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The endosomal system is expansive and complex, characterized by swift morphological
transitions, dynamic remodeling of membrane constituents, and intracellular positioning
changes. To properly navigate this ever-altering membrane labyrinth, transmembrane pro-
tein cargoes typically require specific sorting signals that are decoded by components of
protein coats. The best-characterized sorting process within the endosomal system is the
rapid internalization of select transmembrane proteins within clathrin-coated vesicles.
Endocytic signals consist of linear motifs, conformational determinants, or covalent modifi-
cations in the cytosolic domains of transmembrane cargo. These signals are interpreted by a
diverse set of clathrin-associated sorting proteins (CLASPs) that translocate from the cytosol to
the inner face of the plasma membrane. Signal recognition by CLASPs is highly cooperative,
involving additional interactions with phospholipids, Arf GTPases, other CLASPs, and cla-
thrin, and is regulated by large conformational changes and covalent modifications. Related
sorting events occur at other endosomal sorting stations.

The internalization of a subset of plasma
membrane proteins by clathrin-mediated

endocytosis is one the best-characterized sort-
ing processes that takes place in the endomem-
brane system of eukaryotic cells (Kirchhausen
2014). Selection of transmembrane proteins
(referred to as “cargo”) for internalization by
clathrin-mediated endocytosis involves recog-
nition of endocytic signals in the cytosolic
domains of the proteins by adaptors located in
the inner layer of clathrin coats. Signal–adap-
tor interactions lead to concentration of the
transmembrane proteins within clathrin-coated

pits that eventually bud into the cytoplasm as
clathrin-coated vesicles (Kirchhausen 2014).
Transmembrane proteins that have endocytic
signals are thus rapidly delivered to endosomes,
whereas those that lack signals remain at the
plasma membrane. This article summarizes re-
cent progress in the elucidation of the mecha-
nisms of signal recognition in clathrin-medi-
ated endocytosis, with additional reference to
related intracellular sorting events. Further in-
formation on this topic can be found in previ-
ous reviews (Bonifacino and Traub 2003; Traub
2009; Kelly and Owen 2011).
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DIVERSITY OF ENDOCYTIC SIGNALS

The notion that endocytic receptors possess in-
ternalization signals was initially derived from
morphologic, biochemical, and genetic studies
of lipoprotein receptors, well before there was
any knowledge of receptor structure (Brown
and Goldstein 1979). With the advent of gene
cloning, the amino acid sequences of various
endocytic receptors became known in steady
succession. Initial sequence comparisons, how-
ever, did not reveal any conserved groups of
amino acids that could constitute a common
endocytic signal. The identification of endo-
cytic signals would end up requiring extensive
molecular dissection of the receptor sequences
using a combination of mutational and func-
tional analyses. This effort led to the current
understanding of endocytic signals as a highly
diverse set of structural features in the cytosolic

domains of transmembrane proteins, which can
be grouped into three functionally analogous
but structurally distinct classes: (1) linear mo-
tifs, (2) conformational determinants, and (3)
covalent modifications.

Linear motifs are short arrays of invariant
and variant amino acids, including “tyrosine-
based” YXXØ (Collawn et al. 1990; Jadot et al.
1992) and [FY]XNPX[YF] motifs (Chen et al.
1990; Collawn et al. 1991), and “dileucine-
based” [DE]XXXL[LI] motifs (Table 1) (Letour-
neur and Klausner 1992; Pond et al. 1995). In
this notation, amino acids are represented in
single-letter code, X indicates any amino acid,
Ø indicates an amino acid with a bulky hydro-
phobic side chain, and the brackets mean that
either amino acid is allowed at that position.
The invariant amino acids are the most critical
elements, although the variant amino acids in-
fluence the strength and fine specificity of the

Table 1. Endocytic signals and adaptors

Signals or domains Adaptors

Adaptor subunits

or domains References

YXXØ AP-2 m2 Collawn et al. 1990; Jadot et al. 1992; Ohno
et al. 1995; Owen and Evans 1998

[DE]XXXL[LI] AP-2 a-s2 Letourneur and Klausner 1992; Pond et al.
1995; Chaudhuri et al. 2007; Doray et al.
2007; Kelly et al. 2008

Acidic clusters AP-2? a? Voorhees et al. 1995; Lindwasser et al. 2008
[YF]XNPX[YF] ARH; Dab2; Idol;

SNX17, 27,
and 31

PTB domain Chen et al. 1990; Collawn et al. 1991; He et al.
2002; Mishra et al. 2002; Stockinger et al.
2002; Zelcer et al. 2009; Ghai et al. 2013

NPFX(1,2)D Sla1p SLA1 homology
domain

Tan et al. 1996; Howard et al. 2002

Ubiquitin Eps15, Epsins 1
and 2

UIM domain Polo et al. 2002; Shih et al. 2002

GPCR phosphorylation b-arrestins 1 and 2 Amino terminus Ferguson et al. 1996; Goodman et al. 1996
Synaptotagmin I C2A

(C2B) domain
Stonin 2 mHD domain Martina et al. 2001; Walther et al. 2001

Mid2p cytosolic domain Syp1p mHD domain Reider et al. 2009
Alk8 cytosolic domain Fcho1 mHD domain Umasankar et al. 2012
VAMP 7 longin domain Hrb, AP-3 Carboxy-

terminal
unstructured
domain

Pryor et al. 2008; Kent et al. 2012

VAMP 2, VAMP 3, VAMP
8 SNARE motifs

CALM ANTH domain Miller et al. 2011

ARH, autosomal recessive hypercholesterolemia; PTB, phosphotyrosine-binding; UIM, ubiquitin-interacting motifs;

GPCR, G-protein-coupled receptor; CALM, clathrin assembly lymphoid myeloid leukemia.
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signals. The function of the signals can also be
affected by flanking sequences (Ohno et al.
1998), phosphorylation of amino acids at or
near the motif (Shiratori et al. 1997; Pitcher
et al. 1999), their spacing from the transmem-
brane domain (Rohrer et al. 1996), and palmi-
toylation of nearby cysteine residues (Schweizer
et al. 1996). Linear motifs that function as sig-
nals are generally found within unstructured
regions of the cytosolic domains.

