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Abstract

Zero-inflated (ZI) models, which may be derived as a mixture involving a degenerate distribution 

at value zero and a distribution such as negative binomial (ZINB), have proved useful in dental and 

other areas of research by accommodating ‘extra’ zeroes in the data. Used in conjunction with 

generalized linear models, they allow covariate-adjusted inference of an exposure effect on the 

mixing probability and on the mean for the non-degenerate distribution. However, these models do 

not directly provide covariate-adjusted inference for the overall exposure effect. Focusing on the 

ZINB and zero-inflated beta binomial (ZIBB) models, we propose an approach that uses model-

predicted values for each person under each exposure state. This ‘average predicted value’ (APV) 

method allows covariate-adjusted estimation of flexible functions of exposure group means such 

as the difference or ratio. A second approach considers a log link for both components of the 

ZINB to allow a direct approach to estimation. We apply these new methods to a study of dental 

caries in very low birth weight adolescents. Simulation studies show good bias and robustness 

properties for both approaches under various scenarios. Robustness diminishes when there is 

exposure group imbalance for a covariate with a large effect.
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 1 Introduction

Zero-inflated (ZI) models have become an increasingly popular tool to account for ‘extra’ 

zeros in data, and have been used in many areas of application, including dental health, 

medicine, and economics. Zero-inflated models are comprised of a mixture of a standard 

probability distribution, such as Poisson, and a degenerate distribution at 0. It is convenient, 

though not necessary, to characterize the resulting distribution as involving two (latent) 

populations, sometimes referred to the ‘susceptible’ and the ‘non-susceptible’ populations. 

One popular version, suitable for unbounded counts, is the zero-inflated Poisson (ZIP) 

model.1,2 Despite the use of the mixture, in some applications this model may provide an 

inadequate fit to the data due to extra-Poisson dispersion. An attractive alternative is the 

zero-inflated negative binomial (ZINB) model. The negative binomial part of the model 

provides an extension of the Poisson distribution and accounts for over-dispersion by 

assuming that the Poisson mean follows a gamma distribution. ZIP and ZINB models have 

been used by researchers in a number of areas of application, including dental caries 

research.3–5

For bounded counts, available models include the zero-inflated binomial (ZIB) and the zero-

inflated beta-binomial (ZIBB).6 The latter allows for over-dispersion by assuming the 

binomial ‘event’ probability to have a beta distribution. The ZIBB, though not yet widely 

used, would appear to be an appealing model for dental caries, as it would utilize a known 

upper bound in the count. In particular, the number of teeth is a biological upper bound for 

the DMFT (number of decayed, missing, or filled teeth), a popular measure of the extent of 

dental caries.

In zero-inflated models, covariates may be accounted for by using a pair of regression 

models, one model (usually logistic regression) for the probability of being susceptible 

(‘susceptible probability’), and the other model (loglinear regression for ZIP and ZINB, 

logistic regression for ZIBB) for the mean of the susceptible population. Typically, distinct 

regression parameters are used for the two regression functions, though a ‘shared parameter’ 

approach has also been proposed.7 Commonly, the two models are fit simultaneously using 

maximum likelihood.

Much of the zero-inflated model literature has been focused on model fit, including fit for 

extended zero-inflated models involving, for example, random effects for clustered and 

longitudinal data,8–11 and semiparametric regression.12, 13 A related area of focus has been 

score tests for zero-inflation.14–17 Considerably less attention has been given to the problem 

of assessing the overall effect of a predictor variable, for example, a treatment or exposure, 

on the response variable. Typically, papers presenting results from a zero-inflated regression 

analysis show separate exposure effect estimates for the susceptible probability and for the 

susceptible population mean.3, 18 However, in clinical trials and observational studies of an 

exposure the primary interest is typically in the comparison between treatment or exposure 

groups based on the overall mean, possibly adjusted for baseline covariates. For such 

studies, zero-inflated models are primarily of interest for providing a good fit to the data, in 

which case the mixture distribution may be viewed as describing a single population, rather 

than literally interpreted as comprising two populations. In fact, a number of researchers 
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have questioned the applicability of the two population interpretation for their data or for 

any situation not involving structural zeros.18 Mwalili et al.,5 for example, considered it 

implausible that there was a subpopulation within their study sample that was truly immune 

to dental caries. They noted that, while the two-population interpretation provides a 

convenient explanation of zero-inflated models, it is equally valid to consider the zero-

inflated distribution as applying to a single population.

Inference for the overall mean for the ZIP model was considered by Böhning et al.3 They 

suggested two simple approaches to obtain confidence intervals for the overall mean for a 

population. Yau and Lee,9 considering a ZIP regression model with random effects, provided 

an estimate and confidence interval for the overall mean at a specified set of covariate 

values. However, these approaches did not address inference for an overall treatment effect 

while adjusting for covariates. Moulton et al.7 noted that overall inference was possible 

using a two degrees of freedom test that, for two exposure groups, would simultaneously test 

for an effect of exposure on the susceptible probability and for a difference in means 

between the exposed and non-exposed groups given susceptible. However, this test is not 

directed at the overall mean (and is not equivalent to testing for an overall mean difference) 

and does not provide an estimate of the magnitude of the overall effect.

