiac remodeling—As discussed above, unregulated Ras-Raf-MEK-ERK signaling
can lead to both hypertrophy and pathological remodeling in heart. Gene expression
profiling in temporally regulated α-MHC-H-Ras-v12 transgenic mice suggests that
overactivation of this pathway induces early response genes, loss of mitochondrial function,
and alteration in ion channel proteins, all of which can contribute to extracellular matrix
remodeling, reduced cardiac output, and electrophysiological abnormalities observed in
HCM (276). In addition, Ras activation can have a direct impact on SR calcium cycling in
ventricular myocytes both in vitro and in vivo. In vitro expression of Ha-Ras-V12 in
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cultured myocytes leads to downregulation of L-type Ca2+ channel expression and activity
in an ERK-dependent manner (164). Furthermore, activation of Ras leads to decreased
expression of SERCA in cultured myocytes (165). In vivo studies, while finding no change
in L-type Ca2+ channels or sarcomeric structure, showed decreased Ca2+ transients
secondary to suppressed SR Ca2+ uptake as a result of decreased SERCA expression and
hypophosphorylation of phospholamban (466). More recently, Ruan et al. (349) reported
that Giα1 induction and subsequent impairment of PKA signaling appears to be one of the
key downstream mediators in Ras-induced SR calcium defects and arrhythmia. Yada et al.
(443) also reported a role for another Ras-like small GTPase, Rad, in modulating calcium
homeostasis and electrophysiological properties in ventricular myocytes. Therefore,
unregulated Ras signaling may have a direct impact on cardiac function and
electrophysiology, but downstream signaling appears to be different from the canonical
MEK-ERK cascade. The molecular basis is just beginning to emerge. LIF, a hypertrophic
stimulus in cardiomyocytes, leads to increased L-type Ca2+transients in an ERK-dependent
manner (145, 389). These findings imply that the specific outcomes of ERK activation may
be dependent on the activating stimulus, again demonstrating the complexity of these
signaling networks. In addition to playing a role in Ca2+ channel regulation, ERK signaling
also plays a role in regulation of other ion channels including potassium channels and the
Na+/H+ exchanger in the myocardium (125, 126, 404, 420). In short, the Ras-Raf-MEK-
ERK pathway can induce SR calcium defects and arrhythmias in the heart by modulating
ion channels, exchangers, and pumps and serves as a potential contributor to the contractile
defects and sudden cardiac arrest prevalent in hypertrophic cardiomyopathy.

In summary, both classic RTK-mediated and GPCR-mediated ERK activation have
significant roles in cardiac hypertrophy and cardioprotection. However, the functional
outcome of ERK activation can be modulated and altered by scaffolds in a specific
spatiotemporal pattern. This complexity in ERK pathway leads to different phenotypes from
“physiological” form of compensated hypertrophy and cardioprotection to pathological form
of hypertrophic cardiomyopathy and remodeling. Therefore, the intricate ERK activation
mechanisms must be carefully considered when we attempt to target ERK pathway as a
potential therapy for heart failure.

B. JNK
1. Cardiac hypertrophy—The role that JNK plays in cardiac hypertrophy is less clear.
JNK activity is substantially upregulated (as quickly as 10–15 min after application of
pressure overload) and reaches a maximal level at ~30 min (122, 289). While JNK2 is
activated in the cytosol, there is a significant increase in translocation of activated JNK1 to
the nucleus (289). The transient activation of JNK is clearly seen in severe pressure overload
(85% constriction of the aorta) but not volume-overloaded hearts. In pressure overload,
activation peaks between 10 and 30 min (378). In contrast, mild pressure overload (35%
constriction of the aorta) exhibits a transient increase in JNK activity at 30 min, but higher
levels are seen at 1 and 2 days postconstriction. In contrast, another recent study in rat has
shown that in response to pressure overload, JNK activity is actually decreased in the first
24 h postaortic banding (347). In this particular study, ERK activity was also decreased
despite an upregulation of angiotensin receptors. These findings fit with other findings
which show that there was no significant increase in JNK1/2 activity after 24 h in either
pressure- or volume-overload experiments (277). Mechanical stretch of cultured myocytes
also activates JNK in a rapid and phasic manner (288, 314). Furthermore, exercise, an acute
form of stress, has been shown to also cause a rapid transient increase in JNK activity that is
not present in exercised trained rats which exhibited a physiological cardiac hypertrophy
(44). Taken together, these findings indicate that JNK activation is most likely a dynamic
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signaling event that can be influenced by the nature of the stimuli and that different JNK
isoforms may play separate, nonredundant roles in the process.

Initial studies in cultured neonatal cardiomyocytes indicated that overactivation of JNK by
MKK7, an upstream MAP2K, leads to a hypertrophic phenotype (426). Correspondingly,
dominant negative MKK4, another upstream MAP2K, was able to attenuate the
endothelin-1-induced hypertrophic response in cultured myocytes (74). Likewise, initial in
vivo studies in rats showed that dominant negative MKK4 abrogated JNK activity and
pressure overload-induced hypertrophy (73). These findings would suggest that JNK activity
is responsible, in part, for the promotion of cell hypertrophy. In contrast, recent work by Lui
et al. (250) has shown that cardiac-specific deletion of MKK4 sensitizes the myocardium to
pathological hypertrophy following pressure overload or chronic β-adrenergic stimulation.
Similarly, disruption of JNK activity (dominant negative JNK) in the heart contributes
significantly to hypertrophy following pressure overload (239). This is shown to be due in
part to the ability of JNK to inhibit the translocation of the prohypertrophic transcription
factor NFAT into the nucleus (239, 250, 280). Deletion of JNK shows similar results. In one
study, JNK1−/−, JNK2−/−, and JNK3−/− mice all show hypertrophy after pressure overload;
however, the degree of hypertrophy is not significantly greater than wild-type mice (388).
These same studies indicated that JNK1 in particular was required to maintain cardiac
contractility and prevent heart failure under sustained mechanical overload. As mentioned
previously, JNK1 is found to have increased translocation to the nucleus in response to
pressure overload, which may explain why this particular isoform shows a more severe
phenotype when deleted. This somewhat mirrors the JNK1 translocation to the nucleus that
is also seen during IR (278). Interestingly, another group showed that loss of MEKK1-JNK
signaling in the heart attenuates Gq-induced hypertrophy (275). However, subsequent
studies using this model have shown that loss of MEKK1-JNK signaling does not prevent
hypertrophy in response to pressure overload (351). Other studies have demonstrated that
JNK signaling is an important part of endothelin-1-mediated hypertrophic signaling in
cultured myocytes (177, 372). This further indicates that JNK may have differential roles
dependent on the stimuli. Furthermore, in vivo JNK activation in various transgenic animal
models failed to induce cardiac hypertrophy. Activation of JNK in the heart by
overexpression of constitutively active MKK7 activated the fetal gene program and
ventricular remodeling, but did not induce hypertrophy (320, 321). Utilizing a cre-loxP-
mediated gene-switch approach, Petrich et al. (322) were able to temporally regulate JNK
activation in the adult myocardium. As with other studies, JNK activation in this manner led
to pathological remodeling in the absence of ventricular hypertrophy but with a marked
induction of fetal gene expression.

