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Abstract

Zero-inflated (ZI) models, which may be derived as a mixture involving a degenerate distribution
at value zero and a distribution such as negative binomial (ZINB), have proved useful in dental and
other areas of research by accommodating ‘extra’ zeroes in the data. Used in conjunction with
generalized linear models, they allow covariate-adjusted inference of an exposure effect on the
mixing probability and on the mean for the non-degenerate distribution. However, these models do
not directly provide covariate-adjusted inference for the overall exposure effect. Focusing on the
ZINB and zero-inflated beta binomial (ZIBB) models, we propose an approach that uses model-
predicted values for each person under each exposure state. This ‘average predicted value’ (APV)
method allows covariate-adjusted estimation of flexible functions of exposure group means such
as the difference or ratio. A second approach considers a log link for both components of the
ZINB to allow a direct approach to estimation. We apply these new methods to a study of dental
caries in very low birth weight adolescents. Simulation studies show good bias and robustness
properties for both approaches under various scenarios. Robustness diminishes when there is
exposure group imbalance for a covariate with a large effect.
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1 Introduction

Zero-inflated (ZI) models have become an increasingly popular tool to account for ‘extra’
zeros in data, and have been used in many areas of application, including dental health,
medicine, and economics. Zero-inflated models are comprised of a mixture of a standard
probability distribution, such as Poisson, and a degenerate distribution at 0. It is convenient,
though not necessary, to characterize the resulting distribution as involving two (latent)
populations, sometimes referred to the ‘susceptible’ and the ‘non-susceptible’ populations.
One popular version, suitable for unbounded counts, is the zero-inflated Poisson (ZIP)
model.12 Despite the use of the mixture, in some applications this model may provide an
inadequate fit to the data due to extra-Poisson dispersion. An attractive alternative is the
zero-inflated negative binomial (ZINB) model. The negative binomial part of the model
provides an extension of the Poisson distribution and accounts for over-dispersion by
assuming that the Poisson mean follows a gamma distribution. ZIP and ZINB models have
been used by researchers in a number of areas of application, including dental caries
research.3->

For bounded counts, available models include the zero-inflated binomial (ZIB) and the zero-
inflated beta-binomial (ZIBB).® The latter allows for over-dispersion by assuming the
binomial ‘event’ probability to have a beta distribution. The ZIBB, though not yet widely
used, would appear to be an appealing model for dental caries, as it would utilize a known
upper bound in the count. In particular, the number of teeth is a biological upper bound for
the DMFT (number of decayed, missing, or filled teeth), a popular measure of the extent of
dental caries.

In zero-inflated models, covariates may be accounted for by using a pair of regression
models, one model (usually logistic regression) for the probability of being susceptible
(“susceptible probability”), and the other model (loglinear regression for ZIP and ZINB,
logistic regression for ZIBB) for the mean of the susceptible population. Typically, distinct
regression parameters are used for the two regression functions, though a “shared parameter
approach has also been proposed.” Commonly, the two models are fit simultaneously using
maximum likelihood.

Much of the zero-inflated model literature has been focused on model fit, including fit for
extended zero-inflated models involving, for example, random effects for clustered and
longitudinal data,8-11 and semiparametric regression.12: 13 A related area of focus has been
score tests for zero-inflation.14-17 Considerably less attention has been given to the problem
of assessing the overall effect of a predictor variable, for example, a treatment or exposure,
on the response variable. Typically, papers presenting results from a zero-inflated regression
analysis show separate exposure effect estimates for the susceptible probability and for the
susceptible population mean.3: 18 However, in clinical trials and observational studies of an
exposure the primary interest is typically in the comparison between treatment or exposure
groups based on the overall mean, possibly adjusted for baseline covariates. For such
studies, zero-inflated models are primarily of interest for providing a good fit to the data, in
which case the mixture distribution may be viewed as describing a single population, rather
than literally interpreted as comprising two populations. In fact, a number of researchers
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have questioned the applicability of the two population interpretation for their data or for
any situation not involving structural zeros.18 Mwalili et al.,> for example, considered it
implausible that there was a subpopulation within their study sample that was truly immune
to dental caries. They noted that, while the two-population interpretation provides a
convenient explanation of zero-inflated models, it is equally valid to consider the zero-
inflated distribution as applying to a single population.

Inference for the overall mean for the ZIP model was considered by Béhning et al.3 They
suggested two simple approaches to obtain confidence intervals for the overall mean for a
population. Yau and Lee,® considering a ZIP regression model with random effects, provided
an estimate and confidence interval for the overall mean at a specified set of covariate
values. However, these approaches did not address inference for an overall treatment effect
while adjusting for covariates. Moulton et al.” noted that overall inference was possible
using a two degrees of freedom test that, for two exposure groups, would simultaneously test
for an effect of exposure on the susceptible probability and for a difference in means
between the exposed and non-exposed groups given susceptible. However, this test is not
directed at the overall mean (and is not equivalent to testing for an overall mean difference)
and does not provide an estimate of the magnitude of the overall effect.