This paper presents two new methods for assessing an overall mean exposure effect in the 

context of zero-inflated regression models. Because accounting for over-dispersion in the 

(susceptible group) count component of the model is often found to be important, we will 

focus on the ZINB and ZIBB (as opposed to ZIP and ZIB) models. In the first approach, 

which we refer to the average predicted value (APV) method, estimated overall means are 

calculated as an average over individual predicted response values under each exposure 

status. The approach in this paper represents an extension of a method used by a number of 

previous authors. The method, also referred to as ‘model-based standardization’,19 was used 

by Greenland20 for estimation of a relative risk, Bender et al21 to compare the number 

needed to treat between groups based on a logistic regression model, Austin22 for estimating 

the odds difference assuming a logistic regression model, and Zou19 who considered the risk 

difference and risk ratio for probit, logistic, and extreme value regressions. The method was 

described by the latter author as one of “predicting counterfactuals”, as it uses predicted 

responses for the unobserved as well as the observed exposure state for each individual. An 

advantage of the APV method exploited by previous researchers is that it can be applied to 

various functions of the group proportions (for example, the risk difference and risk ratio). 

However, previous implementations of the APV method were confined to binary responses 

in standard regression models for binary data, while the present paper applies the approach 

to count data using the relatively complex zero-inflated models. In the present context, the 

APV method can be used to estimate various desired functions of group means, including 

the ratio and difference. Variance estimation is possible using the delta method or a 

bootstrap resampling technique.

The second method presented in this paper uses log-linear models for both the binary and 

the count components of the ZINB model. This approach allows inference for the ratio of 

group means in a direct manner as this function is no longer dependent on covariates. Again, 

either the delta method or bootstrap approach may used for variance estimation. An apparent 
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drawback of this second approach is that the log link function is less suitable for a binary 

response variable than the logistic function.

The remainder of this paper is organized as follows. In the next section we describe the two 

new approaches for inference on overall exposure effects in the ZINB and ZIBB models. In 

Section 3, we apply the new methods to a study of dental caries in very low birth weight 

(VLBW) and normal birth weight (NBW) adolescents. In Section 4, we present a simulation 

study that compares the alternative methods in terms of bias, efficiency, and coverage of 

confidence intervals. Section 5 provides concluding remarks.

 2 Estimation of overall effects in zero-inflated models

 2.1 Zero-inflated count models

We will focus on two distributions for y, the (count) response for an individual: the zero-

inflated negative binomial (ZINB) and the zero-inflated beta-binomial (ZIBB) distribution. 

Zero-inflated distributions may be derived as a mixture of two latent subpopulations: one 

(‘susceptible’) with responses distributed as negative binomial (with mean λ, say) and the 

other (‘non-susceptible’) with responses equal to zero with probability 1. The mixing 

probability, specifically, the probability of being in the ‘susceptible’ population, is denoted 

as ψ. Then, the ZINB probability function may be written as:

(1)

where

is the negative binomial probability function with mean λ and dispersion parameter φ. The 

mean of y is then μ = ψλ. The negative binomial mean (λ) and the ‘susceptible’ probability 

(ψ) may in turn be modeled as functions of covariates. Conventionally, a logistic regression 

model is used for ψ and a log-linear regression model for λ (corresponding to the canonical 

link functions). We write these models as

(2)

where α0, α1, β0 and β1 are unknown parameters, α and β are unknown parameter vectors, xi 

is the exposure or treatment indicator (equal to 1 if exposed, 0, otherwise), and wi is a vector 

of observed covariate values for individual i with response yi (i=1,…, n). It is not necessary 

to use the same covariates for the two models, but is done here for ease of presentation. It is 

common and often scientifically sensible to include the treatment indicator, as well as 
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appropriate prognostic factors, in both component models. We assume that the yi are 

independent, so that the likelihood function may be written as the product of individual 

probability functions (1) where individual parameters ψi and λi are replaced using the 

appropriate functions of regression parameters given by (2).

For bounded counts, it may be of interest to use a distribution such as beta-binomial instead 

of the negative binomial. Like the latter, the beta-binomial distribution can accommodate 

over-dispersion, and therefore will often be preferred in dental applications to the binomial 

distribution. Allowing for zero-inflation leads to the zero-inflated beta-binomial distribution 

(ZIBB),6 whose probability function may be written as:

(3)

where

n is the specified maximum count, λ is the probability of an event (for example, DMFT for a 

given tooth), and φ is a dispersion parameter. Here the mean count is obtained as μ = ψ n λ. 

As with ZINB, we can model the susceptible probability (ψ) and the probability of an event 

for susceptibles (λ) as a function of covariates, in this case, using logistic regression for both 

models. The above regression models for ZINB and ZIBB may be used directly to obtain 

predicted counts for specified covariate values. However, our goal for both the ZINB and 

ZIBB models is to do inference on the overall mean count, in particular, to compare means 

between groups.