Given the conflicting results that have been obtained from both in vitro and in vivo studies,
it has been hard to delineate the exact mechanism behind the JNK signaling during
hypertrophy. As mentioned previously, JNK’s regulation of NFAT may be one mechanism
(239, 250). JunD, a downstream target of JNK, has been shown both in vivo and in vitro to
block the cardiomyocyte hypertrophic response to both pressure overload and phenylephrine
(PE) (161, 162, 341). It has been suggested that this may be one explanation for the lack of
hypertrophy in response to JNK activation. However, at least in vitro, phosphorylation of
JunD by JNK is not required for its ability to prevent PE-induced hypertrophy (161).
Finally, recent work has shown that binding of growth arrest and DNA-damage-inducible
beta (GADD45B) to MKK7 decreases its activity and prevents JNK-mediated cardiac
hypertrophy (422). While studies in vitro have suggested that JNKs are prohypertrophic, the
majority of studies in vivo do not support that conclusion; rather, JNKs appear to be more
antihypertrophic, acting in part via excluding NF-ATs from the nucleus and upregulating
JunD.
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2. Cardioprotection versus myocardial cell death—Similar to the hypertrophy
scenario, JNK’s role in IR is also unclear. Numerous studies both in vitro and in vivo have
shown the JNK is activated as a result of reoxygenation upon reperfusion (134, 204, 222,
368, 455). While its activation during the ischemic phase is less well established, a few
studies have suggested that it occurs (324, 371, 458). As a stress-induced signaling pathway,
JNK has both protective and pathological roles in different cell types. This dichotomy is also
observed in cardiomyocytes. JNK1, but not JNK2, has been shown to be proapoptotic during
in vitro IR experiments (169). Likewise, treatment with various JNK-selective inhibitors
reduces infarct size and apoptosis in response to IR (119, 273). Furthermore, JNK activity
contributes to the detrimental effects of a number of proteins known to increase myocardial
injury following IR, including the receptor for advanced glycation end-products (RAGE)
(4), PKC-β (208), β-adrenergic receptors (337), uncleaved HB-EGF (413), Rho-kinase
(463), and poly(ADP-ribose) polymerase (376). Most recently, JNK has been shown to be
activated and promote apoptosis during IR by atrogin-1, an E3 ubiquitin ligase (439).
Atrogin-1 targets MAPK phosphatase-1 (MKP-1) for degradation, resulting in a sustained
activation of JNK and increased apoptosis through increasing cleaved caspase-9, caspase-3,
and Bax and by decreasing Bcl-2. JNK has been reported to associate with the mitochondria,
possibly interacting with proapoptotic proteins (8, 22), and has also been shown to mediate
apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus (376,
463). However, convincing as these data are, the complexity of the system is probably best
exemplified by Kaiser et al. (190), who reported enhanced myocyte survival after IR with
both JNK activation and inhibition. JNK has also been viewed as antiapoptotic in response
to nitric oxide (NO) in vitro (5). Similarly, blocking JNK activity increased apoptosis and
the activity of both caspase-9 (106) and caspase-3 (114) in another in vitro IR model. This
has been proposed to be mediated by the interaction of JNK with Apaf-1, which delays the
activation of caspase-9 by the apoptosome (410). It has also been suggested that part of
JNK’s cardioprotective effect is due to activation of Akt, a key prosurvival protein in
postischemic cardiomyocytes (370).

In short, like in hypertrophy, the role of the JNK pathway in IR injury remains controversial,
perhaps reflecting the complexity of multistage, multitargeted signaling networks involved
in this process.

3. Cardiac remodeling—Transgenic activation of the JNK pathway in the heart resulted
in a lethal restrictive cardiomyopathy with selective extracellular matrix remodeling (320).
(Collagen deposition was not increased, but fibronectin levels were markedly increased.)
Prolonged activation of JNK activity in heart was also associated with abnormal gap
junction structure, loss of the main component (connexin-43), and slowed conduction
velocity in the heart (321). Recent evidence suggests that the loss of gap junctions in JNK-
activated heart is associated with the loss of connexin-43 protein expression as well as
improper intracellular targeting (415). On the other hand, deletion of JNK1 in the heart
resulted in an increase in fibrosis following pressure overload (388). Similarly, chronic
treatment with a JNK inhibitor led to increased apoptosis and cardiac fibrosis in the
cardiomyopathic hamster model (218). Likewise, another study showed the loss of toll-like
receptor 4 (TLR4) improved cardiac function and reduced cardiac remodeling following
ischemic injury in the heart (340). In this study, the wild-type animals displayed a
significant decrease in JNK activity following ischemia that did not occur in the TLR4
animals. Interestingly, the higher JNK level in the TLR knockout animals following
ischemia was also accompanied by a significant decrease in calcineurin, indicating that the
cross-talk between these two pathways as discussed previously may also play an important
role in cardiac remodeling. These results indicate that JNK activity functions to keep some
aspects of cardiac remodeling in check while promoting the dysregulation of others.

ROSE et al. Page 19

Physiol Rev. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



JNK has also been implicated in promoting cardiac remodeling downstream of various
pathways. For example, ASK-1/JNK has been shown to play a role in β-adrenergic-induced
cardiac remodeling and apoptosis in vivo (117). Hsp20, a protein with known
cardioprotective effects (116), inhibited the activation of JNK in this setting. In a rat model
of pressure overload, treatment with RA inhibited cardiac remodeling by inhibiting MAPK
signaling, including JNK activity, by upregulating MKP-1 and MKP-2 (72). Likewise, in a
model of ANG II-induced hypertrophy, mice deficient for ASK1-JNK signaling
demonstrated an attenuation of cardiac fibrosis and remodeling (179). JNK activation
downstream of ET-1 has also been implicated in perivascular remodeling in rat (183).
Finally, matrix metalloproteinases (MMP) are well known to contribute to cardiac
remodeling. Recent in vitro studies have shown that in response to β-adrenergic signaling,
extracellular matrix metalloproteinase inducer (EMMPRIN) expression and MMP-2 activity
was increased in a JNK-dependent manner in cardiomyocytes (374). These findings are
supported by other in vitro work in which JNK activation in H9c2 cardiomyoblasts resulted
in the up-regulation of MMP-2 (but not MMP-9) activity (71). Likewise, in vivo studies on
the loss of β1-integrins showed increased JNK activity was associated with increased
MMP-2 but not MMP-9 activity, which corresponded with less cardiac fibrosis in this
setting (213). ROS signaling is emerging as an important player in cardiac remodeling.
Since JNK activation is a downstream consequence of ROS induction, there might be a
larger role for JNK in cardiac remodeling than originally thought (7, 167). Finally, ASK-1/
JNK is a downstream pathway of ER stress signaling (290), which is also gaining more
appreciation as an important aspect of stress signaling in the diseased heart (409, 440). For
example, Kerkela and co-workers (127, 199) have found that ER stress and ensuing JNK
activation is responsible for mitochondrial defects and severe cardiomyopathy as a result of
anticancer therapy targeted to the tyrosine kinase c-abl.