This paper presents two new methods for assessing an overall mean exposure effect in the
context of zero-inflated regression models. Because accounting for over-dispersion in the
(susceptible group) count component of the model is often found to be important, we will
focus on the ZINB and ZIBB (as opposed to ZIP and ZIB) models. In the first approach,
which we refer to the average predicted value (APV) method, estimated overall means are
calculated as an average over individual predicted response values under each exposure
status. The approach in this paper represents an extension of a method used by a number of
previous authors. The method, also referred to as ‘model-based standardization’,1° was used
by Greenland?? for estimation of a relative risk, Bender et al?! to compare the number
needed to treat between groups based on a logistic regression model, Austin?2 for estimating
the odds difference assuming a logistic regression model, and Zou® who considered the risk
difference and risk ratio for probit, logistic, and extreme value regressions. The method was
described by the latter author as one of “predicting counterfactuals”, as it uses predicted
responses for the unobserved as well as the observed exposure state for each individual. An
advantage of the APV method exploited by previous researchers is that it can be applied to
various functions of the group proportions (for example, the risk difference and risk ratio).
However, previous implementations of the APV method were confined to binary responses
in standard regression models for binary data, while the present paper applies the approach
to count data using the relatively complex zero-inflated models. In the present context, the
APV method can be used to estimate various desired functions of group means, including
the ratio and difference. Variance estimation is possible using the delta method or a
bootstrap resampling technique.

The second method presented in this paper uses log-linear models for both the binary and
the count components of the ZINB model. This approach allows inference for the ratio of
group means in a direct manner as this function is no longer dependent on covariates. Again,
either the delta method or bootstrap approach may used for variance estimation. An apparent
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drawback of this second approach is that the log link function is less suitable for a binary
response variable than the logistic function.

The remainder of this paper is organized as follows. In the next section we describe the two
new approaches for inference on overall exposure effects in the ZINB and ZIBB models. In
Section 3, we apply the new methods to a study of dental caries in very low birth weight
(VLBW) and normal birth weight (NBW) adolescents. In Section 4, we present a simulation
study that compares the alternative methods in terms of bias, efficiency, and coverage of
confidence intervals. Section 5 provides concluding remarks.

2 Estimation of overall effects in zero-inflated models

2.1 Zero-inflated count models

We will focus on two distributions for y; the (count) response for an individual: the zero-
inflated negative binomial (ZINB) and the zero-inflated beta-binomial (ZIBB) distribution.
Zero-inflated distributions may be derived as a mixture of two latent subpopulations: one
(“susceptible’) with responses distributed as negative binomial (with mean A, say) and the
other (“non-susceptible’) with responses equal to zero with probability 1. The mixing
probability, specifically, the probability of being in the ‘susceptible’ population, is denoted
as y. Then, the ZINB probability function may be written as:

: _ ) (A=¢)+dnb(y;A, ¢) fory=0
P(y7¢a/\’90)_ { ¢nb(y,>\a99) fOl“y>0 (1)

where

nb(y;A,¢):z§??11//;)<1+1W\)1/wX(ﬁ)g

is the negative binomial probability function with mean A and dispersion parameter ¢. The
mean of yis then ¢ = wA. The negative binomial mean (1) and the ‘susceptible’ probability
(w) may in turn be modeled as functions of covariates. Conventionally, a logistic regression
model is used for wand a log-linear regression model for A (corresponding to the canonical
link functions). We write these models as

logit (wi):OZO"‘OflfﬁH‘a,wi In(A;)=po+5 zi+6 w; 2)

where ag, a1, fp and B, are unknown parameters, a and §are unknown parameter vectors, x;
is the exposure or treatment indicator (equal to 1 if exposed, 0, otherwise), and w;is a vector
of observed covariate values for individual 7with response y; (/=1,..., n). It is not necessary
to use the same covariates for the two models, but is done here for ease of presentation. It is
common and often scientifically sensible to include the treatment indicator, as well as
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appropriate prognostic factors, in both component models. We assume that the y;are
independent, so that the likelihood function may be written as the product of individual
probability functions (1) where individual parameters y;and A;are replaced using the
appropriate functions of regression parameters given by (2).

For bounded counts, it may be of interest to use a distribution such as beta-binomial instead
of the negative binomial. Like the latter, the beta-binomial distribution can accommodate
over-dispersion, and therefore will often be preferred in dental applications to the binomial
distribution. Allowing for zero-inflation leads to the zero-inflated beta-binomial distribution
(Z1BB),8 whose probability function may be written as:

. _ ) (=) bb(y;n, A, @) ify=0
P(y’w’n’)"@)_{ Y bb(y;n, A, @) ify>0 ?)

where

( y ) (b Otk) {ITZy (1= Ak) }
{2 (+ke) |

bb(yn, A, @)=

)

nis the specified maximum count, A is the probability of an event (for example, DMFT for a
given tooth), and ¢ is a dispersion parameter. Here the mean count is obtained as = wn A.
As with ZINB, we can model the susceptible probability (¢) and the probability of an event
for susceptibles (1) as a function of covariates, in this case, using logistic regression for both
models. The above regression models for ZINB and ZIBB may be used directly to obtain
predicted counts for specified covariate values. However, our goal for both the ZINB and
Z1BB models is to do inference on the overall mean count, in particular, to compare means
between groups.

