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Cas9/CRISPR has been reported to efficiently induce targeted gene disruption and homologous recombination in both prokaryotic
and eukaryotic cells.Thus, we developed a Guide RNA Sequence Design Platform for the Cas9/CRISPR silencing system for model
organisms. The platform is easy to use for gRNA design with input query sequences. It finds potential targets by PAM and ranks
them according to factors including uniqueness, SNP, RNA secondary structure, and AT content. The platform allows users to
upload and share their experimental results. In addition, most guide RNA sequences from published papers have been put into our
database.

1. Introduction

Gene engineering technology has always been a hot topic
in life science research. With the development of gene
modification technology, certain genes can be knocked out
or knocked down to a lower level. The appearance of zinc
finger nuclease (ZFN) and tale nuclease (TALEN) has greatly
accelerated progress in this field, but their efficiency is often
unpredictable and it is difficult to target selected genes [1–8].

Recently, Cas9/CRISPR has been reported to successfully
induce targeted gene disruption and homologous recombi-
nation in both prokaryotic and eukaryotic cells with higher
efficiency compared with ZFN and TALEN [9–13]. Addition-
ally, it is easier to design guide sequence and easy to use
for Cas9/CRISPR system [10]. This novel technology will be
of great potential for application in both research field and
clinical trials.

However, there is no available tool for the guide RNA
design of Cas9/CRISPR silencing system. Although Mali et
al. have reported the construction of unique whole human
genome guide RNA library, covering more than 40% human

exons [9], they did not provide a tool for researchers to design
novel target sequences for other model organisms.

Existed library also did not take into consideration related
influencing factors, such as SNP, deletion or insertion on the
genome, and potential RNA secondary structure. According
to our current understanding of the gRNAmaturing process,
the secondary structure of gRNA is crucial for Cas9-gRNA
complex [14]. The 20 bp guide RNA sequence is used to bind
with target site in genomes. If they are mostly involved into
RNA loops, the efficiency to bind with target sites would
be low. Thus, this factor should be taken into consideration.
Besides, the interference efficiency is probably closely related
to the melting temperature of the gRNA-DNA hybrid. A
relatively high AT content is negatively correlated with the
off-target effect, and thus sequence with extremely low AT
percentage is, to some extent, not recommended [9].

Thus, we developed an online platform for the
guide RNA design of the Cas9/CRISPR silencing system
(http://cas9.cbi.pku.edu.cn/), withDNAvariants information
integrated. This tool helps researchers design their candidate
guide RNA sequences more easily and provides assistance
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Figure 1: Streamline of guide RNA design platform. Target sequences are searched for the whole genome for uniqueness, and then check
SNP/indel status. The results are output from top to bottom with more unique and fewer SNP/indel. The entire gRNA secondary structure is
also given as reference.
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Figure 2: Instruction of platform function. Overview of platform interface. (A)–(C) represent functions and database. (D) represents
sense/antisense and position information of output sequences on target sequences. (E) represents uniqueness and SNP/indel status. (F)
represents mature gRNA secondary structure.

for users to choose better candidates based on preliminary
results.

2. Materials and Methods

Both guide RNA sequences and their corresponding effi-
ciency were manually collected from the literature and stored
in our database. For designing guide RNA, we used a Java
framework mainly containing 5 steps, and connecting to
Tomcat web server.

In the first step, the program would find any candidate
sequences based on the N

20
NGG sequence pattern principle,

where NGG represents PAM sequence, by utilizing Java
regular expressionmatching. In the second step, the program
would put all the candidate sequences to a fasta file and run
bowtie 0.12.9 to check if they could be mapped on selected

model organism’s genome uniquely [15]. The parameters for
bowtie were “-f -v 1 -k 10 -l 16 –S,” as “-f ” told bowtie the input
was fasta file, “-v 1” for only allowing at most one mismatch,
“-k 10” reporting up to 10 good alignments, “-l 16” setting
seed length to 16, and “-S” outputting sam format. As the
length of target region was only 23 bp, the default seed length
28 for bowtie was not proper for this job, so we adjusted it
to 16. We thought the number of mismatches might largely
affect effectiveness, and this step mainly focused on checking
the mapping uniqueness, so we just looked for hits with at
most one mismatch and output at most 10 hits. The mapping
result would be parsed in Java, and then, in the third step,
would call tabix 0.2.5 to find out any overlapped SNPs or
indels as reported in dbSNP135 [16–18], if the target genome
was humanhg19.ThedbSNP135 vcf filewas downloaded from
GATK bundle. In the fourth step, it would predict RNA
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Table 1: Analyze of reported targets in human cells in this platform.