Not all signals, however, are linear sequences
or fit a canonical motif. There are now many
examples of folded domains that contain infor-
mation for endocytosis (Table 1) (Pryor et al.
2008; Yu et al. 2010; Miller et al. 2011). This
information consists of conformational arrays
of amino acids on the surface of the folded
domains. Unlike linear motifs, which are com-
mon to many proteins, each conformational ar-
ray described to date appears to be unique for
a specific cargo. Finally, covalent modifications
such as phosphorylation of hydroxyl amino ac-
ids (Ferguson et al. 1996; Di Fiore and von Zas-
trow 2014) or polyubiquitination on the 1-ami-
no group of lysine residues (Hicke and Riezman
1996; Piper et al. 2014) in the cytosolic domains
can also function as endocytic signals (Table 1).
In these cases, the modifying groups do not
modulate the activity of underlying linear or
conformational signals, but themselves act as
recognition determinants. Multiple or overlap-
ping signals can occur within the same cytosol-
ic domain (for example, see Johnson and Korn-
feld 1992; Doray et al. 2008; Goh et al. 2010;
Prabhu et al. 2012). Similar types of signal par-
ticipate in sorting events that take place at in-
tracellular compartments, such as the trans-
Golgi network (TGN) and endosomes.

MULTIPLICITY OF ADAPTORS

The recognition of such a wide diversity of
endocytic and intracellular sorting signals ob-
viously necessitates the existence of multiple
adaptors. Indeed, many proteins located in the
inner layer of protein coats—including proteins
that were initially categorized as “accessory”—
are now known to function as sorting adap-
tors (Fig. 1; Table 1). Depending on the identity

of the scaffolding protein that forms the outer
layer, coats are classified as clathrin coats or
nonclathrin coats. Coats involved in rapid in-
ternalization from the plasma membrane con-
tain clathrin as their main constituent and a
set of adaptors known as “clathrin-associated
sorting proteins” (CLASPs) (Fig. 1A). Clathrin
coats containing different sets of CLASPs, as
well as nonclathrin coats, mediate intracellular
sorting events. CLASPs are recruited to mem-
branes primarily via interactions with specific
phosphoinositide lipids, small GTPases of the
Arf family, and/or other CLASPs. Clathrin then
binds to the CLASP armature and polymerizes
into an overlying polyhedral scaffold. Concom-
itantly, CLASPs engage sorting signals in the
cytosolic domains of transmembrane cargo,
leading to cargo capture and stabilization of
the coats. Both CLASP–clathrin (Dell’Angelica
et al. 1998; Drake and Traub 2001) and CLASP–
CLASP interactions (Brett et al. 2002) involve
linear motifs (analogous to, but distinct from,
cargo sorting signals) binding to folded do-
mains, highlighting the general role of this bind-
ing mode in the assembly and function of
clathrin coats. Most interactions among com-
ponents of clathrin coats are of moderate to
low affinity (typically in the 1–100 mM range),
making this mechanism of sorting a highly co-
operative and dynamic process.

From a structural standpoint, CLASPs can
be categorized as (1) oligomeric (tetrameric or
dimeric), and (2) monomeric (Fig. 1B). The
main endocytic adaptor is the clathrin-associ-
ated, heterotetrameric adaptor protein 2 (AP-2)
complex. This complex is composed of two
large “adaptin” subunits (a and b2), one medi-
um-sized subunit (m2), and one small subunit
(s2). AP-2 is a member of a family of ho-
mologous complexes that also includes AP-1
(g-b1-m1-s1), AP-3 (d-b3-m3-s3), AP-4 (1-
b4-m4-s4), AP-5 (z-b5-m5-s5), and COPI-F
(g-COP-b-COP-d-COP-z-COP) (correspond-
ing subunit composition in parentheses) (Rob-
inson 2004; Hirst et al. 2011). All of these
complexes are components of clathrin or non-
clathrin coats that mediate sorting in intra-
cellular compartments. They comprise a large
globular “core” consisting of the amino-termi-
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nal “trunk” domains of the large subunits plus
the entire medium and small subunits. The car-
boxy-terminal portions of the large subunits ex-
tend from the core as two long projections, each
comprising a long disordered “hinge” sequence

and a globular “ear” or “appendage” domain.
The core mediates recruitment to membranes
and sorting-signal recognition, whereas the
hinge-appendage extensions interact with cla-
thrin, other adaptors, and various accessory
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Figure 1. The endocytic cargo–adaptor interaction network. (A) Schematic representation of selected sorting
signal-recognition partner relationships for endocytic trafficking. Both protein–protein and protein–lipid
(PtdInsP) interactions among the cargo-selective machinery are highlighted with connection lines. The solid
lines indicate documented physical interactions, whereas dashed lines connote either interactions possible based
on properties of other domain relatives (IDOL) or known (AP-1), but still of unclear functional necessity.
Adaptors, CLASPs, and regulators (Idol) discussed explicitly are double circled. (B) Representative modular
domain architecture classes of selected endocytic proteins. Heterotetrameric examples are AP-1, AP-2, and AP-
3; dimeric examples are Fcho1, Syp1p, and eps15; and monomeric CLASPs include ARH, Dab2, Numb, CALM,
AP180, epsin, and b-arrestin. Tertiary-structured domains are indicated by geometric shapes, and intrinsically
disordered protein segments by a line.

L.M. Traub and J.S. Bonifacino

4 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a016790



proteins. Dimeric and monomeric CLASPs and
related adaptors consist of a single polypeptide
chain in which the same functions are distrib-
uted among several globular domains joined by
disordered linkers, giving them a “beads-on-a-
string” appearance.

RECOGNITION OF LINEAR
MOTIFS BY AP-2

AP-2 recognizes YXXØ and [DE]XXXL[LI] sig-
nals through binding to two distinct sites on
the core domain. The binding site for YXXØ
motifs is located on the carboxy-terminal do-
main of m2 (m2-C) (Ohno et al. 1995), an
immunoglobulin-like b-sandwich fold having
hydrophobic pockets for the Y and Ø residues
(Fig. 2A) (Owen and Evans 1998). The Y pock-
et cannot accommodate phosphotyrosine, ex-
plaining why tyrosine phosphorylation prevents
binding of YXXØ motifs to m2 (Boll et al. 1996;
Ohno et al. 1996) and endocytosis (Shiratori
et al. 1997). The m2-C domain has also been
shown to bind the folded DEP domain of the
signaling adaptor Disheveled at a surface near
the YXXØ-binding site (Yu et al. 2010). The
[DE]XXXL[LI]-binding site is on the a-s2
hemicomplex (Chaudhuri et al. 2007; Doray
et al. 2007), with the acidic residue of the motif
interacting with basic residues on both a and
s2, and the two hydrophobic residues fitting
into adjacent hydrophobic pockets on s2 (Fig.
2B) (Kelly et al. 2008; Mattera et al. 2011). A
phosphoserine residue at position 25 from
the first leucine (considered position 0) substi-
tutes for the acidic residue at position 24 in the
noncanonical dileucine signal from CD4, exem-
plifying how phosphorylation can also positive-
ly regulate AP-2 recognition and endocytosis
(Fig. 2D) (Pitcher et al. 1999; Kelly et al. 2008).