2.2 Average predicted value approach

The first method will be referred to as the average predicted value (APV) approach. This
approach may be flexibly applied to estimate any function of the overall response means for
the two exposure groups while adjusting for covariates. The first step in the approach
involves the calculation of the model-predicted responses (for example, y; z///ffor the ZINB
model) for each person (possibly confined to a designated reference population), both if the
person were exposed and if the person were not exposed, and where the other covariates are
fixed at the person’s observed values. Note, of course, that each person is either exposed or
not exposed, so that one of these predicted values will represent a counterfactual response.
For discrete covariates, we can simply calculate the predicted response, if exposed and if not
exposed, for each distinct set of covariate values in the covariate space. For continuous
covariates, we may, alternatively, obtain predictive functions of the covariates for both the
exposed and unexposed states. The mean for a given exposure status is then obtained as the
average of the predicted values (or integral of the predictive function) over the covariate
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distribution for the chosen reference population (for example the exposed group). The
exposure effect may then be defined as an appropriate function of the two means, for
example, the ratio or difference.

To present this approach formally, we let Aw) be the joint distribution function for the
covariate vector w in the reference population. Then the average difference in predicted
responses is

Op = [[E(ylz=1,w)-E(y|z=0,w)|dF(w) (4)

D

where the integral (possibly multivariate) is over the covariate space for w. The proposed
approach to inference uses a regression model (such as ZINB or ZIBB as discussed above)
to determine the predicted values of y given the covariates. When the covariates (w) are
discrete, then the integral in (4) may be written as a sum. For either categorical or
continuous covariates, a model for the typically unknown, and possible multivariate,
distribution function, Aw), must be chosen (in conjunction with a choice of the covariate
space). For categorical covariates, it will often be reasonable to assume a multinomial
distribution based on the observed categories. In some cases, alternative covariate spaces, for
example obtained from model smoothing, may be of interest. For continuous covariates, an
appropriate continuous distribution (such as normal or multivariate normal) can be chosen,
in which case, parameter values must be estimated. Then, estimation of g may proceed by
integrating over the estimated distribution of the covariates (w), possibly using a numerical
integration technique. Alternatively, the distribution can be non-specified and the empirical
distribution function used. This amounts to summing over the observed multivariate
covariate values (possibly for a subgroup representing the reference group). We will
consider an implementation of the parametric approach (i.e., integrating over an assumed
distribution for w) in our simulation study (Section 4). However, our emphasis in this paper
is on the empirical approach (averaging over the empirical distribution function). A further
description of the empirical approach, as applied to the zero-inflated regression models,
follows.

For the ZINB regression model (2), the expected (or ‘predicted”) value for an individual with
observed covariate values w;and (possibly counterfactual) exposure status x;, would have the
form

E(yi\z,wi):logit_l(a0+a1z—|—a"wi)exp(ﬂo—l—,@’lr—i—ﬂ/'wi). (5)

To estimate 9 (4) we use the expression in (5) plugging in estimated regression parameter
values following the fit of the model (2) to the whole sample. A predicted effect of exposure
x for individual 7is obtained as Ay;| x=1,w)) — E(y;| x=0,w)). An estimate of the mean
difference (4) is then obtained by averaging over the empirical distribution function of the
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covariates (w), possibly for a subsample representing a reference group (denoted by G with
sample size ng). Thus, our estimate of the mean difference for the ZINB model becomes:

N 1 R N N N A~ N -~ 1A N ~ ~
0D:T2'ecloglt L(ag4-61+6 w;)exp(By+3,+8 w;)—logit ~ (do+& w;)exp(By+B w;).
G 7

(6)

The expression in (6) has the form of the well-known standardization formula23 as used for
stratified analysis. However, the standard approach to a stratified analysis uses observed
differences for the exposed versus non-exposed group from each subpopulation (stratum),
whereas the present approach uses model predicted values, which are calculable even if
there are no representatives for one of the exposure groups for a given set of covariate
values. To the extent that there is a lack of overlap in the distribution of the covariates for the
two exposure groups, this approach will involve some degree of extrapolation beyond the
multivariate support of the data.

An alternative function of possible interest would be the ratio of response means for the
exposed versus unexposed groups. Here the APV estimand would be the ratio of expected
values, p = [[Ex =1, Wy dRW)/[ E(}x =0, w)]dHAw), which can be estimated given
model (2) as

@R :Zleclogitfl(do—kézl_,_dlwi)exp(ﬁo—f—ﬁl—l—ﬁ wi)/z_Gclogitﬂ(d0+d/wi)exp(/3’0+fi w;).

U]

The variances for 95 and 9,; can be estimated via the delta method. For w consisting of a
small number of cells, this may be accomplished easily by writing out the function of
parameters (as given in (6) or (7)), and using, for example, the ‘estimate’ statement in SAS
Proc NLMIXED. With continuous covariates it becomes cumbersome to write out the
function, but the derivatives can be derived in order to obtain the delta method estimate. This
approach, particularly with multiple continuous covariates, can be tedious. An alternative
approach is to obtain variance estimates via bootstrap resampling.2 The bootstrap approach
has the potential additional advantage of allowing the computation of confidence intervals
without requiring a distributional assumption, such as normality, for the estimator. Under the
assumed models, the APV estimators of the mean ratio or difference, being functions of the
maximum likelihood estimates of the regression coefficients, are themselves maximum
likelihood estimators and therefore consistent. Note that in the special case in which the logit
function for the susceptible probability involves only an intercept term, the overall mean
model (5) reduces to a loglinear model (with intercept adjusted for the zero inflation). In this
case, the mean ratio (exposed versus non-exposed) is easily obtained as log /.
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2.3 Direct (log-log model) approach