These results may indicate that JNK’s role in cardiac pathological remodeling may depend
on the activating stimuli. However, because hypertrophy and remodeling often go hand in
hand, it is hard to determine whether the remodeling observed in some of these cases is a
specific and direct result of JNK activation or secondary to the ensuing hypertrophy
recruitment of other signaling pathways.

C. p38
1. Cardiac hypertrophy—Despite a great deal of interest in p38, much of its role in the
heart is yet to be clarified. Initial in vitro studies of this pathway suggested that p38
promotes cardiac growth and hypertrophy. Inhibition of the pathway using small molecule
inhibitors (SB203580 or SB202190) or dominant negative p38 adenovirus inhibits myocyte
growth in response to hypertrophic stimuli (240, 299, 460). In addition, multiple groups
have shown that over-activation of the p38 pathway induces hypertrophic changes in vitro
(299, 425, 460). However, other studies suggest that p38 is not necessary for agonist-
induced hypertrophy in cultured myocytes (74) and that p38 inhibition is actually associated
with calcineurin induced hypertrophy via induced expression of MAPK phosphatase-1
(244).

Results from in vivo studies showed that targeted activation of p38 in the heart did not
produce any significant degree of cardiac hypertrophy (242). Instead, transgenic
overexpression of either MKK3 or MKK6 in the heart increased interstitial fibrosis,
ventricular wall thinning, and premature death due to cardiac failure. These findings are
supported by Klein et al. (203) in which loss of PKC-ε resulted in increased activation of
p38 in the myocardium following pressure overload. These animals displayed a similar
phenotype to the MKK3/MKK6 animals, including no increase in hypertrophy but a
significant increase in fibrosis and impaired diastolic function. These findings indicate that,
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in vivo, p38 activity alone is not sufficient to promote cardiomyocyte hypertrophy.
Conversely, initial studies involving cardiac-specific p38 dominant negative transgenic mice
showed that loss of p38 activity either had no effect on hypertrophy (464) or sensitized the
heart to hypertrophy (55) in response to pressure overload. The enhanced hypertrophy in this
setting is suggested to be the result of loss of p38’s antagonizing effect on NFAT-mediated
transcriptional activity (55, 280, 453). Cardiac-specific deletion of p38 did not alter pressure
overload hypertrophy. It resulted in a similar degree of myocyte hypertrophy between p38
CKO and wild-type animals following pressure overload (303). However, these mice did
exhibit an increase in apoptosis, fibrosis, and chamber dilation as well as reduced LV
function (303). Taken together, these findings would indicate that p38 activity is not
involved in promoting hypertrophy in vivo, but may play an important role in pathological
remodeling.

Recent findings have implicated p38 in physiological hypertrophy. In response to
swimming, loss of p38, either by deletion of ASK1 (an upstream activator) or by conditional
knockout of p38 from the myocardium, resulted in increased hypertrophy without increasing
fibrosis (398). These authors proposed that the loss of p38 activity resulted in an increase in
AKT activity, a known inducer of physiological hypertrophy. Conversely, p38 dominant
negative transgenic mice did not experience an increase in hypertrophy in response to
swimming (427). This may mirror the different results obtained from the dominant negative
transgenic model and the conditional knockout model in response to pressure overload
discussed above. Furthermore, an increase in p38 activation in response to loss of the
regulatory protein 14–3-3 resulted in maladaptive hypertrophy with increased fibrosis and
apoptosis in response to swimming (427).

While gain-of-function and loss-of-function studies through genetic manipulation have
shown that p38 is not sufficient for hypertrophy, at least in vivo, studies involving upstream
activators still imply a role for p38 in the hypertrophic process. Multiple studies have shown
that the protective effects of estrogen on the myocardium are mediated in part through
activation of the p38 pathway. In response to both pressure overload and activation of Gqα
signaling, administration of estrogen in vivo blocks hypertrophy in a p38-mediated manner
(19, 357). Likewise, p38 dominant negative transgenic female mice exhibited greater
hypertrophy than either males or ovariectomized females in response to pressure overload
(249). In vitro studies have produced similar results. In contrast, activation of thyroid
receptor (TRα1) has been shown to cause myocyte hypertrophy via TAK-1/p38 activity in
vitro (202). Likewise, leptin induces hypertrophy of cultured neonatal myocytes as a result
of caveolae and RhoA-mediated phospho-p38 translocation to the nucleus (461). These
results and others like them may indicate that the role of p38 in cardiac hypertrophy is a
conflicting one. While acute activation of p38 appears to be prohypertrophic, chronic
activation of p38 can lead to suppression of hypertrophic growth in heart. However, it is
clear from both in vitro and in vivo studies that p38 activation has a detrimental effect on
cardiac function and normal gene expression. Therefore, p38 induction is more closely
related to pathological form of hypertrophy than to physiological compensation.

2. Cardioprotection versus myocardial cell death—The role of p38 during IR has
been well reported in the literature. However, the conclusions are often contradictory, with
some evidence pointing toward a protective role and other results indicating a detrimental
role (76, 382). Similar conflicting results have also been noted regarding the role of p38 in
ischemic preconditioning (36, 382). These contradictions are likely due, at least in part, to a
number of variables including use of different protocols, species, method of p38 inhibition,
and measured outcomes. That said, some studies that employed similar species and
protocols still resulted in opposing conclusions (36).
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Shortly after its identification, investigators demonstrated that p38 was robustly activated by
ischemia in the isolated perfused rat heart (42). This activation is both rapid in its onset and
transient in its duration after induction of ischemia. To date, however, the exact role that this
temporal activation plays in ischemia still eludes investigators. A number of studies have
indicated that activation of p38 during ischemia leads to increased injury (26, 36, 256, 257,
262, 291, 354, 358). Likewise, an equal number of studies have shown that p38 activity
during ischemia serves a protective role (263, 266, 279, 428, 460). This last point is seen
mostly in the context of ischemic preconditioning, the process by which small repeated
periods of ischemia impart cardioprotection against more sustained ischemic periods. A
number of investigators have shown that p38 activity increases during preconditioning
(382). Interestingly, this too appears to be phasic in nature. Ping et al. (324) have shown that
p38 activity is increased with brief periods of ischemia, but with repetitive cycles of
ischemia and reperfusion, the level of p38 activity returns to baseline within 6 cycles.
Furthermore, multiple cycles of ischemia and reperfusion lead to less p38 activation during
sustained periods of ischemia following the preconditioning when compared with
nonpreconditioned hearts (144, 260, 360). Furthermore, inhibiting p38 activity during
prolonged periods of ischemia reduces infarct size only in nonpreconditioned hearts and that
inhibition of p38 during preconditioning eliminates its cardioprotective effects (34, 144,
354). Although appearing to be contradictory, these results may be reconciled based on the
hypothesis that a negative-feedback mechanism recruited by the modestly induced p38
activity during preconditioning contributes to minimize the detrimental impact of IR.
Identifying the molecular basis of this preconditioning-induced protective mechanism
remains a major challenge in the biology of ischemia and has the potential to translate this
phenomenon into a viable therapy for ischemic disease. In addition, Engel et al. (113) have
suggested that inhibiting p38 activity can help preserve cardiac function following ischemia
by reducing scarring and promoting myocyte proliferation. This new aspect of p38-mediated
cardioprotection opens up a new and exciting avenue by which p38 may be manipulated for
therapeutic benefit in the heart.