Strikingly, the AP-2 core occurs in two dis-
tinct conformations: a “locked” conformation
in which the binding sites for both YXXØ and
[DE]XXXL[LI] signals are occluded by regions
of b2 (Collins et al. 2002), and an “open” con-
formation in which both sites are accessible
(Fig. 3A) (Jackson et al. 2010). The change
from the locked to the open conformation in-
volves translocation of the m2-C domain to an

orthogonal face and displacement of the ami-
no terminus of b2 from the a–s2 interface.
In the open conformation, the YXXØ- and
[DE]XXXL[LI]-binding sites are coplanar with
four electropositive patches that bind phospha-
tidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)
(Jackson et al. 2010), a phosphoinositide that
is highly enriched in the plasma membrane (Di
Paolo and De Camilli 2006). This coplanarity
ensures coupling of signal recognition to mem-
brane recruitment (Jackson et al. 2010). On the
basis of these observations, it has been proposed
that the AP-2 core exists in equilibrium between
two conformers: the locked form that predom-
inates in the cytosol and the open form that is
mainly associated with membranes. The gener-
ation of PtdIns(4,5)P2 and availability of sig-
nal-bearing cargo at the plasma membrane shift
the equilibrium toward the open form. AP-2
phosphorylation events also appear to contrib-
ute to the shift. For example, phosphorylation
of a threonine residue (Thr156) in the linker
that connects the amino- and carboxy-terminal
domains of m2 by the adaptor-associated kinase
1 (AAK1) enhances binding of AP-2 to endo-
cytic signals and promotes receptor internaliza-
tion (Olusanya et al. 2001; Conner and Schmid
2002; Ricotta et al. 2002). The m2 linker is dis-
ordered in the locked form but folds into a four-
turn a helix that binds to b2 in the open form
(Jackson et al. 2010). Thr156 phosphoryla-
tion could thus cause stabilization of this m2–
b2 interaction and, by extension, favor the open
conformation of the core. In addition, b2 resi-
due Tyr6 undergoes phosphorylation on acti-
vation of the epidermal growth factor (EGF)
receptor kinase (Huang et al. 2003). In the
locked form of the AP-2 core, b2 Tyr6 occupies
the s2 hydrophobic pocket for the [LI] residue
in [DE]XXXL[LI] motifs (Kelly et al. 2008).
Phosphorylation of this residue could unblock
the dileucine-binding site, also favoring con-
version to the open form of the AP-2 core.
Because internalization of the activated EGF re-
ceptor is partly dependent on a dileucine-based
signal (Huang et al. 2003), this phosphorylation
event illustrates how a signaling receptor can
promote its own endocytosis through activation
of AP-2.
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Figure 2. AP-1 and AP-2 cargo-binding surfaces. (A,B) Molecular details of the YXXØ and [DE]XXXL[LI]
interaction surfaces on AP-2. The TGN38-derived YQRL signal cocrystalized with the AP-2 m2-C domain (PDB
ID: 1BXX) (Owen and Evans 1998) and the CD4 dileucine signal bound to the AP-2 heterotetramer core (PDB
ID: 2JKR) (Kelly et al. 2008). Amino- and carboxy-terminal ends of the peptide signals (yellow) in stick
representation are shown with oxygen colored red and nitrogen colored blue. The binding pockets for key
anchor residues are outlined with white dashed ovals. (C) Molecular surface of the ternary AP-1 m1 sub-
unit†HIV-1 Nef†MHC-1 complex that stabilizes the noncanonical YXXØ signal in MHC-1 in the absence of
an effective hydrophobic Ø residue. (D) Proximity of posttranslationally phosphorylated (blue) or ubiquiti-
nated (red) residues identified within or adjacent to different primary-sequence-based sorting signals in the
indicated proteins, including the protease-activated receptor 1 (PAR1), the cation-independent mannose 6-
phosphate receptor (CI-MPR), and amyloid precursor protein (APP). Sorting signals are shown in color-coded
bold type and the number of amino acid residues preceding or following the individual signals from the
transmembrane (Tm) domain are indicated. All modifications listed in the PhosphoSitePlus mass spectrometry
database (Hornbeck et al. 2004).
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Figure 3. Allosteric-regulated exposure of the AP-1 and AP-2 cargo-binding surfaces. (A,B) Space-filling surface
representations of AP-1 and AP-2 heterotetramers highlight the conformational transitions on conversion from
the AP-2 “locked” state (PDB ID: 2VGL) (Collins et al. 2002) to the open state (PBD ID: 2XA7) (Jackson et al.
2010). Aview of the membrane-attached face is depicted and the four subunits colored to reflect structural and
functional conservation. Opening chain movements are indicated (colored arrows). Cocrystalized YXXØ and
[DE]XXXL[LI] peptide signals (rendered in yellow stick representation) are delimited with white dashed circles.
The relative position of the four spatially discrete PtdIns(4,5)P2 binding sites that only become coplanar on
transition to the open conformation in AP-2 are circled and numbered. Similar bottom-up views of the AP-1
heteroterameric core in the closed (PDB ID: 1W63) (Heldwein et al. 2004) and open (PDB ID: 4HMY) (Ren
et al. 2013) conformations, with an Arf1 GTPase contacting each large chain trunk domain. The location of the
PtdIns(4)P-binding site on the g subunit (Heldwein et al. 2004) is circled in the open conformation. (C) A
composite molecular model of the AP-1 m1†Nef†MHC-I ternary complex (PDB ID: 4EN2) (Jia et al. 2012),
rendered with the AP-2 open conformation backbone model, shown in similar orientation to A and B. Posi-
tioning of the MHC-I peptide (yellow sticks) is indicated with a white dashed oval.
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RECOGNITION OF LINEAR
MOTIFS BY AP-1
Studies on signal recognition by AP-1 have re-
vealed striking similarities but also important
differences in comparison with AP-2. AP-1 is
a component of clathrin coats associated with
the TGN and endosomes, and has been impli-
cated in many pathways, including bidirection-
al transport between the TGN and endosomes
(Hirst et al. 2012), export from the TGN to the
plasma membrane (Guo et al. 2013), and po-
larized sorting from the TGN or endosomes
to the basolateral domain of epithelial cells
(Folsch et al. 1999; Carvajal-Gonzalez et al.
2012) and the somatodendritic domain of neu-
rons (Dwyer et al. 2001; Margeta et al. 2009;
Farias et al. 2012). AP-1 has been additional-
ly shown to complement the role of AP-2 in
endocytosis of synaptic vesicle proteins at the
neuronal presynaptic terminal (Kim and Ryan
2009). The function of AP-1 in these pathways
also involves recognition of linear motifs by
mechanisms that are similar to those of AP-2.
YXXØ and [DE]XXXL[LI] motifs bind to con-
served sites on the m1 (Ohno et al. 1995; Carva-
jal-Gonzalez et al. 2012; Farias et al. 2012) and
g-s1 subunits (Janvier et al. 2003; Doray et al.
2007; Mattera et al. 2011), respectively. More-
over, the AP-1 core also occurs in equilibrium
between locked (Heldwein et al. 2004) and open
conformations (Fig. 3B) (Ren et al. 2013). On
the other hand, the regulation of membrane
recruitment and conformational activation are
quite different. AP-1 binds phosphatidylinosi-
tol 4-phosphate (PtdIns(4)P), a phosphoinosi-
tide that is enriched in the TGN and endo-
somes, through a site on the g subunit (Wang
et al. 2003; Heldwein et al. 2004). However, this
binding is too weak for efficient recruitment
to membranes. Instead, the main determinant
of AP-1 recruitment to membranes is binding to
the GTP-bound, activated form of Arf1 (Stam-
nes and Rothman 1993; Traub et al. 1993). Oth-
er Arf-family members, including Arfrp1 (also
known as Arl3) (Guo et al. 2013), may also play
roles in AP-1 membrane recruitment. Exchange
of GTP for GDP on Arf1 exposes an N-myris-
toylated a helix that inserts into membranes
and rearranges the switch I and II regions such

