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Summary

The current study sought to delineate the gene expression profile of the

host response in the caecum and colon during acute infection with Clos-

tridium difficile in a mouse model of infection, and to investigate the nat-

ure of the unfolded protein response in this process. The infected mice

displayed a significant up-regulation in the expression of chemokines

(Cxcl1, Cxcl2 and Ccl2), numerous pro-inflammatory cytokines (Ifng, Il1b,

Il6, and Il17f), as well as Il22 and a number of anti-microbial peptides

(Defa1, Defa28, Defb1, Slpi and Reg3g) at the site(s) of infection. This was

accompanied by a significant influx of neutrophils, dendritic cells, cells of

the monocyte/macrophage lineage and all major subsets of lymphocytes

to these site(s). However, CD4 T cells of the untreated and C. difficile-

infected mice expressed similar levels of CD69 and CD25. Neither tissue

had up-regulated levels of Tbx21, Gata3 or Rorc. The caeca and colons of

the infected mice showed a significant increase in eukaryotic initiation fac-

tor 2a (eIF2a) phosphorylation, but neither the splicing of Xbp1 nor the

up-regulation of endoplasmic reticulum chaperones, casting doubt on the

full-fledged induction of the unfolded protein response by C. difficile.

They also displayed significantly higher phosphorylation of AKT and sig-

nal transducer and activator of transcription 3 (STAT3), an indication of

pro-survival signalling. These data underscore the local, innate, pro-

inflammatory nature of the response to C. difficile and highlight eIF2a

phosphorylation and the interleukin-22–pSTAT3–RegIIIc axis as two of

the pathways that could be used to contain and counteract the damage

inflicted on the intestinal epithelium.
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Introduction

Clostridium difficile is a Gram-positive, spore-forming,

anaerobic bacterium.1 It is the most prevalent cause of

infectious diarrhoea in antibiotic-treated patients in hos-

pitals.2,3 Infection with C. difficile can lead to a broad

range of clinical outcomes, including asymptomatic colo-

nization, mild diarrhoea and severe pseudomembranous

colitis. Clostridium difficile encodes a number of toxins.

Of these, two exotoxins, TcdA and TcdB, are the bacte-

rium’s main virulence factors. Both toxins are glucos-

yltransferases that irreversibly inactivate small GTPases of

the Rho family.4,5 This in turn leads to the depolymeriza-

tion of the epithelial actin cytoskeleton, impaired

function of tight junctions and severe epithelial cell

damage.6–8 The use of ileal loop models has provided

useful insights into the function of these toxins.9 Studies

using mouse models of C. difficile infection have proven

the higher susceptibility of MyD88�/�10 and Toll-like

receptor 4�/�11 mice and the protective effect of Toll-like

receptor 5 stimulation against acute C. difficile colitis.12

The higher susceptibility of MyD88�/� mice is at least in

part due to impaired CXCL1 expression and the conse-

quent reduction in neutrophil influx to the site of
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infection.13 Interestingly, NOD1�/� mice also have

reduced neutrophil recruitment to the site of infection,

but show similar levels of epithelial damage as wild-type

mice.14 However, much remains to be determined about

the host inflammatory and mucosal response to C. diffi-

cile infection, which serves as our rationale for analysing

the expression of over 90 of the genes involved in muco-

sal biology (Table 1) at the peak of acute inflammation

in this infection.

The induction of the unfolded protein response

(UPR) in C. difficile infection has not been investigated;

nor has pro-survival signalling been a major focus of

studies on this infection. A number of reports have

implicated the UPR in pro-inflammatory responses in

general,15,16 and in intestinal inflammation in particu-

lar.17–19 More specifically, X-box-binding protein 1

(XBP1),17 activating transcription factor 6 (ATF6)18 and

eukaryotic initiation factor 2a (eIF2a) phosphorylation19

each play a protective role against dextran sodium sul-

phate-induced colitis. The UPR is a concerted adaptive

programme that counters endoplasmic reticulum (ER)