 2.2 Average predicted value approach

The first method will be referred to as the average predicted value (APV) approach. This 

approach may be flexibly applied to estimate any function of the overall response means for 

the two exposure groups while adjusting for covariates. The first step in the approach 

involves the calculation of the model-predicted responses (for example, μ̂ = ψ̂λ̂ for the ZINB 

model) for each person (possibly confined to a designated reference population), both if the 

person were exposed and if the person were not exposed, and where the other covariates are 

fixed at the person’s observed values. Note, of course, that each person is either exposed or 

not exposed, so that one of these predicted values will represent a counterfactual response. 

For discrete covariates, we can simply calculate the predicted response, if exposed and if not 

exposed, for each distinct set of covariate values in the covariate space. For continuous 

covariates, we may, alternatively, obtain predictive functions of the covariates for both the 

exposed and unexposed states. The mean for a given exposure status is then obtained as the 

average of the predicted values (or integral of the predictive function) over the covariate 
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distribution for the chosen reference population (for example the exposed group). The 

exposure effect may then be defined as an appropriate function of the two means, for 

example, the ratio or difference.

To present this approach formally, we let F(w) be the joint distribution function for the 

covariate vector w in the reference population. Then the average difference in predicted 

responses is

(4)

where the integral (possibly multivariate) is over the covariate space for w. The proposed 

approach to inference uses a regression model (such as ZINB or ZIBB as discussed above) 

to determine the predicted values of y given the covariates. When the covariates (w) are 

discrete, then the integral in (4) may be written as a sum. For either categorical or 

continuous covariates, a model for the typically unknown, and possible multivariate, 

distribution function, F(w), must be chosen (in conjunction with a choice of the covariate 

space). For categorical covariates, it will often be reasonable to assume a multinomial 

distribution based on the observed categories. In some cases, alternative covariate spaces, for 

example obtained from model smoothing, may be of interest. For continuous covariates, an 

appropriate continuous distribution (such as normal or multivariate normal) can be chosen, 

in which case, parameter values must be estimated. Then, estimation of θD may proceed by 

integrating over the estimated distribution of the covariates (w), possibly using a numerical 

integration technique. Alternatively, the distribution can be non-specified and the empirical 

distribution function used. This amounts to summing over the observed multivariate 

covariate values (possibly for a subgroup representing the reference group). We will 

consider an implementation of the parametric approach (i.e., integrating over an assumed 

distribution for w) in our simulation study (Section 4). However, our emphasis in this paper 

is on the empirical approach (averaging over the empirical distribution function). A further 

description of the empirical approach, as applied to the zero-inflated regression models, 

follows.

For the ZINB regression model (2), the expected (or ‘predicted’) value for an individual with 

observed covariate values wi and (possibly counterfactual) exposure status x, would have the 

form

(5)

To estimate θD (4) we use the expression in (5) plugging in estimated regression parameter 

values following the fit of the model (2) to the whole sample. A predicted effect of exposure 

x for individual i is obtained as E(yi | x=1,wi) − E(yi | x=0,wi). An estimate of the mean 

difference (4) is then obtained by averaging over the empirical distribution function of the 
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covariates (w), possibly for a subsample representing a reference group (denoted by G with 

sample size nG). Thus, our estimate of the mean difference for the ZINB model becomes:

(6)

The expression in (6) has the form of the well-known standardization formula23 as used for 

stratified analysis. However, the standard approach to a stratified analysis uses observed 

differences for the exposed versus non-exposed group from each subpopulation (stratum), 

whereas the present approach uses model predicted values, which are calculable even if 

there are no representatives for one of the exposure groups for a given set of covariate 

values. To the extent that there is a lack of overlap in the distribution of the covariates for the 

two exposure groups, this approach will involve some degree of extrapolation beyond the 

multivariate support of the data.

An alternative function of possible interest would be the ratio of response means for the 

exposed versus unexposed groups. Here the APV estimand would be the ratio of expected 

values, θR ≡ ∫[E(y|x = 1, w)dF(w)/∫ E(y|x = 0, w)]dF(w), which can be estimated given 

model (2) as

(7)

The variances for θD̂ and θ̂R can be estimated via the delta method. For w consisting of a 

small number of cells, this may be accomplished easily by writing out the function of 

parameters (as given in (6) or (7)), and using, for example, the ‘estimate’ statement in SAS 

Proc NLMIXED. With continuous covariates it becomes cumbersome to write out the 

function, but the derivatives can be derived in order to obtain the delta method estimate. This 

approach, particularly with multiple continuous covariates, can be tedious. An alternative 

approach is to obtain variance estimates via bootstrap resampling.24 The bootstrap approach 

has the potential additional advantage of allowing the computation of confidence intervals 

without requiring a distributional assumption, such as normality, for the estimator. Under the 

assumed models, the APV estimators of the mean ratio or difference, being functions of the 

maximum likelihood estimates of the regression coefficients, are themselves maximum 

likelihood estimators and therefore consistent. Note that in the special case in which the logit 

function for the susceptible probability involves only an intercept term, the overall mean 

model (5) reduces to a loglinear model (with intercept adjusted for the zero inflation). In this 

case, the mean ratio (exposed versus non-exposed) is easily obtained as log β1.
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 2.3 Direct (log-log model) approach

Next we consider a simple alternative to the average predicted response approach. Instead of 

using a logistic regression model for the susceptible probability, we use a loglinear model. 