that they can bind AP-1. A recent study has
identified two binding sites for Arf1 on the
trunk domains of the g and b1 subunits of
AP-1 that contribute to recruitment of this
complex to membranes (Ren et al. 2013). Strik-
ingly, Arf1 not only promotes AP-1 membrane
recruitment but also drives the conformation-
al opening of the core that allows binding of
YXXØ and [DE]XXXL[LI] motifs (Ren et al.
2013). This conformational change appears to
involve pivoting on a third Arf1-binding site
located on a different face of the g trunk (Ren
et al. 2013). The cooperativity of these interac-
tions is further evidenced by the observation
that both YXXØ and [DE]XXXL[LI] promote
binding to each other, as well as binding of
Arf1 to AP-1 (Lee et al. 2008a). The amino acids
that bind Arf1 are perfectly conserved in the b2
subunit and partially conserved in thea subunit
of AP-2, but the role of Arf-family members
in AP-2 membrane recruitment is controversial
(Krauss et al. 2003; Paleotti et al. 2005). YXXØ-,
[DE]XXXL[LI]-, and Arf-binding sites are also
well conserved in AP-3 (Mattera et al. 2011;
Mardones et al. 2013; Ren et al. 2013), an en-
dosome-associated adaptor involved in cargo
sorting to lysosomes and lysosome-related or-
ganelles, indicating that this complex might
function by a similar mechanism.

Nef: A COOPERATIVE MODIFIER OF
SIGNAL–ADAPTOR INTERACTIONS

The mechanism of action of the Nef protein
of human immunodeficiency virus 1 (HIV-1)
exemplifies another means of regulating sig-
nal recognition by AP-1 and AP-2. Expression
of Nef early in the infection cycle of HIV-1
causes down-regulation of CD4 and class I mol-
ecules of the major histocompatibility complex
(MHC-I) from the surface of the host cells (i.e.,
T lymphocytes and macrophages) (Tokarev and
Guatelli 2011). Remarkably, whereas Nef-in-
duced CD4 down-regulation involves enhanced
AP-2-dependent internalization (Jin et al. 2005;
Chaudhuri et al. 2007), MHC-I down-regula-
tion occurs by AP-1-dependent delivery of in-
tracellular MHC-I from the TGN to endosomes
(Roeth et al. 2004; Lubben et al. 2007). In both
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cases, the proteins are eventually transported to
lysosomes for degradation. These down-regula-
tion events involve cooperative formation of tri-
partite CD4†Nef†AP-2 and MHC-I†Nef†AP-1
complexes. In the CD4†Nef†AP-2 complex, a
Nef carboxy-terminal flexible loop contains a
[DE]XXXL[LI] motif that bind to the canoni-
cal dileucine-binding site on a-s2 (Chaudhuri
et al. 2007) and other residues that bind to a
basic patch on the trunk domain of a (Chaud-
huri et al. 2009). In between the dileucine and
diacidic motifs there are additional hydropho-
bic residues that also bind to AP-2 likely via
s2 (Fig. 2B) (Jin et al. 2012). The Nef loop
thus exemplifies how a long sequence contain-
ing both canonical and noncanonical elements
can interact with AP-2. The dileucine motif in
the CD4 tail cannot interact with the canonical
dileucine-binding site on a-s2 because the ser-
ine at position 25 from the first leucine in CD4
(Fig. 2D) is normally not phosphorylated and
the dileucine-binding site on a-s2 is occupied
by the Nef loop. Instead, the dileucine motif in
the CD4 tail binds to a hydrophobic patch on
another region of Nef (Grzesiek et al. 1996). The
cooperativity in the assembly of the tripartite
complex (Chaudhuri et al. 2009) predicts the
occurrence of another interaction of CD4 with
AP-2 that remains to be identified. The recent
resolution of the structure of the MHC-I cyto-
solic domain in a ternary complex with Nef and
the m1 subunit of AP-1 has revealed a different
type of cooperative assembly (Jia et al. 2012).
In this complex, a noncanonical tyrosine resi-
due in the MHC-I tail occupies the binding
pocket for the tyrosine residue of YXXØ signals
on m1 (Figs. 2C and 3C). The rest of the MHC-I
tail binds into a groove at the Nef–m1 interface
(Jia et al. 2012). These observations raise the
intriguing possibility that other cellular proteins
could promote interactions of cytosolic do-
mains with adaptors in a manner similar to Nef.