Another confounding factor adding to the complexity of p38 study is the presence of
multiple p38 isoforms in the heart. While p38α is the predominant isoform in the heart, p38β
is also present and has been shown to have different physiological consequences. Initial
studies in neonatal rat ventricular myocytes revealed that overex-pression of p38α imparts
proapoptotic effects, while over-expression of p38β leads to myocyte hypertrophy (425).
Studies investigating the role of different p38 isoforms during ischemia have discovered
possible differential roles for the α- and β-isoforms. Following adenoviral-mediated
overexpression and simulated ischemia, Saurin et al. (358) have shown that p38α activity is
increased while p38β activity is decreased. Furthermore, these authors demonstrate that
inhibition of only the α-isoform was protective. Subsequently, multiple studies have
indicated that p38β may be the isoform that imparts cardio-protection (200, 201). Recently,
in vivo studies utilizing overexpression of a cardiac-specific kinase dead p38β mutant
revealed that loss of p38β, but not p38α, activity in the myocardium resulted in increased
ischemic injury (82). This is similar to previous work in which mice either overexpressing a
dominant negative form or lacking one allele of p38α were significantly protected from IR
injury (189, 310). These results may provide some clue as to the discrepancy of previous
results regarding the protective versus detrimental role of p38 during ischemia. Many early
studies utilized p38 inhibitors that block both the α-and β-isoform. If the two isoforms do
indeed have different activation profiles and functional roles during ischemia, then
experimental results may be confounded by inadvertently blocking both isoforms.
Furthermore, it has been shown that the most common p38 inhibitor, SB203580, can
actually inhibit other kinases depending on the concentration used (46, 78, 146, 225).
Finally, it has begun to be recognized that p38 activation can be mediated by more than the
canonical kinase cascade as described earlier, but also via a noncanonical mechanism
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involving TAB-1 induced autophosphorylation (138). Indeed, TAB-1-mediated p38
activation is observed in ischemic heart and implicated in cardiac injury (234, 399).
However, although one study showed TAB-1 induced p38 activation in cardiomycoyte
caused apoptosis similar to canonically activated p38 activity, another showed TAB-1
interaction with p38 led to its intracellular localization and downstream signaling distinct
from the canonical pathway (121, 254). Although mainly observed in brain and thymocytes,
p38 can also function as an alternative mechanism of GSK-3β inactivation, thus further
complicating the functional outcome of p38 activation/inactivation in the heart (407).

The upstream and downstream signaling that contributes to p38’s role in IR has yet to be
fully determined. Multiple studies, however, have begun to examine such events. For
instance, in a setting of insulin-induced cardioprotection, rat hearts treated with insulin
followed by IR showed improved functional recovery and an increase in phospho-Hsp27
(233). This protective effect was abolished by treatment with the p38 inhibitor SB203580.
p38-mediated Hsp27 activation has also been shown to play a protective role during IR in
response to pretreatment of the hearts with H2O2 (40). In this case, the protective effect was
determined to be due to Hsp27’s ability to prevent Ca2+-induced proteolysis of myofilament
proteins. Hsp27 has been shown in other studies to have cardioprotective properties (166,
263, 264). p38’s ability to activate Hsp27 may explain some of the results showing that p38
is cardioprotective. However, transgenic expression of both wild-type and a
nonphosphorylatable from of Hsp27 were both cardioprotective following IR, suggesting
that phosphorylation by p38 is not an absolute requirement for its cardioprotective effects
(166). Interestingly, Gorog et al. (141) have demonstrated that loss of MAP-KAPK2, the
kinase that functions between p38 and Hsp27, resulted in the loss of ischemia-induced
Hsp27 phosphorylation but did not exacerbate the ischemic injury.

While the previous examples discuss p38 activation and signaling in terms of
cardioprotection, other studies have investigated how inhibition of p38 is cardioprotective.
As mentioned previously, p38 activity in myocytes can be proapoptotic. Work by Dhingra et
al. (97) has shown that p38 activity is important in TNF-α-mediated myocyte apoptosis, in
part, due to ROS production. Moreover, p38 inhibition has also been shown to prevent
mitochondrial ROS production and Ca2+ overload during IR (384). p38’s role in
mitochondrial-mediated cell death events was also examined by Schwertz et al. (366). In
their proteomic approach, they identified a number of proteins altered following IR in rabbit
heart. Most interestingly, they noted that phosphorylation of VDAC-1, a mitochondrial porin
with possible links to mitochondrial permeability transition pore (MPTP)-mediated cell
death, was increased fourfold following IR. This phosphorylation was significantly
decreased, and cardioprotection was increased with treatment with the p38 inhibitor
PD169316. p38 inhibition has also been shown to impart its cardioprotective effects by
altering glucose utilization (181, 182). Finally, endogenous p38 inhibition has also been
shown to be cardioprotective during IR. Treatment of rats with the glucocoticoid
dexamethasone was shown to be cardioprotective through induction of the dual-specific
phosphatase MKP-1 which resulted in a decrease in p38 phosphorylation (118).

As can been seen, the role of p38 in cardiac protection and injury is a complicated one. The
specific contribution of p38 kinase in ischemic injury and protection is determined by the
level, duration, mode, and timing of induction involving different isoforms and upstream/
downstream pathways. Dissecting the beneficial versus detrimental aspects of p38 signaling
will be a major issue to be addressed in the future.