Next we consider a simple alternative to the average predicted response approach. Instead of
using a logistic regression model for the susceptible probability, we use a loglinear model.
We thus assume the set of models

hl(iﬁi):ao-l-alﬂﬂrf-a/ w; In(N)=Fo+5 zi+8 w; (8)

which we refer to for convenience as the ‘log-log model’. (In a similar vein, we will refer to
model (2) as the ‘logit-log” model and the model for ZIBB as ‘logit-logit”). Using the log
link for both regression models provides an overall exposure effect that does not depend on
the covariate values. Specifically, we can obtain the ratio of the overall means (exposed
versus non-exposed groups) as

_ ,Lﬂ:exp(ao—i—al+a’wi)exp(ﬁo+ﬁl+ﬂ w;) o1 +h

0., = 7
140 exp(ao+a'w;)exp(Bo+8 w;) 9)

RL

The mean ratio, &g, is directly estimable from the fit of the model (8) by plugging
regression estimates for a1 and $; into the simple expression on the right hand side of (9).
This provides the estimate, G,L;L = e21* A1 The delta method estimate of the variance of 9,;L
is readily obtained, for example using the ‘estimate’ statement in SAS Proc NLMIXED.

The log-log model approach has the advantage of simplicity. However, it is limited to
inference on the ratio of means, whereas the APV approach is flexible in the specification of
the functions of the means, allowing, as shown above, inference for both the difference and
ratio of means. An obvious potential limitation of the log-log model is that the log function
may not be the canonical, or even an apparently suitable, link function for some
distributions. For example, when modeling the susceptible probability in the ZINB model, or
either component in the ZIBB model, the logit link is preferred to the log link, because the
mean in these cases is restricted to the range 0 to 1, while the loglinear model may produce
predicted probabilities greater than 1. For the goal of inference for the overall mean,
however, it remains to be studied, in real data and in simulations, whether this apparent
inadequacy in the model translates into a practical problem.

It might appear to be of interest to apply the APV approach to the ZINB/log-log model.
However, it turns out that the resulting estimand, whether using the parametric (integration)
or the empirical (summation) approaches for averaging over the covariates, reduces
algebraically to the direct approach estimand (9). This result is easily shown and a brief
proof is provided in the Appendix.
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3 Application to Dental Data

Our motivating example comes from a study of dental caries in VLBW and NBW
adolescents.?® The subjects were previously recruited in a cohort study that followed them
from birth and assessed various psychosocial factors as well as demographic variables.2
The dental study involved a clinical assessment at around age 14, providing the DMFT score
and other dental outcomes. In the original study, the NBW (control) group was selected in
order to obtain similar distributions to the VLBW group for key baseline (“stratification’)
variables, namely, race, socioeconomic status (SES), and sex. Therefore, it is sensible to use
the VLBW (‘exposed”) children as the reference group, although the distribution for the
three stratification variables would be expected to be similar in the two groups. The original
study separated the VLBW infants into groups with and without brochopulmonary
dysplasia; however, we have combined these two groups for present purposes. The analysis
(complete case) sample sizes were 139 and 85 for the VLBW and NBW groups,
respectively.

A primary study objective was to compare the mean DMFT for VLBW versus NBW
adolescents, while controlling for race (African American versus other), SES (low versus
high) and sex. To compare alternative approaches, we fit the following models: 1) normal
distribution (with standard linear regression model), 2) Poisson (loglinear model), 3)
negative binomial (loglinear model), 4) ZIP/logit-log model, 5) ZIP/log-log, 6) ZINB/logit-
log, 7) ZINB/log-log model, and 8) ZIBB/logit-logit model. For the ZIBB model, an upper
bound of 28 was used for DMFT, corresponding to the maximum possible number of
affected teeth. Goodness of fit for each model was evaluated using the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), and a Pearson chi-square test.
The latter compared empirical versus predicted frequencies across DMFT categories (0, 1, 2,
..., 9,>9). The predicted frequencies were marginal, that is, calculated as a weighted
average over strata-specific predicted values. Following, Rose et al.18 we used the number of
categories minus one (that is, 10) degrees of freedom for the chi-square tests. This approach
essentially assumes that parameter values are known. A refined approach, taking into
account parameter estimation in the degrees of freedom might be possible but is not
available. Simply subtracting the number of estimated model parameters is not a suitable
approach, particularly as we are predicting the marginal counts (and for some models the
number of parameters is as high as the number of categories).