ALTERNATIVE TYROSINE-BASED SIGNAL
RECOGNITION BY PTB-DOMAIN-TYPE
CLASPS

Although the [FY]XNPX[YF] signal delineated
in the low-density lipoprotein (LDL) receptor

(FDNPVY) first showed the importance of an
anchor tyrosine to cue internalization (Davis
et al. 1986), this signal is actually recognized
quite differently from YXXØ signals. Substitu-
tion of the carboxy-terminal tyrosine at posi-
tion 0 with phenylalanine (or even tryptophan)
(Davis et al. 1986) has little effect on internali-
zation, whereas a cysteine or alanine change di-
minishes uptake to that of a cytosolically trun-
cated receptor (Davis et al. 1986; Chen et al.
1990). Several transmembrane cargoes bearing
[FY]XNPX[YF] signals naturally have a phenyl-
alanine at this position (like amnionless [Peder-
sen et al. 2010], Opo [Bogdanovic et al. 2012],
P-selectin [Ghai et al. 2013], ROMK [Fang et al.
2009], Sanpodo [Tong et al. 2010], and TAT-1
[Nilsson et al. 2011]). Instead of AP-2, these
[FY]XNPX[YF] signals are decoded by mono-
meric CLASPs with a phosphotyrosine-binding
(PTB) domain, such as Dab2, ARH (alterna-
tively designated LDLRAP 1), and Numb (Fig.
1) (McMahon and Boucrot 2011; Reider and
Wendland 2011). The modular PTB domain
in these CLASPs is similar to that originally
identified in signal transduction proteins, but
differs in a preference for unphosphorylated
over phosphorylated tyrosine. The recent res-
olution of the structure of the liganded ARH
PTB domain (Dvir et al. 2012) explains clear-
ly why either tyrosine or phenylalanine can be
accommodated at position 0, in stark contrast
to YXXØ signals, where phenylalanine cannot
replace tyrosine (Fig. 4). To engage the [YF] side
chain at position 0, ARH displays a largely
hydrophobic-lined acceptor cavity (Dvir et al.
2012). This is dissimilar to signal transduction
PTB domains, which have an overall basic char-
acter to the larger phosphotyrosine-accommo-
dating site (Farooq and Zhou 2004; Uhlik et al.
2005). In ARH, the tyrosine hydroxyl hydrogen
bonds to a single, noncovalent water molecule
to permit packing into the nonpolar surface
(Fig. 4), which would be unnecessary for a phe-
nylalanine.

A chemical distinction between tyrosine
and phenylalanine at position 0 is that only
the former can be posttranslationally phosphor-
ylated. Because endocytic PTB domains cannot
well accommodate the bulky, charged phospho-
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tyrosine, this reversible modification can po-
tentially govern sorting efficiency into nascent
clathrin-coated structures, as with the YXXØ
signal. There is some evidence for this for the
LDL receptor-related protein 1 (LRP1), which

binds to different partners depending on the
phosphotyrosine status (Betts et al. 2008; Gutt-
man et al. 2009). In Drosophila, the YTNPAF
signal in the tetraspanin Sanpodo is recognized
by Numb (Tong et al. 2010), whereas the
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shown in stick representation (PDB ID: 3SO6) (Dvir et al. 2012). The location of a water molecule hydrogen
bonded to the position 0 tyrosine is indicated by a red sphere within the marked PTB-domain tyrosine-binding
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implicated in C2A binding are highlighted.
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FDNPVY signal in the scavenger receptor Dra-
per is recognized by the PTB CLASP Ced-6
(Awasaki et al. 2006; Jha et al. 2102), and tyro-
sine phosphorylation regulates its uptake into
cells (Fujita et al. 2012). Intriguingly, discovery-
mode mass spectrometry indicates that Tyr807,
the LDL receptor tyrosine 0, is phosphorylated
in .125 separate studies (Hornbeck et al.
2004). Because the anchor Tyr20 of the trans-
ferrin receptor YXXØ (YTRF) signal is similarly
phosphorylated in .1000 mass spectrometry
analyses, focal tyrosine phosphorylation during
signal relay from the cell surface might, through
exclusion, underlie the formation of composi-
tionally and/or kinetically distinct coated vesi-
cles (Fig. 2D) (Cao et al. 1998; Mundell et al.
2006; Puthenveedu and von Zastrow 2006; Liu
et al. 2010).

The structural role of all the other conserved
side chains in the [FY]XNPX[YF] signal is al-
so known. The leading 25 position tyrosine/
phenylalanine packs into a complementary hy-
drophobic site generated principally by the so-
called “selectivity” a2 helix, and usually involv-
ing a projecting PTB-domain aromatic side
chain that bisects the interaction surfaces for
the 25 tyrosine/phenylalanine and the 23 as-
paragine and 22 proline (Fig. 4). There is also
additional binding energy derived from an an-
tiparallel b augmentation, hydrogen bonding
to the canonical b5 strand of the PTB domain.
Yet, because these involve only main-chain con-
tacts, the b5 strand participates rather “nonse-
lectively” in cargo recognition (Dvir et al. 2012).
At the carboxy-terminal end of the short sig-
nal b strand, the central 23 asparagine makes
an intramolecular bond with tyrosine 0 to redi-
rect the peptide main-chain configuration into
a type I b turn, strongly facilitated by the fol-
lowing 22 proline. Overall, this structures the
sorting signal to optimally engage the cognate
interface of the PTB domain (Fig. 4).

MODULATION OF [FY]XNPX[YF] SIGNAL
RECOGNITION BY UBIQUITINATION

Another interesting mode of modulation of
the trafficking behavior of the LDL receptor
FDNPVY signal is by targeted ubiquitination

by an E3 ubiquitin ligase designated IDOL
(for inducible degrader of the LDL receptor)
(Zelcer et al. 2009). The recognition site for
IDOL overlaps the FDNPVY signal; this is be-
cause substrate recognition in this particular E3
ligase stems from an atypical FERM (band 4.1/
ezrin/radixin/moesin) domain that precedes
the catalytic carboxy-terminal RING domain
(Calkin et al. 2011; Sorrentino et al. 2011). Prior
structural work on FERM domains from actin-
regulating proteins like ezrin and talin revealed
a tripartite fold, with the so-called F3 subdo-
main structurally analogous to the PTB domain
(Pearson et al. 2000). The talin F3 subdomain
binds to the NPXY signal in b integrins (Wege-
ner et al. 2007), using, in part, the same basic
structural arrangement as seen in ARH. Like-
wise, IDOL contacts physically the LDL recep-
tor FDNPVY sorting signal, and signals in the
related VLDL and ApoER2 receptors (Hong
et al. 2010). The core components are also phy-
logenetically conserved in insects (Hong et al.
2010; Calkin et al. 2011). The IDOL ubiquitin
ligase targets sites that are adjacent to the
FDNPVY signal: two (Lys809) or 11 (Cys819)
residues following Tyr807 (Fig. 2D) (Zelcer et al.
2009). The functional consequence of this ubiq-
uitination is redirection of the LDL receptor
to lysosomes for degradation at the expense of
efficient recycling (Zelcer et al. 2009). Remark-
ably, initial results suggest that the IDOL-medi-
ated polyubiquitin signal attached to the LDL
receptor reroutes the protein from clathrin-
dependent to clathrin-independent internali-
zation, clearly inactivating the FDNPVY signal
(Scotti et al. 2013).