We thus assume the set of models

(8)

which we refer to for convenience as the ‘log-log model’. (In a similar vein, we will refer to 

model (2) as the ‘logit-log’ model and the model for ZIBB as ‘logit-logit’). Using the log 

link for both regression models provides an overall exposure effect that does not depend on 

the covariate values. Specifically, we can obtain the ratio of the overall means (exposed 

versus non-exposed groups) as

(9)

The mean ratio, θRL, is directly estimable from the fit of the model (8) by plugging 

regression estimates for α1 and β1 into the simple expression on the right hand side of (9). 

This provides the estimate, θ̂RL = eα
̂1+ β̂1. The delta method estimate of the variance of θ̂RL 

is readily obtained, for example using the ‘estimate’ statement in SAS Proc NLMIXED.

The log-log model approach has the advantage of simplicity. However, it is limited to 

inference on the ratio of means, whereas the APV approach is flexible in the specification of 

the functions of the means, allowing, as shown above, inference for both the difference and 

ratio of means. An obvious potential limitation of the log-log model is that the log function 

may not be the canonical, or even an apparently suitable, link function for some 

distributions. For example, when modeling the susceptible probability in the ZINB model, or 

either component in the ZIBB model, the logit link is preferred to the log link, because the 

mean in these cases is restricted to the range 0 to 1, while the loglinear model may produce 

predicted probabilities greater than 1. For the goal of inference for the overall mean, 

however, it remains to be studied, in real data and in simulations, whether this apparent 

inadequacy in the model translates into a practical problem.

It might appear to be of interest to apply the APV approach to the ZINB/log-log model. 

However, it turns out that the resulting estimand, whether using the parametric (integration) 

or the empirical (summation) approaches for averaging over the covariates, reduces 

algebraically to the direct approach estimand (9). This result is easily shown and a brief 

proof is provided in the Appendix.
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 3 Application to Dental Data

Our motivating example comes from a study of dental caries in VLBW and NBW 

adolescents.25 The subjects were previously recruited in a cohort study that followed them 

from birth and assessed various psychosocial factors as well as demographic variables.26 

The dental study involved a clinical assessment at around age 14, providing the DMFT score 

and other dental outcomes. In the original study, the NBW (control) group was selected in 

order to obtain similar distributions to the VLBW group for key baseline (‘stratification’) 

variables, namely, race, socioeconomic status (SES), and sex. Therefore, it is sensible to use 

the VLBW (‘exposed’) children as the reference group, although the distribution for the 

three stratification variables would be expected to be similar in the two groups. The original 

study separated the VLBW infants into groups with and without brochopulmonary 

dysplasia; however, we have combined these two groups for present purposes. The analysis 

(complete case) sample sizes were 139 and 85 for the VLBW and NBW groups, 

respectively.

A primary study objective was to compare the mean DMFT for VLBW versus NBW 

adolescents, while controlling for race (African American versus other), SES (low versus 

high) and sex. To compare alternative approaches, we fit the following models: 1) normal 

distribution (with standard linear regression model), 2) Poisson (loglinear model), 3) 

negative binomial (loglinear model), 4) ZIP/logit-log model, 5) ZIP/log-log, 6) ZINB/logit-

log, 7) ZINB/log-log model, and 8) ZIBB/logit-logit model. For the ZIBB model, an upper 

bound of 28 was used for DMFT, corresponding to the maximum possible number of 

affected teeth. Goodness of fit for each model was evaluated using the Akaike Information 

Criterion (AIC), the Bayesian Information Criterion (BIC), and a Pearson chi-square test. 

The latter compared empirical versus predicted frequencies across DMFT categories (0, 1, 2,

…, 9, >9). The predicted frequencies were marginal, that is, calculated as a weighted 

average over strata-specific predicted values. Following, Rose et al.18 we used the number of 

categories minus one (that is, 10) degrees of freedom for the chi-square tests. This approach 

essentially assumes that parameter values are known. A refined approach, taking into 

account parameter estimation in the degrees of freedom might be possible but is not 

available. Simply subtracting the number of estimated model parameters is not a suitable 

approach, particularly as we are predicting the marginal counts (and for some models the 

number of parameters is as high as the number of categories).

From Table 1, we see that according to all goodness-of-fit criteria, the last three models 

(ZINB/logit-log, ZINB/log-log, and ZIBB/logit-logit) are superior to the first five models. 

Furthermore, the last three models show adequate fit according to the chi-square statistic 

whereas the first five models (with the possible exception of the negative binomial model) 

do not. The last three models appear to be very close in fit according to AIC and BIC. 