From Table 1, we see that according to all goodness-of-fit criteria, the last three models
(ZINB/logit-log, ZINB/log-log, and ZIBB/logit-logit) are superior to the first five models.
Furthermore, the last three models show adequate fit according to the chi-square statistic
whereas the first five models (with the possible exception of the negative binomial model)
do not. The last three models appear to be very close in fit according to AIC and BIC.
Interestingly, the ZINB model with log-linear regression functions for both the susceptible
probability and the susceptible mean (‘ZINB/log-log’) is best according to both AIC and
BIC. For example, AIC for ZINB/log-log is 809.2, slightly better than ZINB/logit-log (AIC
=811.3) and ZIBB (AIC = 811.1). We also considered a log-log model for ZIBB, as such a
model would appear to be possible and have the potential advantages noted above. However,
we were not able to obtain convergence using this model for the dental data.
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The above results indicate that the data show significant zero inflation, as the ZIP and ZINB
models provide a better fit than the Poisson and negative binomial models, respectively. We
note, for example, that the marginal predicted frequency of zeros under the ZINB model is
107 (or 48% of the sample), the same as the observed number of zeros. Of that number, the
contribution (that is the marginal predicted frequency of zeros) of the negative binomial
component of the ZINB model is only 21, indicating a ‘zero-inflation” (or marginal
predicted frequency of non-susceptibles) of 107 — 21 = 86. In addition, there is significant
over-dispersion, as indicated by the superior fit for the negative binomial and ZINB models
compared to the Poisson and ZIP models, respectively. Although the ZIBB takes into
account the biological upper bound for DMFT, it does not appear to have an advantage in fit
over the ZINB models, possibly because the observed maximum (and mean) DMFT is
considerably lower than the biological maximum, and thus biologically impossible DMFT
values have very low predicted probabilities under the ZINB models. The standard linear
regression model provides a poor fit, with considerably higher (worse) AIC and BIC values
than the other models. Figure 1 shows the predicted frequencies for the ZINB/logit-log and
Z1BB models against the histogram of observed frequencies for the DMFT counts.

Next, we used the three models that provide a good fit to the dental data (namely, ZINB/
logit-log, ZINB/log-log, and ZIBB/log-log) to assess the effect of exposure (VLBW versus
NBW) on the overall mean DMFT. We wished to assess both the difference in means and the
ratio of the means for the exposed versus non-exposed groups. For the ZINB/logit-log and
Z1BB/logit-logit models, the APV approach was used for both the difference and the ratio of
means. For the ZINB/log-log model, the direct approach, which allows inference for the
ratio but not the difference in means, was used.

Table 2 shows the results of inference for the difference and the ratio of exposure group
means for the three models. The table includes the estimated mean difference (mean for
VLBW minus mean for NBW), the standard error (estimated via the delta method), and the
Wald test p-value of the null hypothesis of the mean difference equal to 0. It also has the
estimated mean ratio (mean for VLBW over the mean for NBW), standard error, and Wald
test p-value of the null hypothesis of the mean ratio equal to 1. The estimated mean
differences for the ZINB/logit-log and ZIBB/logit-logit models (adjusting for covariates) are
-0.62 and —-0.58, respectively, thus showing a lower mean DMFT for VLBW than NBW
adolescents; however, this difference is not statistically significant by either method. The
estimated mean ratio from the ZINB/logit-log model is 0.73; that is, the mean DMFT for the
VLBW group is an estimated 0.73 times the mean DMFT for the NBW group, though not
statistically significant at the 0.05 a-level (p=0.09). A similar estimate and conclusion is
provided by the ZIBB model. For the ZINB/log-log model the estimated ratio is 0.68,
showing a more pronounced birth weight effect that is statistically significant (p=0.04). The
unexpected finding of a lower estimated mean DMFT for VLBW than NBW adolescents
corroborates the results in the primary report on these data.2> The somewhat different results
among our alternative approaches suggested the need for simulation studies to help
determine the preferred model and method of inference.
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4 Simulation study

4.1 Simulation study design and methods

In this section, we describe our approach to simulation studies intended to further investigate
the properties of the proposed methods. Our primary goals were to determine the validity of
overall mean ratio estimator using the APV method for the ZINB/logit-log model, as well as
robustness of the direct method which assumes the ZINB/log-log model. For comparison,
we also considered analogous scenarios in which the ZINB/log-log model is correct. In
addition, we wished to study the APV method under the ZIBB/logit-logit model in the
situation of a known upper bound to the count response variable, and to investigate the
robustness, under this model, of estimates assuming the ZINB model (either logit-log or log-

log).

In our first simulation study, we assumed a ZINB/logit-log model. The logistic regression
model for the susceptible probability and the loglinear model for the susceptible population
mean both included a binary exposure indicator (1 if exposed, 0, otherwise) and a single
covariate. The model is thus given as (2) above with a’= ay and /= /%, where a, and /5, are
unknown scalar coefficients for the covariate, w. We considered both the case of a
continuous and a categorical (binary) covariate. The other parameter that needs to be
specified is the negative binomial dispersion parameter, ¢.

We considered five scenarios which are distinguished in the magnitude of the effects of the
exposure and the covariate on the susceptible probability (corresponding to parameters a;
and ap, respectively) and on the mean for the susceptible population (5 and /3,
respectively). The scenarios were specified as 1) small exposure and covariate effects
(approximating estimates from the dental data); 2) small exposure and large covariate
effects; 3) large exposure and small covariate effects; 4) large exposure and covariate effects;
and 5) null exposure and small covariate effects. The regression coefficient values used in
the simulation study for each of these scenarios are given in Table 3. For the negative
binomial model, the dispersion parameter () for each scenario was set to 0.2, 0.5, and 1.
The value 0.5 was chosen as it is close to that estimated from the dental data; the other two
values were chosen to study the effect of varying values of the dispersion parameter.