OPERATION OF [FY]XNPX[YF] SIGNALS
ON ENDOSOMES

Functionally analogous to YXXØ signals,
[FY]XNPX[YF] signals can direct endosomal
sorting events. This can happen in at least two
ways: indirectly through interaction of PTB-
domain-containing CLASPs with AP-1, and
directly through recognition by FERM-like do-
main-containing sorting nexin (SNX) proteins.
In one process in polarized epithelial cells, the
respective adaptors, ARH and a variant of AP-1
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having the m1B subunit isoform (AP-1B), co-
operate for differential sorting to the basolateral
membrane from endosomes (Kang and Folsch
2011). Yet the capability of ARH to mesh with
both AP-1B and AP-2 depends on the sole ARH
b-subunit interaction motif (He et al. 2002;
Mishra et al. 2005; Edeling et al. 2006;
Schmid et al. 2006); mammalian b1 and b2 are
�85% identical and functionally interchange-
able (Keyel et al. 2008; Li et al. 2010). Conse-
quently, the surface on the b1 appendage that
ARH binds to is fully conserved inb2. ARH also
has a broadly basic surface perpendicular to the
[FY]XNPX[YF]-binding site that could accom-
modate different phosphoinositides rather than
being tailored for a stereospecific isomer.

Another example of cooperation between
a PTB-domain CLASP and AP-1 is provided
by Numb. This protein (and the redundant pa-
ralog Numb-like) is involved in Notch signaling
(Berdnik et al. 2002), cell adhesion, migration
(Wang et al. 2009), and morphogenesis (Berd-
nik et al. 2002; Bogdanovic et al. 2012). Numb
can also function on endosomes (Smith et al.
2004; Nilsson et al. 2008; McGill et al. 2009;
Cotton et al. 2013; Couturier et al. 2013), and
clearly has endosome-located binding partners,
although biochemical interactions revolve prin-
cipally around AP-2 and associated proteins
(Krieger et al. 2012). The plasma membrane-
and endosome-associated chordate Numb iso-
forms are different splice variants (Dho et al.
1999) and regulated by posttranslational phos-
phorylation (Smith et al. 2007; Sorensen and
Conner 2008). In Drosophila, Numb cooperates
with AP-1 to control Sanpodo trafficking on en-
dosomes (Cotton et al. 2013; Couturier et al.
2013) but, in this case, basolateral recycling is
prevented (Cotton et al. 2013), contrary to ARH.

A different mechanism is the recognition
of [FY]XNPX[YF] signals by SNX proteins, spe-
cifically by the paralogs SNX17, SNX27, and
SNX31 (Ghai et al. 2011, 2013; Bottcher et al.
2012). SNXs are a diverse class of endocytic
proteins unified by the presence of a phox-ho-
mology (PX) domain selective for endosomal
phosphatidylinositol 3-phosphate (PtdIns(3)P)
(Cullen 2008; Teasdale and Collins 2012).
SNX17, SNX27, and SNX31 stand apart from

the other family members by uniquely contain-
ing an atypical FERM domain after the PX fold.
The LDL receptor signal directly engages the
SNX17 FERM domain (Stockinger et al. 2002;
Burden et al. 2004), as do the [FY]XNPX[YF]
signals in P-selectin (Florian et al. 2001; Knauth
et al. 2005; Ghai et al. 2013), APP (Lee et al.
2008b), b integrins (Bottcher et al. 2012; Stein-
berg et al. 2012), and LRP1 (van Kerkhof et al.
2005; Donoso et al. 2009) in a phosphorylation-
inhibited manner (Betts et al. 2008). The struc-
ture of the SNX17 FERM domain complexed
with the P-selectin sorting signal (Ghai et al.
2013) confirms both that the F3 subdomain
resembles the PTB-domain fold and that pep-
tide binding conforms to conventional struc-
tural rules (Fig. 4). Compartmental recognition
of [FY]XNPX[YF] signals is assured by the pre-
ceding PX domain, which favors endosomal
PtdIns(3)P (Knauth et al. 2005; van Kerkhof
et al. 2005; Ghai et al. 2011). Because of the
proximity of the acceptor lysine, the IDOL-
ubiquitinated FDNPVY signal in the LDL re-
ceptor may not be recognized by SNX17, ex-
plaining the diminished recycling. Strikingly,
several different endocytic signals have internal
or proximate lysine residues known to be ubiq-
uitinated (Fig. 2D). This suggests that ubiquitin-
dependent masking of linear sequences might
be another common regulatory mechanism.

If the bulk of PTB-like domains engage
[FY]XNPX[YF] signals with common structural
features and a conserved binding mode, how
is specificity attained? The ARH and SNX17
structures highlight another general principle
for signal recognition: directly flanking resi-
dues at the amino- or carboxy-terminal end
of the core sorting signal allow tailored re-
cognition of a certain tertiary-structured bind-
ing partner. For instance, P-selectin contains a
bona fide m2-binding YXXØ-type YGVF signal
interleaved with the FTNAA[YF] signal (Owen
et al. 2001). In the SNX17 crystal, this peptide
sequence also packs against the FERM domain
F3 subdomain (Fig. 4) (Ghai et al. 2013), ex-
plaining why this could not simultaneously be
recognized by AP-1 or AP-2. The b1-integrin
chain similarly uses a sequence tract preced-
ing NPKY to optimally engage SNX17 (Bottcher
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et al. 2012). Such extended contacts facilitate
optimal conformational selection by allowing
domains to discriminate between a large array
of potentially similar unstructured binding pep-
tides and select between subtly different signals.
Alternatively, restricted expression patterns or
temporal induction can provide specificity, as
with IDOL being induced by LXR transcription
factor activation (Zelcer et al. 2009).