Interestingly, the ZINB model with log-linear regression functions for both the susceptible 

probability and the susceptible mean (‘ZINB/log-log’) is best according to both AIC and 

BIC. For example, AIC for ZINB/log-log is 809.2, slightly better than ZINB/logit-log (AIC 

= 811.3) and ZIBB (AIC = 811.1). We also considered a log-log model for ZIBB, as such a 

model would appear to be possible and have the potential advantages noted above. However, 

we were not able to obtain convergence using this model for the dental data.
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The above results indicate that the data show significant zero inflation, as the ZIP and ZINB 

models provide a better fit than the Poisson and negative binomial models, respectively. We 

note, for example, that the marginal predicted frequency of zeros under the ZINB model is 

107 (or 48% of the sample), the same as the observed number of zeros. Of that number, the 

contribution (that is the marginal predicted frequency of zeros) of the negative binomial 

component of the ZINB model is only 21, indicating a ‘zero-inflation’ (or marginal 

predicted frequency of non-susceptibles) of 107 – 21 = 86. In addition, there is significant 

over-dispersion, as indicated by the superior fit for the negative binomial and ZINB models 

compared to the Poisson and ZIP models, respectively. Although the ZIBB takes into 

account the biological upper bound for DMFT, it does not appear to have an advantage in fit 

over the ZINB models, possibly because the observed maximum (and mean) DMFT is 

considerably lower than the biological maximum, and thus biologically impossible DMFT 

values have very low predicted probabilities under the ZINB models. The standard linear 

regression model provides a poor fit, with considerably higher (worse) AIC and BIC values 

than the other models. Figure 1 shows the predicted frequencies for the ZINB/logit-log and 

ZIBB models against the histogram of observed frequencies for the DMFT counts.

Next, we used the three models that provide a good fit to the dental data (namely, ZINB/

logit-log, ZINB/log-log, and ZIBB/log-log) to assess the effect of exposure (VLBW versus 

NBW) on the overall mean DMFT. We wished to assess both the difference in means and the 

ratio of the means for the exposed versus non-exposed groups. For the ZINB/logit-log and 

ZIBB/logit-logit models, the APV approach was used for both the difference and the ratio of 

means. For the ZINB/log-log model, the direct approach, which allows inference for the 

ratio but not the difference in means, was used.

Table 2 shows the results of inference for the difference and the ratio of exposure group 

means for the three models. The table includes the estimated mean difference (mean for 

VLBW minus mean for NBW), the standard error (estimated via the delta method), and the 

Wald test p-value of the null hypothesis of the mean difference equal to 0. It also has the 

estimated mean ratio (mean for VLBW over the mean for NBW), standard error, and Wald 

test p-value of the null hypothesis of the mean ratio equal to 1. The estimated mean 

differences for the ZINB/logit-log and ZIBB/logit-logit models (adjusting for covariates) are 

−0.62 and −0.58, respectively, thus showing a lower mean DMFT for VLBW than NBW 

adolescents; however, this difference is not statistically significant by either method. The 

estimated mean ratio from the ZINB/logit-log model is 0.73; that is, the mean DMFT for the 

VLBW group is an estimated 0.73 times the mean DMFT for the NBW group, though not 

statistically significant at the 0.05 α-level (p=0.09). A similar estimate and conclusion is 

provided by the ZIBB model. For the ZINB/log-log model the estimated ratio is 0.68, 

showing a more pronounced birth weight effect that is statistically significant (p=0.04). The 

unexpected finding of a lower estimated mean DMFT for VLBW than NBW adolescents 

corroborates the results in the primary report on these data.25 The somewhat different results 

among our alternative approaches suggested the need for simulation studies to help 

determine the preferred model and method of inference.
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 4 Simulation study

 4.1 Simulation study design and methods

In this section, we describe our approach to simulation studies intended to further investigate 

the properties of the proposed methods. Our primary goals were to determine the validity of 

overall mean ratio estimator using the APV method for the ZINB/logit-log model, as well as 

robustness of the direct method which assumes the ZINB/log-log model. For comparison, 

we also considered analogous scenarios in which the ZINB/log-log model is correct. In 

addition, we wished to study the APV method under the ZIBB/logit-logit model in the 

situation of a known upper bound to the count response variable, and to investigate the 

robustness, under this model, of estimates assuming the ZINB model (either logit-log or log-

log).

In our first simulation study, we assumed a ZINB/logit-log model. The logistic regression 

model for the susceptible probability and the loglinear model for the susceptible population 

mean both included a binary exposure indicator (1 if exposed, 0, otherwise) and a single 

covariate. The model is thus given as (2) above with α′ = α2 and β′ = β2, where α2 and β2 are 

unknown scalar coefficients for the covariate, w. We considered both the case of a 

continuous and a categorical (binary) covariate. The other parameter that needs to be 

specified is the negative binomial dispersion parameter, φ.

We considered five scenarios which are distinguished in the magnitude of the effects of the 

exposure and the covariate on the susceptible probability (corresponding to parameters α1 

and α2, respectively) and on the mean for the susceptible population (β1 and β2, 

respectively). The scenarios were specified as 1) small exposure and covariate effects 

(approximating estimates from the dental data); 2) small exposure and large covariate 

effects; 3) large exposure and small covariate effects; 4) large exposure and covariate effects; 

and 5) null exposure and small covariate effects. The regression coefficient values used in 

the simulation study for each of these scenarios are given in Table 3. For the negative 

binomial model, the dispersion parameter (φ) for each scenario was set to 0.2, 0.5, and 1. 

The value 0.5 was chosen as it is close to that estimated from the dental data; the other two 

values were chosen to study the effect of varying values of the dispersion parameter.