3. Cardiac remodeling—As with JNK, the other stress-activated MAPK, p38 appears to
play an important role in cardiac remodeling after injury. Liao et al. (242) discovered that
targeted p38 activation in the myocardium led to a restrictive cardiomyopathy with
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significant amounts of interstitial fibrosis. In this setting, p38 was shown to induce cytokine
release from myocytes, including TNF-α and IL-6 (236). Interestingly, in these in vitro
studies, blocking p38 activity did not appear to prevent cytokine production in the myocytes,
only their release from the cell. Proinflammatory cytokines such as TNF-α and IL-6 are
known to act in both autocrine and paracrine fashions. Acting in an autocrine fashion, they
are known to have negative inotropic effects (326). Acting in a paracrine fashion, they play a
large role in myocardial remodeling (300). These initial studies are supported by findings of
Tenhunen et al. (402) in which DNA microarray analysis of animals with cardiac-specific
overexpression of p38 revealed that genes related to inflammation and fibrosis were among
the most significantly upregulated.

p38 is also activated by proinflammatory cytokines, including transforming growth factor
(TGF)-β. This type of p38 activation also contributes to cardiac remodeling. Indeed, p38 is
activated via a TGF-β1/TAK1-dependent mechanism in myocytes following myocardial
infarction in rats (265). As discussed previously, p38 activity can induce cytokine
production, thus creating a type of feed-forward mechanism for cytokine action and
production. This autocrine and paracrine signaling can lead to recruitment and proliferation
of cardiac fibroblasts and inflammatory cells resulting in remodeling. Recent work in aged
hypertensive rats (which naturally develop significant amounts of cardiac fibrosis) has
shown that treatment with a TGF-β antagonist dramatically reduces both hypertrophy and
interstitial fibrosis (450). This was accompanied by a decrease in phospho-p38 levels. This
fits with other studies that have shown inhibition of p38 reduces remodeling following
myocardial infarction (251, 367). Interestingly, recent work by Frantz et al. (132) indicated
that long-term (9 wk) inhibition of p38 starting 1 wk after induced cardiac ischemia reduced
cytokine production but did not affect other aspects of cardiac remodeling, including
collagen deposits (132). This finding, however, is in contrast to work by others which
showed significant reduction in cardiac fibrosis and hypertrophy following IR with long-
term p38 inhibition (207). While the protocols for these two studies were similar, the
difference in outcome may be due to the different p38 inhibitors used (SB239063 and
RWJ67657, respectively).

In addition to extracellular matrix remodeling, p38 can also regulate myocyte contractility.
Activation of p38 has been shown to have negative inotropic effects in myocytes (69, 243,
460). Moreover, recent work by Szokodi et al. (387) has shown that increased contractility
in response to ET-1 treatment was due to ERK signaling and was further augmented by
inhibition of p38. In this setting, it appears that p38 may play a regulatory function by
counterbalancing the effects of ERK. While the precise mechanism by which p38 influences
myocyte contractility is not fully understood, it appears to be due, at least in part, to
modifications of structural proteins. Initial work described p38’s role in contractility as Ca2+

transient independent (243), but suggested that it may be due to modifications of sarcomeric
proteins (69). Most recently, Vahebi et al. (416) have suggested that a p38-mediated
decreased phosphorylation of α-tropomyosin is one of the mechanisms involved.
Furthermore, p38 has the potential to affect myocyte contractility by promoting transcription
of the Na+/Ca2+ exchanger (NCX1), a key regulator of Ca2+ homeostasis in both the healthy
and pathological myocardium (271). Interestingly, a recent study found that inhibiting
NCX1 actually resulted in upregulation of the NCX1 gene in a p38-dependent manner and
that this increase was accompanied by NCX-p38 complex formation (441). With the
proposal of NCX1 inhibitors as a therapeutic treatment for heart failure, more work needs to
be done to better understand the interplay between these two proteins. Finally, p38 has also
been shown to down-regulate SERCA expression and prolong the Ca2+ transient in cultured
myocytes (6). Although more work needs to be done, given the importance of Ca2+ handling
in cardiac pathologies, it is important to better understand the role the p38 signaling may
play on this front. In short, chronic induction of p38 activity in postinjury hearts plays an
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important role in cellular and myocardial remodeling by affecting both the contractility of
myocytes and the extracellular matrix. Dissecting the underlying mechanisms involved in
the myocyte cell-autonomous effects as well as the cross-talk interaction among myocytes,
fibroblasts, and inflammatory cells should be a very promising area of future exploration.

D. ERK5
1. Cardiac hypertrophy—Relatively fewer studies involving ERK5 are published
compared with the previously discussed MAPKs, so there is still much to learn about its role
in hypertrophy. ERK5 is activated rapidly and transiently in myocytes by a variety of
hypertrophic stimuli, including PE and ANG II (176, 301). In vivo studies examining
hypertrophic signaling via GPCRs have demonstrated that ERK5 activity is increased during
the hypertrophic phase, but not once the disease has progressed to congestive heart failure
(CHF) (187). Similar findings were reported during chronic pressure overload in guinea pigs
(393). Furthermore, this correlates with findings in humans in which ERK5 activity is
decreased during heart failure (392).

In trying to determine its exact role, initial reports implicated ERK5 in promoting eccentric
cardiac hypertrophy. Nicol et al. originally reported that activated MEK5, the ERK5 specific
MAP2K, led to elongation of cultured myocytes as a result of an increase in serial sarcomere
assembly (301), a phenotype similarly seen in myocytes stimulated with cytokines LIF or
cardiotrophin-1 (CT-1) (433). ERK5’s role as a downstream pathway of LIF signaling in
myocytes was further demonstrated by the ability of dominant negative MEK5 to block the
serial, but not parallel, sarcomere assembly in cultured myocytes (301). The unique role for
ERK5 in this particular type of cell hypertrophy was additionally supported by their in vivo
studies. Transgenic mice expressing a cardiac-specific constitutively active MEK5β
developed thinning and dilation of the ventricular chamber without a loss of cells or mass,
indicating that these hearts undergo growth by eccentric hypertrophy. This mechanism has
been further examined by Nakaoka et al. (297), who demonstrated that, in vitro, LIF-induced
activation of ERK5 and subsequent elongation of myocytes is mediated by gp130 receptor
signaling through Grb2-associated binder-1 (Gab-1) association with protein tyrosine
phosphatase Shp2. Conversely, in recent work by Princen et al. (327), mice with a striated
muscle-specific deletion of Shp2 actually exhibit an increase in ERK5 activity in response to
LIF stimulation. These animals exhibit that same cardiac phenotype as the MEK5 transgenic
mice. The difference in these results may be due to the greater complexity of signaling
pathways and feedback mechanisms present in an in vivo setting, which are difficult to
recapitulate in vitro. CT-1/gp130 signaling was also shown to mediate its hypertrophic
response specifically via ERK5 in cultured myocytes (390). Furthermore, activation of
ERK5 has also been associated with eccentric hypertrophy induced by intermittent hypoxia
in rat (67). Interestingly, activation of a cardiac isoform MEK5α failed to induce
hypertrophy in transgenic mice (61). MEK5β and MEK5α are splice variants that have
distinct tissue distribution and cellular localization, which could explain the differences seen
in the two different MEK5 transgenic lines. In short, ERK5 pathway located in different
intracellular compartments regulated by different scaffolds can lead to specific functional
outcome in heart during hypertrophy.