DISTANT RELATIONS: m-HOMOLOGY
DOMAIN CLASPS

Because of the pivotal role of the m subunit in
AP-1–AP-4 cargo selection, the fact that two
other protein classes deposited at clathrin as-
sembly centers, the stonins and muniscins,
also contain a m-homology domain (mHD)
(Fig. 4) is highly suggestive of further cargo rec-
ognition capabilities. The most closely related
mHD is found in stonins (Andrews et al. 1996;
Martina et al. 2001; Walther et al. 2001); the
human stonin 2 mHD is �30% identical to
the m2-C domain of AP-2. In contrast, the mu-
niscin mHD is ,10% identical to m2 account-
ing for the original designation FCH domain
“only” (Fcho), as the initial sequence compari-
sons failed to identify the structural homology
(Katoh 2004; Henne et al. 2007). The mHD of
the yeast muniscin Syp1p is �14% identical to
the stonin 2 domain, but neither has a similarly
positioned longin-like m-N domain, which
coassembles with theb chain within the adaptor
core. The stonin mHD is preceded by a phy-
logenetically conserved tract of �140 residues
known as the stonin-homology domain (Mar-
tina et al. 2001) currently of unknown structure
or function.

The stonins are ubiquitously expressed in
chordate tissues but seem most critical in neu-
rons; mutant alleles or silencing produces neu-
rological phenotypes in flies, worms, and mice
(Stimson et al. 2001; Estes et al. 2003; Mullen
et al. 2012; Kononenko et al. 2013). At the syn-
apse, tight exo-endocytic coupling maintains
a pool of neurotransmitter-filled synaptic ves-
icles. Here, transmembrane cargo recognition
is critical as synaptic vesicles have a highly

defined protein composition (Takamori et al.
2006), and there is a remarkably conserved
packaging stoichiometry for some transmem-
brane proteins within reforming synaptic vesi-
cles (Takamori et al. 2006; Mutch et al. 2011).
Synaptotagmin 1 is a vesicle-associated, Ca2þ-
responsive bilayer fusion regulator and there-
fore necessarily packaged into each regenerat-
ing synaptic vesicle following exocytosis. Bio-
chemical and functional evidence indicates
that the C2 domains of synaptotagmin 1 bind
physically to the stonin 2 mHD (Martina et al.
2001; Walther et al. 2001; Diril et al. 2006; Jung
et al. 2007). In neurons, the two proteins coloc-
alize in puncta, and proper subcellular localiza-
tion of SNT-1 depends on UNC-41 (the respec-
tive nematode orthologs) but not vice versa
(Mullen et al. 2012). Because synaptotagmin
(snt-1)-null worms phenocopy stonin (stn-1/
unc-41) mutants (Mullen et al. 2012), a princi-
pal task of stonins is likely to promote uptake of
synaptotagmin at nerve terminals.

Still, there is current controversy over pre-
cisely which presynaptic cargoes stonin 2 sorts.
Worms with both snt-1 and unc-41 genes dis-
rupted have a more severe phenotype than with
either single mutation alone (Mullen et al.
2012). And forced SNT-1 overexpression does
not rescue the unc-41 phenotype, unlike in Dro-
sophila (Fergestad and Broadie 2001). Together,
this suggests stonins do more than just sort syn-
aptotagmin. A systematic CLASP RNAi screen
of cultured neurons suggests that stonin 2 is
actually the major adaptor for synaptic vesi-
cle cargoes (Willox and Royle 2012), implying
that it recognizes a bigger set of transmembrane
proteins. But, of the synaptic vesicle constit-
uents, only synaptotagmin 1 coimmunopreci-
pitates robustly with stonin 2 (Kononenko et
al. 2013). And the subcellular phenotype of sto-
nin 2-nullizygous mice disputes the notion of
a general-purpose CLASP; synaptotagmin but
not VAMP 2 selectively disperses over the pre-
synaptic surface (Kononenko et al. 2013). A fu-
ture challenge is to rationalize these discrepant
findings.

For the muniscins, cargo partners are doc-
umented (Reider et al. 2009; Umasankar et al.
2012), but the mHDs are otherwise different
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in their interaction networks. This is because
thesemHDs are not solely engaged in cargo bind-
ing. Both the yeast and the chordate muniscin
mHDs establish direct contacts with several
early-arriving pioneer components of the cla-
thrin coat (Reider et al. 2009; Henne et al. 2010;
Mulkearns and Cooper 2012; Umasankar et al.
2012). The crystal structure of the Syp1p mHD
leaves no doubt about the structural homolo-
gy with m2 (Fig. 4). Still, the precise interac-
tion surface on the mHD remains to be mapped.
Therefore, it is not unambiguously resolved
whether cargo and endocytic proteins use the
same interaction surface(s) to associate with
muniscins at the plasma membrane. Certainly
for the stonin 2 mHD†C2A/B interaction, both
partners are folded domains, distinguishing
this contact from the short peptide-based, ex-
tended conformation interactions described
above.

Elucidation of the molecular basis for selec-
tion of endocytic SNAREs has provided new
structural insights into recognition of folded
sorting signals. Because the immediate fate of
donor transport vesicles is fusion with an accep-
tor compartment, proper packaging of SNAREs
is vital. One mechanism to assure selective
SNARE capture uses a disordered region of a
dedicated CLASP to engage a broad molecular
surface of a particular SNARE. The antithesis of
the standard mode of engagement, this is how
Hrb binds to VAMP 7 (Pryor et al. 2008) and,
analogously, how the usually disordered hinge of
the AP-3 d subunit structures around the glob-
ular regulatory VAMP 7 longin domain to assure
packaging of only a four-member cis-SNARE
helical bundle (Fig. 5A) (Kent et al. 2012). The
“signal” here is a radial groove along the longin-
domain surface accessed by either Hrb, the d

hinge, or intramolecularly by VAMP 7 itself in
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Figure 5. Decoding folded endocytic sorting signals. (A) Schematic representation of the overall architecture
of VAMP 7 with the amino-terminal longin domain, the vesicle-SNARE (v-SNARE) helical segment, and the
transmembrane (Tm) domain indicated. A combined ribbon and surface representation of the globular VAMP 7
longin-domain “signal” bound by the extended AP-3 d-subunit hinge polypeptide (blue; in stick representation)
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the autoinhibited conformation that precludes
CLASP binding. In contrast, the a-helical-so-
lenoid fold of the CALM (and the neuronal
paralog AP180) ANTH domain has evolved to
selectively recognize the uncomplexed vesicle
SNAREs VAMP 2, 3, and 8 (Koo et al. 2011;
Miller et al. 2011). In this case, the single six-
turn amphipathica-helical tract of VAMP 8 that
physically contacts the ANTH domain (Fig. 5B)
also participates in SNARE helical bundling,
making the two interactions mutually exclusive.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