In addition, we considered different situations with regard to covariate balance. Specifically,
we included a balanced case where, in the binary (0-1) covariate case, each exposure group
had a 50% frequency of u=1, and in the continuous covariate case, the expected value of the
covariate was 10 and the standard deviation was 2 for each exposure group. In addition, we
included two unbalanced cases. In one case, the imbalance ‘favored’ the exposure;
specifically, in the binary covariate case, the frequencies of n=1 were 75% in the exposed
group and 25% in the unexposed group, and in the continuous covariate case, the expected
values of the covariate were 10 in the exposed group and 7 in the unexposed group with a
standard deviation of 2 in both groups. In the other unbalanced case, the imbalance favored
non-exposure; that is, the above proportions/means were used with the groups switched.

For each scenario and type of covariance balance, 5000 simulated datasets were generated.
Sample sizes of 200 (100 per exposure group) and 2000 (1000 per exposure group) were
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used. The exposure indicator and covariate were generated independently for individuals
within each dataset and between datasets using pseudorandom number generators in
SAS/IML (SAS System, Version 9.2). In the case of a binary covariate, the randomization
was constrained to assure the targeted balance in the covariate levels over the two exposure
groups. In the continuous case, the covariate was generated independently from a normal
distribution. The response variates were then generated independently according to the
ZINB distribution with regression model (2) given the individual exposure and covariate
values.

The true value for the ratio of means is defined by the function on the right hand side of (7)
with the true coefficients in place of the estimates. We denote this quantity, representing a
sample version of 0z, as MR (mean ratio). In the simulations studies, MR was either equal to
Or, in the case with a categorical covariate (because the empirical distribution of win this
case is the same as the true distribution), or a close approximation (for a continuous
covariate). For comparison, in the continuous covariate case, we also calculated true values
by integrating over the true (normal) distribution of the covariates. Integration was carried
out using the “quad” function in SAS/IML, which uses an adaptive (Romberg-type)
numerical integration technique. Note that the true value was fixed over the simulations in
the binary covariate case, due to the imposed balance, but could vary over simulations in the
continuous covariate case. In the latter case, for use in tables, a summary ‘true MR’ was
calculated as the average MR over the simulated data sets for each scenario.

For each dataset the competing methods (that is, the APV method assuming ZINB/logit-log
or the direct method assuming ZINB/log-log) were used to estimate the ratio in overall
means for the exposed versus unexposed groups, and to construct a 95 percent confidence
interval for the ratio. From the simulations, we calculated the average estimate of the mean
ratio (EMR); the average percent error (PE = 100 x (EMR — MR)/MR), a measure of relative
bias; the standard deviation (SD) of EMR,; the average estimated standard error (SE) of
EMR; and the coverage probability (CP, percent of simulated datasets for which the 95
percent confidence interval for MR covered the true value). For comparison, in the
continuous covariate case, we also computed the APV estimator by integrating over the
distribution of the covariate using the numerical integration method described above. The
covariate distribution was (correctly) assumed to be normally distribution, but with
parameters estimated from the exposure (reference) group data.

In a second simulation study, we assumed a ZIBB/logit-logit model. As before, we included
a single binary exposure variable and a single (either continuous or binary) covariate. We
examined similar scenarios to those described above for ZINB. The regression coefficient
parameter values used in this simulation study are given in Table 4. The ZIBB dispersion
parameter was set at ¢ =1/9, 1, and 9 (with 1/9 chosen as a value close to that estimated from
the dental data). In this second study, we compared several approaches for estimating the
overall exposure effect: the APV method assuming ZIBB/logit-logit (the correct model in
this case), the APV method under ZINB/logit-log, and the direct approach assuming ZINB/
log-log. The same simulation statistics listed above for the ZINB model were obtained.
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4.2 Simulation study results

We focus on results for the continuous covariate case; results for the categorical case are
similar and are therefore not presented. We note that for both the true estimands and the
APV estimators, calculated values based on the empirical approach (which sums over the
empirical distribution function of the covariate) are very close (usually within 0.001) to the
values obtained by integrating over the (estimated) normal distribution of the covariate. The
results are thus provided only for the former approach. Table 5 gives the results for the first
simulation study in the case of 7= 100 per group and dispersion parameter equal to 0.5. We
see over all five scenarios that the APV method under the true (ZINB/logit-log) model
produces a small positive bias in its estimation of the mean ratio. In particular, the average
percent error (PE) is less than 3.1% for all five scenarios in the balanced case and is less than
6.0% when there is imbalance in the covariate between the two groups. The average
estimated standard errors were found to be slightly lower than the true (simulation) values,
and thus, the coverage probabilities of 95 percent confidence intervals slightly lower than the
nominal level, though still within 2% for most scenarios. We note that a small number of
simulated data sets did not provide estimates due to lack of convergence. This occurred only
a few times for both the APV and direct methods in the simulations with /7= 100 per group,
and did not occur for 7= 1000 per group.