Currently, more work needs to be done to better understand the role of ERK5 in cardiac
biology. The recent development of two small molecule inhibitors to MEK5 will help
advance our current understanding of ERK5 signaling in the heart (401). Furthermore, the
frequently used MEK inhibitors PD98059 and U0126 have also been shown to block MEK5
(192). Since many studies looking at ERK1/2 signaling in cardiac myocytes utilized these
inhibitors, it is not impossible to hypothesize that ERK5 may be playing a larger role in
hypertrophy than originally thought.
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2. Cardioprotection versus myocardial cell death—While little work has been done
investigating the role of ERK5 in cardiac hypertrophy, even less has been done concerning
IR. ERK5 signaling has been proposed to be cardioprotective after ischemic injury. It has
been shown that ischemia transiently activates ERK5, peaking around 30 min (391, 394).
Cameron et al. have shown that MEK5α transgenic animals demonstrate greater functional
recovery after ischemia that is accompanied by a corresponding decrease in caspase-3
activation and reduced infarct size (61). Preconditioning not only increases ERK5’s
maximal activity, but its peak activation occurs much more rapidly (394). Taken together,
these data suggest that ERK5 activation functions in a cardioprotective role during IR.
While the exact mechanism that underlies ERK5’s antiapoptotic effects is not known, recent
studies are beginning to shed some light on the question. Previous studies have shown that
the feedback loop between phosphodiesterase 3A (PDE3A) and inducible cAMP early
repressor (ICER) is involved in promoting apoptosis in cardiomyocytes (98). Yan et al.
(447) have elucidated that ERK5 activity induced by insulin-like growth factor I (IGF-I)
leads to the inhibition of this PDE3A/ICER feedback loop and attenuates isoproterenol-
induced apoptosis in vitro. These same studies also demonstrated that in vivo cardiac
specific constitutively active MEK5 inhibited pressure overload or doxorubicin-mediated
apoptosis via inhibition of this feedback loop. Furthermore, SUMOylation is found to
significantly inhibit ERK5 transciptional activity (434). Recent work by Shishido et al. (373)
have shown that in a diabetic mouse model, ERK5-SUMOylation exacerbated LV
dysfunction following myocardial infarction. Likewise, they demonstrated that both H2O2
and high glucose treatment of cardiomyocytes in vitro increases ERK5-SUMOylation
resulting in decreased transcriptional activity and increased apoptosis. Thus, taken together,
although data are fairly limited, ERK5 does seem to protect against ischemic injury.

3. Cardiac remodeling—While little work has been done regarding the role of ERK5 in
cardiac remodeling, it does play a physiological role in a number of aspects that occur
during cardiac stress. As discussed previously, ERK5 appears to be important to maintaining
the vascular integrity that is critically important for cardiac function. Targeted deletion of
ERK5 in adult mice was shown to result in hemorrhages in multiple organs, including the
heart, due to increased endothelial cell apoptosis (154). A healthy and functional vascular
system is necessary for the proper growth and maintenance of the myocardium, and vascular
growth often accompanies cardiac pathologies. ERK5’s prosur-vival role in endothelial cells
thus may be an important component of cardiovascular physiology (154, 323). Similarly,
ERK5 has also been shown to be important in smooth muscle cells, another important
component of the heart’s vascular network (178). Along with its role in the vascular system,
ERK5 has also been shown to be important in myocytes. As discussed previously, postnatal
growth of the heart occurs by hypertrophy and limited hyperplasia. While its role in these
events has not been exclusively studied, ERK5 is known to activate many of the immediate-
early response genes known to be involved in cardiac growth, including fos, myc, jun, and
MEF2 (258, 424). Likewise, the ERK5 signaling pathway is activated by a number of
cardiac growth factors. Therefore, it is plausible that ERK5 may play a role in postnatal
cardiac growth, including hypertrophic growth in response to stress. Indeed, findings by
Nicol et al. (301) suggest that ERK5 may have a specific role in directing myocyte growth
by serial sarcomere addition and inhibiting parallel assembly. Furthermore, ERK5 may play
an integrating role in pathways activated under various situations. cAMP is a vital second
messenger molecule in cardiac signaling, playing a role in PKA signaling, activating ion
channels, and guanine nucleotide exchange factors such as Epac (49). cAMP activity is
under spatiotemporal control that results from a complex that contains both adenylyl
cyclases which activate it and phosphodiesterases which metabolize it. ERK5 has been
found to be part of one of these complexes, suppressing PDE4DE activity when it is
associated with the complex (102). Likewise, ERK5 has recently been shown to also play a
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role in a feedback loop involving the phosphodiesterase PDE3A (447). Because cAMP
signaling is such an integral part of normal cardiac physiology, it may be that ERK5
functions to help control the specification and duration of this signaling. In short, ERK5 may
also impact on cardiac remodeling through its effect on vascular integrity and myocyte
growth by integrating important cardiac signaling pathways, including GPCRs and RTKs
(307).

V. MITOGEN-ACTIVATED PROTEIN KINASE IN THERAPIES
When reading the literature that employs small molecule inhibitors of protein kinases, it is
essential to understand the limitations of this approach. Paramount among them is the
inherent nonselectivity of the agents employed. The vast majority of small molecule
inhibitors of protein kinases target the pocket within the kinase to which ATP binds (i.e.,
they are ATP-competitive antagonists) (129). However, this region is highly conserved
across the ~500 kinases in the human genome, making it unlikely that any small molecule
inhibitor, especially the early-generation ones that have been used to date in experimental
studies, will be truly selective. This issue has been highlighted over the past several years by
the development of kinase inhibitors for the treatment of various cancers. Many of these
were believed to be highly selective for specific targets, but as the technologies evolved to
test selectivity of agents against very large numbers of kinases (currently >250), so-called
“off-target” inhibition of kinases was virtually always seen. For example, some United
States Food and Drug Administration-approved kinase inhibitors (e.g., sorafenib and
sunitinib) inhibit upwards of 25–50 kinases. This is not a new concept, since for years the
Cohen laboratory has performed detailed studies exposing the nonselectivity of reportedly
selective inhibitors (20, 21, 92). This has led Cohen to create a list of “controls” for studies
employing kinase inhibitors that first and foremost suggests that concordant findings be
demonstrated with the use of two (or more) structurally unrelated inhibitors of a specific
target in order for that target to be preliminarily validated as causing a particular phenotype
(e.g., enhanced ischemic injury). As is seen, this minimum requirement is very rarely
achieved in the cardiovascular literature. The second problem relates to the fact that
different isoforms of a kinase often play specific roles in a disease process (as discussed
above), yet isoform selectivity is rarely achieved with inhibitors, and when it is, it is only
relative. Thus identification of specific functions for specific isoforms will usually require
genetic or RNAi approaches.

All of this said, some of the better small molecule inhibitors available have targeted the
ERK and p38-MAPK pathways, and much can be gleaned concerning the roles of the
kinases in various pathologies by a review of studies employing them. In the section that
follows, we discuss the relevance of using this methodology to determine the role of
MAPKs in the heart. Furthermore, we discuss possible clinical implications of targeting
MAPKs in various disease states.