In addition, we considered different situations with regard to covariate balance. Specifically, 

we included a balanced case where, in the binary (0–1) covariate case, each exposure group 

had a 50% frequency of w=1, and in the continuous covariate case, the expected value of the 

covariate was 10 and the standard deviation was 2 for each exposure group. In addition, we 

included two unbalanced cases. In one case, the imbalance ‘favored’ the exposure; 

specifically, in the binary covariate case, the frequencies of w=1 were 75% in the exposed 

group and 25% in the unexposed group, and in the continuous covariate case, the expected 

values of the covariate were 10 in the exposed group and 7 in the unexposed group with a 

standard deviation of 2 in both groups. In the other unbalanced case, the imbalance favored 

non-exposure; that is, the above proportions/means were used with the groups switched.

For each scenario and type of covariance balance, 5000 simulated datasets were generated. 

Sample sizes of 200 (100 per exposure group) and 2000 (1000 per exposure group) were 
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used. The exposure indicator and covariate were generated independently for individuals 

within each dataset and between datasets using pseudorandom number generators in 

SAS/IML (SAS System, Version 9.2). In the case of a binary covariate, the randomization 

was constrained to assure the targeted balance in the covariate levels over the two exposure 

groups. In the continuous case, the covariate was generated independently from a normal 

distribution. The response variates were then generated independently according to the 

ZINB distribution with regression model (2) given the individual exposure and covariate 

values.

The true value for the ratio of means is defined by the function on the right hand side of (7) 

with the true coefficients in place of the estimates. We denote this quantity, representing a 

sample version of θR, as MR (mean ratio). In the simulations studies, MR was either equal to 

θR, in the case with a categorical covariate (because the empirical distribution of w in this 

case is the same as the true distribution), or a close approximation (for a continuous 

covariate). For comparison, in the continuous covariate case, we also calculated true values 

by integrating over the true (normal) distribution of the covariates. Integration was carried 

out using the “quad” function in SAS/IML, which uses an adaptive (Romberg-type) 

numerical integration technique. Note that the true value was fixed over the simulations in 

the binary covariate case, due to the imposed balance, but could vary over simulations in the 

continuous covariate case. In the latter case, for use in tables, a summary ‘true MR’ was 

calculated as the average MR over the simulated data sets for each scenario.

For each dataset the competing methods (that is, the APV method assuming ZINB/logit-log 

or the direct method assuming ZINB/log-log) were used to estimate the ratio in overall 

means for the exposed versus unexposed groups, and to construct a 95 percent confidence 

interval for the ratio. From the simulations, we calculated the average estimate of the mean 

ratio (EMR); the average percent error (PE = 100 x (EMR – MR)/MR), a measure of relative 

bias; the standard deviation (SD) of EMR; the average estimated standard error (SE) of 

EMR; and the coverage probability (CP, percent of simulated datasets for which the 95 

percent confidence interval for MR covered the true value). For comparison, in the 

continuous covariate case, we also computed the APV estimator by integrating over the 

distribution of the covariate using the numerical integration method described above. The 

covariate distribution was (correctly) assumed to be normally distribution, but with 

parameters estimated from the exposure (reference) group data.

In a second simulation study, we assumed a ZIBB/logit-logit model. As before, we included 

a single binary exposure variable and a single (either continuous or binary) covariate. We 

examined similar scenarios to those described above for ZINB. The regression coefficient 

parameter values used in this simulation study are given in Table 4. The ZIBB dispersion 

parameter was set at φ =1/9, 1, and 9 (with 1/9 chosen as a value close to that estimated from 

the dental data). In this second study, we compared several approaches for estimating the 

overall exposure effect: the APV method assuming ZIBB/logit-logit (the correct model in 

this case), the APV method under ZINB/logit-log, and the direct approach assuming ZINB/

log-log. The same simulation statistics listed above for the ZINB model were obtained.
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 4.2 Simulation study results

We focus on results for the continuous covariate case; results for the categorical case are 

similar and are therefore not presented. We note that for both the true estimands and the 

APV estimators, calculated values based on the empirical approach (which sums over the 

empirical distribution function of the covariate) are very close (usually within 0.001) to the 

values obtained by integrating over the (estimated) normal distribution of the covariate. The 

results are thus provided only for the former approach. Table 5 gives the results for the first 

simulation study in the case of n = 100 per group and dispersion parameter equal to 0.5. We 

see over all five scenarios that the APV method under the true (ZINB/logit-log) model 

produces a small positive bias in its estimation of the mean ratio. In particular, the average 

percent error (PE) is less than 3.1% for all five scenarios in the balanced case and is less than 

6.0% when there is imbalance in the covariate between the two groups. The average 

estimated standard errors were found to be slightly lower than the true (simulation) values, 

and thus, the coverage probabilities of 95 percent confidence intervals slightly lower than the 

nominal level, though still within 2% for most scenarios. We note that a small number of 

simulated data sets did not provide estimates due to lack of convergence. This occurred only 

a few times for both the APV and direct methods in the simulations with n = 100 per group, 

and did not occur for n = 1000 per group.