For the direct (log-log) method, the average percent error is less than 3% for all five
scenarios in the balanced case and less than 6.0% when there is imbalance in the covariate
between the two groups favoring exposed. Standard errors tend to be slightly underestimated
and coverage probabilities somewhat lower than, but usually within a few percent of, the
nominal level. However, in the unbalanced case favoring unexposed, the average percent
error (in absolute value) is relatively high (-12.2%) in the case of large exposure and
covariate effects (Scenario 4). The standard error is also markedly underestimated in this
case and the coverage of the 95% confidence interval is only around 80%.

When the sample size per group is increased to 1000 (Table 6), the APV approach shows
very low bias (less than 1%) and good coverage (within 2 percent) for all scenarios. In
contrast, the direct approach has relative biases of up to 12 percent in the unbalanced
situations as before. In the case of a binary covariate, on the other hand, the properties of the
direct approach are better, with relative bias less than 3% and coverage within 3 percent of
the nominal level for all scenarios (results not shown).

We also considered ZINB/log-log as the true model in scenarios with a single binary
covariate. In this case, the relative performance of the APV (logit-log) and direct (log-log)
methods are essentially reversed from the previous results (results not shown). Note that the
continuous covariate case was not considered here, as the loglinear model could then
produce predicted susceptible probabilities greater than 1.

Not surprisingly, as the dispersion parameter increases, the variances and small sample
biases increase. At the smallest value (¢ = 0.2) the nonconvergence rate was somewhat
increased; of course, in practice, a small estimated value for the ZINB dispersion parameter
would suggest that the zero-inflated Poisson may be a preferred model. The relative
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performance of the APV and direct methods for other dispersion parameter values are
similar to that seen for the presented results (for ¢ = 0.5) and therefore are not shown here.

The second simulation study examined different estimators of the overall mean ratio under
the ZIBB/logit-logit model; results for dispersion parameter equal to 1/9 are presented here.
The APV method based on the ZIBB/logit-logit (correct) model provides relative biases of
less than 3% in the balanced case and less than 6% in the unbalanced case for all scenarios
with 7= 100 per group, and less than 1% for all scenarios with /7= 1000 per group (results
not shown). Fitting the ZINB/logit-log model to these data and using the APV method
results in relatively small positive biases of less than 4.2% in the balanced covariate case and
less than 7.1% in the unbalanced case for 7=100 per group with a continuous covariate
(Table 7). As before, standard errors are somewhat underestimated and coverage
probabilities are lower than the nominal level. For 7=1000 (Table 8), the relative bias in the
balanced case is less than 2% and the coverage of confidence intervals is within 0.5% of the
nominal (95%) level. For the unbalanced case, the relative bias is still less than 4% and
coverage of confidence intervals within 2.5% of the nominal level for all scenarios.

For the direct approach (assuming the ZINB/log-log model), the average percent error (in
absolute value) for 7=100 per group is less than 6% for all five scenarios, but is as high as
25% when there is imbalance in the continuous covariate (Table 7). We note that there were
two extreme mean ratio estimate values (of the order of 101° or greater) obtained for the
direct approach in the unbalanced covariate case. These values were removed from the
overall statistics provided in the table. For 7=1000 per group (Table 8) the average percent
error (in absolute value) of the direct estimator is up to 4% in the balanced case and up to
29% in the unbalanced case, both occurring for Scenario 4 (high exposure and covariate
effects). The cases of high percent error also tend to have substantially under-estimated
standard errors and low coverage of confidence intervals. The results for a categorical
covariate (not shown) are somewhat better with an average percent error for the direct
method of less than 3% in the balanced case and less than 8% in the unbalanced case for 7=
100 per group, and less than 1% in the balanced case and less than 5% in the unbalanced
case for 7= 1000 per group.

Similarly to the ZINB model results, as the ZIBB dispersion parameter increases, the finite
sample bias and variance increases. The relative performance of the APV and direct methods
for other dispersion parameter values (¢ = 1 and 9) are similar to that for ¢ = 1/9. These
results and others not shown here are available upon request.

5 Discussion

In this paper, we have studied the use of zero-inflated models for comparing overall response
means between groups (exposures or treatments) while controlling for baseline covariates, as
is often of interest in both clinical trials and observational studies. Zero-inflated models are
appealing because of their ability to account for ‘extra’ zeros, relative to standard models
such as Poisson and negative binomial, allowing them to often provide a good fit to count
data from dental and other studies.
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The first proposed method, the ‘average predicted value’ (APV) approach, involves the
comparison of model-predicted response values for each individual under both the exposure
and no-exposure conditions. A similar approach, as we discussed in the introduction, has
been used by previous researchers in other contexts. However, the present paper generalizes
this approach and extends it, apparently for the first time, to zero-inflated models. As we
have sought to reveal, the APV approach is very flexible, being applicable to any zero-
inflated regression model as well as other models not presented here. Other models of
interest for zero-inflated data include the hurdle model2” and mixture models28, possibly
extended to more than two subpopulations. In addition, the APV approach can be used for
inference on any specified function of group means, such as the ratio or difference. We
presented two version of the APV approach: one (‘parametric’) integrates the predicted
function with respect to the covariates over their assumed parametric distribution, and the
other (‘empirical’) sums over the empirical distribution of the covariates. The latter
approach, which was emphasized in this paper, has several advantages: 1) it avoids
distributional assumptions regarding the covariates; 2) it is computationally simple; and 3) it
provides exposure effect estimates that are very close to that of the parametric approach
when the model for the latter is correct, even for modest sample sizes (as shown in our
simulation studies using normally-distributed covariates).