A. ERK Inhibitors
Several commercially available inhibitors exist for the ERK signaling pathway. Two of the
most commonly utilized are PD98059 and U0126. These agents are unusual for small
molecule inhibitors since they appear to have an exceptionally good selectivity profile. This
is due in large part to the fact that they are so-called type III inhibitors that target regions
distinct from the ATP pocket. Thus these are very good agents when used in appropriate
concentrations. However, use of these inhibitors in studies is somewhat complicated by the
fact that both of them inhibit all MEKs upstream of the ERKs. Thus MEK1, MEK2, and
MEK5 are potently inhibited by these drugs. Some selectivity is achieved by using
PD184352, a less potent inhibitor of MEK5, but the selectivity is only relative. As a result,
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the specificity of one pathway may be masked by the inadvertent inhibition of another. This
is of significance given the sometimes conflicting results obtained in various studies.

As discussed previously, ERKs have been shown to be cardioprotective. However, the
majority of the studies suggesting a protective effect of ERKs in cardiomyocytes have
involved somewhat artificial settings in which reversal of protective effects of exogenously
administered growth factors was seen with ERK inhibition. For example, antiapoptotic
effects of IGF-I, CT-1, serotonin, hepatocyte growth factor, basic FGF, and catecholamines
were reduced by ERK inhibition (152). However, broad conclusions should not necessarily
be drawn from such findings. For example, Li et al. (232) administered an NO donor during
reperfusion of isolated perfused hearts. While U0126 blocked the protective effects of the
NO donor, U0126 had no effect on caspase-3 cleavage or recovery of function in the
absence of the NO donor, thus demonstrating that the cardioprotective effects of ERK
inhibition are highly complex and most likely a small part of a much bigger picture
involving multiple signaling pathways.

One of the first clear demonstrations of a protective role for ERKs in ischemic injury in
cardiomyocytes was shown in neonatal rat ventricular myocytes (NRVMs) in culture and in
the isolated perfused heart exposed to global ischemia (458). These studies showed
increased apoptosis following ERK inhibition in both models which was partially reversed
by either of two p38 inhibitors, SB203580 (which also inhibits JNK2) and SB242719. More
recently, however, the concept that ERK inhibition is detrimental has been challenged both
in cardiomyocytes in culture exposed to simulated ischemia and reperfusion (114) as well as
in a model of global low-flow IR injury (168). In these studies, PD98059 had no effect on
cardiomyocyte survival in vitro, and U0126 had no effect on contractile dysfunction or
infarct size. Given the potentially contradicting role of Ras-Raf-Mek-ERK pathway in
cardioprotection and pathological remodeling, it would be necessary to perhaps inhibit only
the selective components of the pathway in a defined disease state so the benefit can
outweigh the undesirable effects.

In general, studies employing ERK inhibitors tend to agree with findings discussed above in
genetically modified mice and confirm a cardioprotective role of ERK signaling. This is
probably not surprising given the good selectivity and minimal off-target effects of these
inhibitors.

B. JNK Inhibitors
As discussed earlier, JNK activity is implicated in both cardiac protection and injury during
IR. Unfortunately, studies with pharmacological inhibitors have not allowed a consensus
nor, for the most part, have they reduced the confusion. This is due in large part to the over-
reliance on SP600125, a relatively nonselective inhibitor with poor pharmacokinetics,
limiting its utility in vivo. Models exist in which JNK inhibition is detrimental and also
where it is beneficial. While this may seem contradictory, both sides of the argument are
most likely correct, that is, in specific instances, JNK inhibition can be either detrimental or
beneficial depending on the stressor, the severity and duration of the stress, the completeness
of inhibition, and how JNK is able to interact with their many downstream targets which, as
discussed above, belong to both pro- and antiapoptotic families. To delineate JNKs’ effects,
multiple approaches and targets need to be examined. For example, Shao et al. (370)
employed multiple techniques to inhibit JNK in vitro (small molecule inhibitors, gene
transfer of dominant inhibitory mutants of MKK4, and a selective cell-permeant peptide
inhibitor) to demonstrate a protective role. This cardioprotection was mediated at least in
part via phosphorylation of a novel site in the COOH-terminal tail of Akt, T450, which
played a role in activating Akt early post-IR. Furthermore, they found that, in vivo, a
selective p38 MAPK inhibitor protected from IR injury, whereas a combination JNK/p38-
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MAPK inhibitor was detrimental, suggesting JNK is protective in this setting. Thus it is
abundantly clear that JNK, even in the same cell type, can signal both death and survival.

Models in which JNK inhibition is detrimental include oxidant stress, with or without
glucose restriction (5, 75, 274), hypoxia/reperfusion (H/R) (75, 88, 105), and chemical
anoxia (CN/2-DOG) (114). The converse has also been seen with H/R (156, 169, 214). In
contrast, Ferrandi et al. (119) have employed a novel small molecule inhibitor of JNK to
demonstrate protection from ischemic injury in vivo, but this compound (AS601245) also
potently inhibits GSK3β, a kinase with known protective effects on mitochondria in the
setting of ischemia (287). Recently, a novel cell-permeate, protease-resistant peptide based
on the JNK-binding sequence of JNK-interacting protein 1 (JIP1) has been developed by
Bonny et al. (45). This peptide (now called XG-102) blocks JNK/substrate interactions by a
direct competitive mechanism. The peptide also inhibits MEK4 and MEK7, since they also
contain JNK binding domains, but does not inhibit activity of 40 other kinases tested. The
peptide has been shown to protect in stroke models as well as in isolated perfused hearts and
in vivo (47, 273, 430). At present, these data, when taken together with the studies in mice
deleted for either JNK1 or JNK2, are probably the most definitive in terms of encouraging
proceeding with drug development targeting JNK for ischemic syndromes in the heart.
However, this may not be true for all organs since the SP compound aggravated IR injury in
the liver (231).

JNKs have a large number of substrates, most of which promote apoptosis, but they also
have a limited number of factors that promote survival. Whether JNK induces death or
promotes survival in any particular cell type following a particular stressor is a net balance
of activation/inhibition of all these pro/antiapoptotic factors. To better understand this
balance, more work needs to be done. This will require work with both small molecule
inhibitors and genetic manipulations and will need to look at downstream mediators and
cross-talk with other pathways, a systems biology approach.

C. p38 Inhibitors
In the early 1990s, Smith-Kline Beacham identified a series of compounds they called
cytokine-suppressive anti-inflammatory drugs (CSAIDs), based on their ability to suppress
cytokine production in an in vitro model system. In a remarkable series of studies, they
cloned the protein to which the drug bound and identified that protein as p38 MAPK. Thus
the SB compounds suppressed cytokine production by inhibiting p38. Therefore, it is
important to remember that any phenotype resulting from p38 inhibition in the heart in vivo
could be due to direct effects on the cardiomyocyte and/or to suppression of cytokine
production.