For the direct (log-log) method, the average percent error is less than 3% for all five 

scenarios in the balanced case and less than 6.0% when there is imbalance in the covariate 

between the two groups favoring exposed. Standard errors tend to be slightly underestimated 

and coverage probabilities somewhat lower than, but usually within a few percent of, the 

nominal level. However, in the unbalanced case favoring unexposed, the average percent 

error (in absolute value) is relatively high (−12.2%) in the case of large exposure and 

covariate effects (Scenario 4). The standard error is also markedly underestimated in this 

case and the coverage of the 95% confidence interval is only around 80%.

When the sample size per group is increased to 1000 (Table 6), the APV approach shows 

very low bias (less than 1%) and good coverage (within 2 percent) for all scenarios. In 

contrast, the direct approach has relative biases of up to 12 percent in the unbalanced 

situations as before. In the case of a binary covariate, on the other hand, the properties of the 

direct approach are better, with relative bias less than 3% and coverage within 3 percent of 

the nominal level for all scenarios (results not shown).

We also considered ZINB/log-log as the true model in scenarios with a single binary 

covariate. In this case, the relative performance of the APV (logit-log) and direct (log-log) 

methods are essentially reversed from the previous results (results not shown). Note that the 

continuous covariate case was not considered here, as the loglinear model could then 

produce predicted susceptible probabilities greater than 1.

Not surprisingly, as the dispersion parameter increases, the variances and small sample 

biases increase. At the smallest value (φ = 0.2) the nonconvergence rate was somewhat 

increased; of course, in practice, a small estimated value for the ZINB dispersion parameter 

would suggest that the zero-inflated Poisson may be a preferred model. The relative 
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performance of the APV and direct methods for other dispersion parameter values are 

similar to that seen for the presented results (for φ = 0.5) and therefore are not shown here.

The second simulation study examined different estimators of the overall mean ratio under 

the ZIBB/logit-logit model; results for dispersion parameter equal to 1/9 are presented here. 

The APV method based on the ZIBB/logit-logit (correct) model provides relative biases of 

less than 3% in the balanced case and less than 6% in the unbalanced case for all scenarios 

with n = 100 per group, and less than 1% for all scenarios with n = 1000 per group (results 

not shown). Fitting the ZINB/logit-log model to these data and using the APV method 

results in relatively small positive biases of less than 4.2% in the balanced covariate case and 

less than 7.1% in the unbalanced case for n=100 per group with a continuous covariate 

(Table 7). As before, standard errors are somewhat underestimated and coverage 

probabilities are lower than the nominal level. For n=1000 (Table 8), the relative bias in the 

balanced case is less than 2% and the coverage of confidence intervals is within 0.5% of the 

nominal (95%) level. For the unbalanced case, the relative bias is still less than 4% and 

coverage of confidence intervals within 2.5% of the nominal level for all scenarios.

For the direct approach (assuming the ZINB/log-log model), the average percent error (in 

absolute value) for n=100 per group is less than 6% for all five scenarios, but is as high as 

25% when there is imbalance in the continuous covariate (Table 7). We note that there were 

two extreme mean ratio estimate values (of the order of 1015 or greater) obtained for the 

direct approach in the unbalanced covariate case. These values were removed from the 

overall statistics provided in the table. For n=1000 per group (Table 8) the average percent 

error (in absolute value) of the direct estimator is up to 4% in the balanced case and up to 

29% in the unbalanced case, both occurring for Scenario 4 (high exposure and covariate 

effects). The cases of high percent error also tend to have substantially under-estimated 

standard errors and low coverage of confidence intervals. The results for a categorical 

covariate (not shown) are somewhat better with an average percent error for the direct 

method of less than 3% in the balanced case and less than 8% in the unbalanced case for n = 

100 per group, and less than 1% in the balanced case and less than 5% in the unbalanced 

case for n = 1000 per group.

Similarly to the ZINB model results, as the ZIBB dispersion parameter increases, the finite 

sample bias and variance increases. The relative performance of the APV and direct methods 

for other dispersion parameter values (φ = 1 and 9) are similar to that for φ = 1/9. These 

results and others not shown here are available upon request.

 5 Discussion

In this paper, we have studied the use of zero-inflated models for comparing overall response 

means between groups (exposures or treatments) while controlling for baseline covariates, as 

is often of interest in both clinical trials and observational studies. Zero-inflated models are 

appealing because of their ability to account for ‘extra’ zeros, relative to standard models 

such as Poisson and negative binomial, allowing them to often provide a good fit to count 

data from dental and other studies.
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The first proposed method, the ‘average predicted value’ (APV) approach, involves the 

comparison of model-predicted response values for each individual under both the exposure 

and no-exposure conditions. A similar approach, as we discussed in the introduction, has 

been used by previous researchers in other contexts. However, the present paper generalizes 

this approach and extends it, apparently for the first time, to zero-inflated models. As we 

have sought to reveal, the APV approach is very flexible, being applicable to any zero-

inflated regression model as well as other models not presented here. Other models of 

interest for zero-inflated data include the hurdle model27 and mixture models28, possibly 

extended to more than two subpopulations. In addition, the APV approach can be used for 

inference on any specified function of group means, such as the ratio or difference. We 

presented two version of the APV approach: one (‘parametric’) integrates the predicted 

function with respect to the covariates over their assumed parametric distribution, and the 

other (‘empirical’) sums over the empirical distribution of the covariates. The latter 

approach, which was emphasized in this paper, has several advantages: 1) it avoids 

distributional assumptions regarding the covariates; 2) it is computationally simple; and 3) it 

provides exposure effect estimates that are very close to that of the parametric approach 

when the model for the latter is correct, even for modest sample sizes (as shown in our 

simulation studies using normally-distributed covariates).