Upon the request of a referee, we conducted further simulation studies of the ZINB/logit-log
model involving two covariates. In these scenarios, the two component models (logit and
loglinear) either had the same covariates or one different covariate. The common covariate
was either balanced or unbalanced and the second covariate was balanced across exposure
groups. The covariates were generated as normally distributed and mutually independent.
Both the empirical and parametric (integration) versions of the APV method were readily
extended to these multiple covariate cases. The former used the same expression as before
(7), possibly with different covariates (w) for the two models. The parametric approach
integrated over the (correctly specified) multivariate normal distribution for the covariates
(with estimated means and variances). The pattern of results and overall conclusions were
quite similar to the single covariate case, and detailed results are therefore not included here
but are available upon request.

In many situations, the variance of the estimated exposure effect can easily be obtained
using the delta method (as was used in the present study). However, a bootstrap approach
may be preferred in more complex situations. Our simulation studies showed low bias for
the APV estimator under the correct (ZINB or ZIBB) model, even for the case of an
unbalanced continuous covariate. However, there was a tendency of the delta method to
underestimate standard errors (resulting also in under-coverage of confidence intervals) for
relatively small sample sizes (7= 100 per group). The method based on the ZINB/logit-log
model still does well when the true model is ZIBB. The small biases found appear to be due
more to the difference in the shape of the functions (beta binomial versus negative binomial)
than the fact than the negative binomial distribution ignores the upper bound of the count.
This is seen by the very low bias found when we fit the ZINB model to data generated from
a truncated ZINB distribution (results not shown here).
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The second proposed method (the “direct’ approach) utilizes loglinear models for both
components of the zero-inflated model. The primary appeal of this approach is its simplicity.
Under the ‘log-log model’, the ratio of means is readily obtained as a function of the
regression coefficients for exposure that does not involve the covariates. However, this
approach is not applicable for other functions that may be of interest, such as the difference
in group means. In addition, it is only applicable to certain zero-inflated models, for example
ZINB, but not others such as ZIBB.

Both of the proposed methods were applied successfully to our dental data, corroborating
previous results?® that showed an unexpected negative (though, at best, marginally
statistically significant) relationship between VLBW (versus NBW) and dental caries
(DMFT). In light of our simulation studies, the fact that the results for the APV (ZINB/logit-
log) and direct (ZINB/log-log) approaches were not greatly different may be due to the fact
that the covariates (as assured by design) were fairly well balanced across the exposure
groups in the dental study data.

An interesting finding of our simulation studies is that even when the loglinear regression
function is incorrect (that is, the susceptible probability for the ZINB model follows a
logistic regression rather than loglinear model), the direct approach in the case of a balanced
covariate appears to provide valid inference for the overall mean ratio, and is also fairly
robust if the true model is ZIBB/logit-logit. However, in the case of an unbalanced
covariance this method can be substantially biased, particular when the covariate has a large
effect on the outcome. Note that we consider the logit-log, a priori, as more plausible than
the log-log model, as it provides the appropriate range restriction for the susceptible
probability. However, when the log-log model is correct, as may be obtained in the case of
categorical or bounded continuous covariates, then the results described above are
essentially reversed for the APV (logit-log) and direct (log-log) estimators. It is therefore
useful to note that either estimator appears to do well, even if an incorrect model choice is
made, in the case where the covariate is balanced across exposure groups. Despite their
being balanced, it is important to include any prognostic covariates in nonlinear models29:3
such as those considered in the present paper; thus, our proposed methods are relevant in the
balanced as well as unbalanced covariate cases.

In conclusion, we recommend the APV as an appropriate and flexible method for estimating
covariate-adjusted overall exposure effects based on the ZINB (logit-log) and ZIBB (logit-
logit) models. The direct (log-log model) approach may have a role as a quick and easy
method for estimating the mean ratio in the case of a balanced covariate or when there is
reason to suppose that the log-log model is correct. Further work is needed to study possible
improved variance estimates for APV estimators for small samples.
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Appendix: Demonstration of equivalence of estimands for the log-log

model

Here we show that the APV approach to defining the mean ratio estimand, when applied to

the ZINB/log-log model, produces the same estimand as the direct approach (9). This result
obtains regardless of the distribution of w, thus for either the empirical distribution function
(over a finite reference population G) or an assumed parametric (large reference population)
distribution function for w.

For the empirical approach,
0=, . exp(aotoq +a' w;)exp(Bo+5 —I—ﬂ/wi)/ziecexp(ao +a'w;)exp(Bo +,B/wi)

:exp(oqﬁ—oq—I—,Bo—l—,@l)ZieGeXp{(a'—l—ﬂ/)'wi} /exp(ao—l—,ﬁ’o)ziecexp{(a,—hB,)wi}
=exp(a1+51).

For the parametric approach, the result is shown in a similar manner with the sum replaced
by an integral (with respect to w, over an arbitrary distribution function Awj)). These results
also hold where the two component models involve different covariates.
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Figure 1.

Observed and predicted frequencies for each number of DMFT, using the dental data.

Predicted values are from the ZINB/logit-log (A) and ZIBB/logit-logit (B) models.
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