Target genes Guide RNA sequences Mapping and SNP bp in
loops AT% Efficiency Methods Reference

Human
PVALB ATTGGGTGTTCAGGGCAGAG

1 places matched on genome:
chr22:37196884-37196906(+), with 1
SNPs: rs12483924 (2 bp to 3 end)

6 45% 6.50%

Surveyor
Cong et al.
2013 [10]Human

PVALB GTGGCGAGAGGGGCCGAGAT

1 places matched on genome:
chr22:37196866-37196888(+), with 3

SNPs: rs3484 (18 bp to 3 end)
rs181855770 (10 bp to 3 end)
rs9607383 (9 bp to 3 end)

9 30% ND

Human
PVALB GGGGCCGAGATTGGGTGTTC

1 places matched on genome:
chr22:37196875-37196897(+), with 2
SNPs: rs181855770 (19 bp to 3 end)

rs9607383 (18 bp to 3 end)

9 35% ND

Human
AAVS1 GGGGCCACTAGGGACAGGAT

1 places matched on genome:
chr19:55627117-55627139(−), with 0

SNPs
8 35% 8.07%

HR
Mali et al.
2013 [9]Human

AAVS1 GTCCCCTCCACCCCACAGTG

2 places matched on
genome:chr19:55627136-
55627158(−), with 0 SNP

schr4:108975634-108975656(+), with
1 SNPs: rs115503552 (7 bp to 3 end)

7 30% 3.26%

Human
VEGFA GGGTGGGGGGAGTTTGCTCC

1 places matched on genome:
chr6:43737291-43737313(−), with 1
SNPs: rs12210204 (1 bp to 3 end)

11 30 26%

T7EI assay
Fu et al.
2013 [21]

Human
VEGFA GACCCCCTCCACCCCGCCTC

1 places matched on genome:
chr6:43738556-43738578(−), with 0

SNPs
4 20 50%

Human
VEGFA GGTGAGTGAGTGTGTGCGTG

1 places matched on genome:
chr6:43737454-43737476(+), with 0

SNPs
12 40 49.40%

∗ND represents not detectable. Italic font represents low efficient gRNAs within the same gene group.

secondary structures for those candidate gRNA sequences by
calling Vienna RNAfold 2.0.7 with default parameters [19].
In the last step, the program rearranged all the information
for the designed gRNA and formatted it to better-looking
HTML.TheAT%and the distance of the variants to the 3 end
of the target region were also calculated. The output gRNAs
were sorted by both number of mapping hits and number
of overlapping SNPs. The time consumption for this pipeline
was mainly on running bowtie and sometimes tabix, when
there existed many target sequences, and was roughly about
three seconds for one query sequence.

3. Results and Discussion

Multiple gene sequences are allowed for batch gRNA
design and the streamline of this platform is shown in
Figure 1. The results contain genomic loci information of
gRNAs and SNP/INDEL inside them. This would help
researchers choose a more unique target candidate and avoid
SNP/insertion/deletion. Moreover, this platform evaluates

all candidates based on their RNA secondary structure
and AT content, allowing users to choose better candidates
(Figure 2).

Recently, Jiang et al. report that only the first six base pairs
near PAM are of great importance for recognition efficiency
in bacteria [20]. It is unknown whether or not this is still the
case for eukaryotic or even mammalian cells. We will keep
updating our algorithm to rank candidate gRNAs.

We conducted a validation by using those reported results
in our platform on factors, such as uniqueness, SNP, and
base in loops (Table 1, italic font represents low efficient
targets).Themore unique, with fewer SNPs and base in loops,
generally the gRNA is more efficient. For the given gene
PVALB, the first target sequence is 50% more efficient than
the rest two, since the first has 0 SNP while the rest have 3 or
2 SNPs.Thefirst target sequence has fewer base pairs involved
in RNA secondary structure loops, allowing it to bind more
with target genome, while the rest two both have 9 base pairs
in loops. For the given gene AAVS1, the first target is more
than twofold efficient than the other, since the other one has
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an off-target site in genomes. For the given gene VEGFA,
the first one is about half efficient with the rest two, since it
has 1 SNP while the rest have none.

AT content is crucial factor as those previously men-
tioned, since evidence is not clear. Thus, we list it here as a
consideration for users.

4. Conclusions

Our platform is an easy-to-use software to identify poten-
tial efficient gRNA sites within given sequences for model
organisms, avoiding off-target effects and SNPs.This platform
also allows users to search existing guide RNA/protospacer
sequences and share their results. We have manually
extracted most reported gRNA/protospacer sequences into
our database for reference and will expand it with newly
published work.
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