Upon the request of a referee, we conducted further simulation studies of the ZINB/logit-log 

model involving two covariates. In these scenarios, the two component models (logit and 

loglinear) either had the same covariates or one different covariate. The common covariate 

was either balanced or unbalanced and the second covariate was balanced across exposure 

groups. The covariates were generated as normally distributed and mutually independent. 

Both the empirical and parametric (integration) versions of the APV method were readily 

extended to these multiple covariate cases. The former used the same expression as before 

(7), possibly with different covariates (w) for the two models. The parametric approach 

integrated over the (correctly specified) multivariate normal distribution for the covariates 

(with estimated means and variances). The pattern of results and overall conclusions were 

quite similar to the single covariate case, and detailed results are therefore not included here 

but are available upon request.

In many situations, the variance of the estimated exposure effect can easily be obtained 

using the delta method (as was used in the present study). However, a bootstrap approach 

may be preferred in more complex situations. Our simulation studies showed low bias for 

the APV estimator under the correct (ZINB or ZIBB) model, even for the case of an 

unbalanced continuous covariate. However, there was a tendency of the delta method to 

underestimate standard errors (resulting also in under-coverage of confidence intervals) for 

relatively small sample sizes (n = 100 per group). The method based on the ZINB/logit-log 

model still does well when the true model is ZIBB. The small biases found appear to be due 

more to the difference in the shape of the functions (beta binomial versus negative binomial) 

than the fact than the negative binomial distribution ignores the upper bound of the count. 

This is seen by the very low bias found when we fit the ZINB model to data generated from 

a truncated ZINB distribution (results not shown here).
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The second proposed method (the ‘direct’ approach) utilizes loglinear models for both 

components of the zero-inflated model. The primary appeal of this approach is its simplicity. 

Under the ‘log-log model’, the ratio of means is readily obtained as a function of the 

regression coefficients for exposure that does not involve the covariates. However, this 

approach is not applicable for other functions that may be of interest, such as the difference 

in group means. In addition, it is only applicable to certain zero-inflated models, for example 

ZINB, but not others such as ZIBB.

Both of the proposed methods were applied successfully to our dental data, corroborating 

previous results25 that showed an unexpected negative (though, at best, marginally 

statistically significant) relationship between VLBW (versus NBW) and dental caries 

(DMFT). In light of our simulation studies, the fact that the results for the APV (ZINB/logit-

log) and direct (ZINB/log-log) approaches were not greatly different may be due to the fact 

that the covariates (as assured by design) were fairly well balanced across the exposure 

groups in the dental study data.

An interesting finding of our simulation studies is that even when the loglinear regression 

function is incorrect (that is, the susceptible probability for the ZINB model follows a 

logistic regression rather than loglinear model), the direct approach in the case of a balanced 

covariate appears to provide valid inference for the overall mean ratio, and is also fairly 

robust if the true model is ZIBB/logit-logit. However, in the case of an unbalanced 

covariance this method can be substantially biased, particular when the covariate has a large 

effect on the outcome. Note that we consider the logit-log, a priori, as more plausible than 

the log-log model, as it provides the appropriate range restriction for the susceptible 

probability. However, when the log-log model is correct, as may be obtained in the case of 

categorical or bounded continuous covariates, then the results described above are 

essentially reversed for the APV (logit-log) and direct (log-log) estimators. It is therefore 

useful to note that either estimator appears to do well, even if an incorrect model choice is 

made, in the case where the covariate is balanced across exposure groups. Despite their 

being balanced, it is important to include any prognostic covariates in nonlinear models29,30 

such as those considered in the present paper; thus, our proposed methods are relevant in the 

balanced as well as unbalanced covariate cases.

In conclusion, we recommend the APV as an appropriate and flexible method for estimating 

covariate-adjusted overall exposure effects based on the ZINB (logit-log) and ZIBB (logit-

logit) models. The direct (log-log model) approach may have a role as a quick and easy 

method for estimating the mean ratio in the case of a balanced covariate or when there is 

reason to suppose that the log-log model is correct. Further work is needed to study possible 

improved variance estimates for APV estimators for small samples.
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 Appendix: Demonstration of equivalence of estimands for the log-log 

model

Here we show that the APV approach to defining the mean ratio estimand, when applied to 

the ZINB/log-log model, produces the same estimand as the direct approach (9). This result 

obtains regardless of the distribution of w, thus for either the empirical distribution function 

(over a finite reference population G) or an assumed parametric (large reference population) 

distribution function for w.

For the empirical approach,

For the parametric approach, the result is shown in a similar manner with the sum replaced 

by an integral (with respect to w, over an arbitrary distribution function F(w)). These results 

also hold where the two component models involve different covariates.
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Figure 1. 
Observed and predicted frequencies for each number of DMFT, using the dental data. 

Predicted values are from the ZINB/logit-log (A) and ZIBB/logit-logit (B) models.
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