We are long past a primitive understanding of
sorting signals governing coat-mediated endo-
cytic trafficking. With elegant high-resolution
structures of verified peptide sorting signals
bound to their cognate interaction domains,
the field has come of age. What is clear is that
there is a rich variety of interaction possibilities
to drive distinct sorting processes. The core pri-
mary-sequence sorting signals are four-to-six
residues long, similar to the majority of eukary-
otic linear motifs (ELMs) (Davey et al. 2012).
Short linear sequences facilitate convergent evo-
lution. But why is not only a single, optimized
master signal present within all cargoes to be
internalized from the cell surface? Certain path-
ogenic bacteria, for example, encode effector
proteins injected into host cells, which become
tyrosine phosphorylated and then bind to nu-
merous distinct cellular SH2 domain-contain-
ing signaling regulators (Selbach et al. 2009). In
general, these phosphopeptide sequences are
more similar within bacteriathan to the multiple
endogenous SH2-binding proteins they have
evolved to subvert. In fact, SH2 domains can
be artificially tailored to bind phosphotyrosine
signals considerably tighter (Kaneko et al. 2012).
Similarly, interaction partners for clathrin-me-
diated endocytosis have evolved to permit rela-
tively weak, transient but selective associations
to enable efficient trafficking. It is evident then
that cargo recognition folds are not optimally
evolved to bind sorting signals with highest af-
finity. Hence, there is significant variationwithin
and between operative signals, which have been

favored to allow the flexibility and appropriate
assembled dwell times necessary for normal traf-
ficking operations. Other critical aspects of an
expanded sorting-signal code are that it avoids
direct competition between cargoes for uptake
(Warren et al. 1998), permits discrimination be-
tween monomeric and complexed SNAREs, and
allows synchronization of multiple traffic flows.

Moreover, if sorting depended solely on bi-
molecular cargo–coat interactions, the process
would be highly error prone owing to promis-
cuous binding errors with related but inappro-
priate sequences (Ladbury and Arold 2012).
And if the same signal operates at different sort-
ing stations, it is implicit that information nec-
essary to recruit the appropriate coat/adaptor
is not the signal itself. Indeed, in AP-1 and AP-
2, the cargo-recognition surfaces only become
available once membrane association is estab-
lished. One mechanism to increase accuracy is
by temporal integration of several low-affinity
contacts through spatially separate contact sur-
faces to guard against random noise, in the form
of nonspecific univalent engagement by related
(or unrelated) proteins. This robust recognition
only under certain circumstances typifies se-
lective binding of conditional peripheral mem-
brane proteins (Moravcevic et al. 2012), and is
often termed “coincidence detection” (Carlton
and Cullen 2005) or a “dual-key strategy” (Itoh
and De Camilli 2004). Coat assembly is therefore
a probabilistic process, with increased likelihood
of successful assembly with the more synchro-
nous linked interactions at a nascent bud site.
By binding to multiple adaptors or CLASPs,
cargoes participate directly in the network, and
thus modulate the coat assembly process (Mett-
len et al. 2010). A corollary of this densely wired
redundant network is that gene silencing or
RNAi of numerous individual CLASPs does
not have a dramatic penetrant effect on endocy-
tosis (Garcia et al. 2001; Kang-Decker et al. 2001;
Morris et al. 2002; Kamikura and Cooper 2003;
Holmes et al. 2007; Koh et al. 2007; Wang et al.
2008; Chen et al. 2009; Mullen et al. 2012; Pozzi
et al. 2012; Scotland et al. 2012; Suzuki et al.
2012; Umasankar et al. 2012; Kononenko et al.
2013; Tsushima et al. 2013). Rather, subtle or
tissue-specific defects are manifest linked to im-
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proper signal relay by the cargo affected. This
concept is also concordant with pathogenic mi-
croorganisms requiring different elements of
the endocytic machinery for successful entry
and infection (Eto et al. 2008; Bhattacharyya
et al. 2011; Bonazzi et al. 2011; Fukumatsu et
al. 2012).

It is unlikely that we currently have a com-
plete catalog of operational sorting signals. On-
going functional analysis reveals that within spe-
cific cargo, alterations in relative residue spacing
and even tolerated loss of invariant anchor res-
idues can occur (Kozik et al. 2010; Gephart et al.
2011; Ortega et al. 2012; Wang et al. 2012). Other
noncanonical neighboring side chains compen-
sate under these circumstances. A general screen
for cytosolic sequences able to promote efficient
internalization of a surface reporter highlights
several novel operational sequences, yet are still
heavily dependent on AP-2 (Kozik et al. 2010).
First, designated “RYR,” appears initially to be
an altered YXXØ-type sequence, superficially
analogous to the YEQGL sequence in the P2X4
purinergic receptor (Royle et al. 2005). However,
although the tyrosine in the RYR is the most vital
side chain, it does not appear to bind to the
YXXØ site on m2-C subdomain A (Kozik et al.
2010).m2 also binds to a basic stretch (devoid of
aromatic residues) of the d subunit of GABAA

receptors (Gonzalez et al. 2012), so there is likely
another contact surface for cargo recognition, as
is evident on the m4 subunit of AP-4 (Burgos
et al. 2010). Then there are the completely novel
operational sorting signals: NMDA receptors
that incorporate a GluN3A subunit use a YWL
sorting signal for internalization (Chowdhury
et al. 2013). In this signal, the leading tyrosine
can be mutated; it is not indispensable. Remark-
ably, although a Y971F substitution is defective,
a phosphomimetic Y971E permits better AP-2
binding and internalization (Chowdhury et al.
2013). This, it seems, is a sorting signal stimu-
lated by tyrosine phosphorylation. The signal
may be related to the SWF tripeptide sequence
at the end of the novel “WPK” signal, which is
AP-2 and clathrin dependent (Kozik et al. 2010).
In both, alanine substitution of the W[LF] pair
strongly inhibits internalization (Kozik et al.
2010; Chowdhury et al. 2013). Ordered packing

of unstructured regions of a CLASP over a cargo
surface could also be more widespread than cur-
rently appreciated, and may allow proteins with
large intrinsically disordered regions together
with a folded modular domain to display cargo
selectivity for more than one signal type, just like
the heterotetrameric adaptors.
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