Although there are contradictory viewpoints, the vast majority of work with p38 MAPK
inhibitors suggests p38 MAPK activation is detrimental in IR injury. The first two reports,
which appeared almost simultaneously in the literature, demonstrated that SB203580
reduced hypoxia-induced apoptotic and necrotic cell death in NRVMs (257) and reduced IR
injury in isolated, perfused hearts (256). These findings were important not only for
demonstrating protection, but also in demonstrating that direct cardiomyocyte-protective
effects, as opposed to inhibition of cytokine production in the periphery, were at least one
mechanism of protection. Furthermore, a third critical paper employed adenovirus-mediated
gene transfer of an SB203580-resistant p38α mutant to demonstrate that inhibition of p38,
as opposed to some unknown target of the drug, was indeed responsible for the reduced
injury in cardiomyocytes following simulated ischemia (262). However, as discussed earlier,
a few reports have emerged suggesting protective effects of p38 MAPK activation. These
studies have primarily been done in model systems in vitro, and when work has been done in
vivo or in isolated perfused hearts, generally inhibition of p38 MAPKs has been protective.
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In contrast, however, Kaiser et al. (191) demonstrated protection by SB239063 in the mouse
but no protection in the pig. Although this might suggest different roles of p38 in larger
mammals, the models had additional differences (e.g., the pigs received amiodarone, which
has both antiarrythmic and β-blocking properties) that confounded the analysis.
Furthermore, Barancik et al. (26) showed protection in the pig with SB203580, although this
compound is less selective than SB239063. Along with the SB compounds, studies have also
been done with other p38 inhibitors, including SD-282 (238), SC-409 (251), RWJ-67657
(367), and FR167653 (218). Although some conflicting results exist, the vast majority of
studies show a protective effect of p38 inhibition (76), which is corroborated with studies in
the p38α+/− mouse that exhibited a 40% reduction in p38 activity and was protected from
ischemic injury (310).

D. MAPKs as Therapeutic Targets
Protein kinases are often the target of drug development. The vast majority of kinase
inhibitor development is in the cancer field (128), and that is the case with ERK inhibitors
(2, 281, 344). Indeed, we could find no clinical trials of ERK inhibitors outside of this use.
However, there remains a moderate level of interest in other (17, 39, 128, 173, 199, 216,
465) MAPKs as drug targets for disease states other than cancer. For example, in addition to
the studies noted above with the peptide JNK inhibitor, JNK inhibition has been tested as a
target for both hearing loss (385, 421) and neurodegenerative diseases (48, 339). The
greatest amount of interest has been with p38 inhibitors. These agents have been in trials for
many inflammatory diseases, reasoning that a broader inhibition of cytokine production, as
opposed to the monocloncal antibodies, which are cytokine-targeted monotherapeutics,
would be more efficacious. Disease states include rheumatoid arthritis (80, 86), Crohn’s
disease (362), endotoxemia (52, 53), and atherosclerosis. Although many p38 antagonists
have been limited by dose-dependent hepatotoxicity, recent studies in patients with
rheumatoid arthritis and acute coronary syndromes (ACS) demonstrated tolerability (80, 86,
356). However, at the tolerated dose, efficacy in rheumatoid arthritis was limited. In
contrast, a significant and persistent reduction in C-reactive protein levels, possibly
indicating reduced inflammation at the level of the atherosclerotic plaque, was reported in
the ACS trial (356). Whether this translates into clinical efficacy remains to be determined.

In summary, the use of MAPK blockade as a therapeutic treatment is exciting and daunting
at the same time. Given the discordant findings utilizing kinase inhibitors, the lack of true
specificity, and the unanswered questions that remain about precise mechanisms of action,
use of MAPK inhibitors as therapeutics will have to proceed with caution. As we have seen,
MAPKs play an integral and complex role in myocardial signaling. As a result, use of
MAPK inhibitors or other therapies that hit the MAPK pathways may continue to have
cardiovascular (and other) side effects. Much more work needs to be done at the basic
science levels to better understand these pathways and to develop more specific
pharmaceuticals.

VI. CONCLUSIONS AND PERSPECTIVES
It is difficult to conclude a drama without revealing the identities of all the villains and
heroes. In this sense, the quest continues in the study of MAPKs in heart. However, as
literature has abundantly demonstrated, the complexity of the signaling transduction network
makes it impossible and imprudent to label any particular molecule as definitively “bad” or
“good.” Using genetic approaches to achieve either a complete inactivation (knockout) or
constitutive activation (overexpression) of signaling pathways, although very powerful, has
major limitations in uncovering their intricate roles in the dynamic process of stress
response. A detrimental pathway in one setting can be critically beneficial in another. Thus
it remains to be a daunting challenge for us to harness the beneficial activities of MAPK
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pathways while containing the detrimental effects of the “rogue” members in combating
heart diseases. Looking forward, we can expect that the significant progress will have to
come from different fronts. First, we will need to develop better approaches to investigate
signaling network in the context of specific pathophysiological environment. By focusing on
the network interaction rather than signal molecules themselves, we have a better chance to
identify critical regulatory nodules that can be manipulated to influence the outcome. This
so-called systems biology approach has indeed made great in-roads in understanding
complex traits in metabolic diseases and has potential to do the same in the cardiovascular
field. Second, we will need better tools to understand the function of individual players in
signal transduction network. In addition to biochemical measurement of protein activity
from a mixture, the temporal and spatial resolution of our analysis must be improved with
the help of modern imaging and detection techniques. Lastly, more efforts will be needed to
translate molecular and genetic studies in model organisms like rodents to humans, which
will require better interaction among basic and clinical scientists with a common mission.
On an optimistic note, rapid technological advancement and integration of multidisciplinary
approaches are the norm rather than exception in cardiac research. There will be more
exciting episodes with unexpected twists and turns to be played out in the coming years.
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FIG. 1.
Canonical mitogen-activated protein kinase (MAPK) signaling. MAPK are prototypically
activated by canonical three-tiered sequential phosphorylation events. The most well-known
MAPKKK and MAPKK are listed for each MAPK; however, this is only a small
representation of all identified upstream kinases. Furthermore, multiple steps may exist
between the cell stimulus and activation of the MAPKKK and between activation of the
MAPK and the biological response.
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FIG. 2.
Representative MAPK signaling in the heart. MAPK signaling events that play a role in
cardiac signaling. Not all connections necessarily represent a direct interaction but rather
may represent the end product of multiple steps. These are only a general representation of a
sample of signaling events in the heart and do not represent all known MAPK signaling. A:
ERK signaling. B: JNK signaling. C: p38 signaling. D: ERK5 signaling.
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FIG. 3.
MAPK signaling during heart development. Proposed MAPK signaling events during
various stages of heart development. FHF, first heart field; SHF, second heart field; CNC,
cardiac neural crest; V, ventricle; A, atria; RA, right atrium; LA, left atrium; CT,
conotruncus; RV, right ventricle; LV, left ventricle; AVV, atrioventricular valves; Ao, aorta;
PA, pulmonary artery; DA, ductus arteriosus. [Modified from Srivastava (379).]
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