stress by down-regulating the synthesis of secreted pro-

teins, up-regulating ER chaperone and foldase levels, and

activating ER-associated degradation, hence easing the

burden on the stressed ER by decreasing its protein

load, increasing its folding capacity and eliminating

irreparably misfolded proteins.20,21 In higher eukaryotes,

PRKR-Like Endoplasmic Reticulum Kinase (PERK),

Inositol-Requiring Enzyme 1 (IRE1) and ATF6 act as the

proximal transducers of ER stress. Each of these serves a

distinct role in the UPR. The most rapid outcome is

translational attenuation. It is mediated by activated

PERK through the phosphorylation of eIF2a and takes

effect as early as 30 min after exposure to ER stress.22,23

The GADD34/PP1 complex provides feedback inhibition

of this process by specifically promoting eIF2a dephos-

phorylation.24,25 IRE1 exerts its cytoprotective effect

mainly by removing a 26-base intron from the mRNA

encoding XBP1.26,27 The spliced Xbp1 encodes a potent

transcription factor whose targets encode several proteins

involved in ER protein folding and the degradation of

misfolded ER proteins.28,29In response to ER stress, the

transmembrane portion of ATF6 is cleaved by S1P and

S2P proteases that reside in the Golgi apparatus.30 The

cleaved fragment moves to the nucleus and, mainly in

parallel with XBP1, up-regulates genes that increase ER

chaperone activity and the degradation of misfolded pro-

teins.31,32 The protective roles of eIF2a phosphorylation,

XBP1 and ATF-6 in mouse models of chemically

induced colitis,17–19 serve as our rationale for investigat-

ing the potential effect of C. difficile infection on differ-

ent elements of the UPR.

Here we have used the mouse model of C. difficile

infection originally reported by Chen et al.,33 and previ-

ously studied in our group,34–36 to address the following

unanswered questions. First, how does the host expression

of chemokines, cytokines, anti-microbial peptides and

other epithelial-associated genes change during acute

C. difficile infection? Second, does the induction of the

UPR accompany the inflammatory response in the colon

and caecum during acute C. difficile infection?

Materials and methods

Ethics statement

All animal experiments were conducted with the

approval of the University Committee on Use and Care

of Animals (UCUCA) at the University of Michigan

(Protocol Number: 10212). The University’s animal-care

policies follow the Public Health Service policy on

Humane Care and Use of Laboratory Animals. The

mice were housed in an AAALAC-accredited facility.

None of the conducted experiments involved the delib-

erate induction of discomfort or injury. The physical

condition and behaviour of the mice were assessed on

a daily basis. The mice were killed by CO2 asphyxiation

in compliance with the recommendations of the Panel

on Euthanasia of the American Veterinary Medical

Association.

Animals

C57BL/6 mice obtained from Jackson Laboratories (Bar

Harbor, ME) were used to establish a breeding colony at the

University of Michigan Medical School. They were housed

under specific pathogen-free conditions and consumed

clean food and water ad libitum. Male mice at 5–8 weeks of

age were used for the current set of experiments.

Table 1. List of evaluated genes - The groupings of the genes are

based on either the structural relationship of the particular set of

genes, and/or on their established (or purported) functions

Chemokines: Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl11, Cxcl1,

Cxcl2, Cxcl9, Cxcl10

Cytokines and related molecules: April, Baff, Csf2, Csf3, Fgf7,

Il1b, Il2, Il3, Il4, Il5, Il6, Il9, Il10, Il12a, Il13, Il15, Il17a, Il17f,

Il18, Il21, Il22, Il23a, Il25, Il27, Il33, Ifng, Mif, Tgfb1, Tnfa, Tslp

Anti-microbial peptides and mucins: Camp, Defa1, Defa28, Defb1,

Defb3, Lyz1, Muc2, Muc3, Reg3 g, Slpi

Nod- and toll-like receptors: Nod1, Nod2, Tlr2, Tlr4, Tlr5, Tlr9

Short chain fatty acid receptors (SCFAs): Ffar2, Ffar3, Gpr35

Tight junction and adhesion proteins: Cdh1, Cgn, Cldn1, Cldn2,

Epcam, Tff2, Tjp1, Tjp2

Transcription factors: Gata3, Rorc, Shh, Tbx21, Tcf4, Xbp1, Zfp148

Prostaglandin and/or leukotriene pathway enzymes: Alox5,

Pla2g2a, Ptgs1, Ptgs2

Miscellaneous: Actb, Aldh1a1, Aldh1a2, Ang4, Ctfr, Gapdh, Gdc,

H2-Aa, H2-Ea, Hspa1b, Hspb1, Hrh4, Pigr, Pparg, Retnla, Rtc
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Administration of antibiotics and infecting mice with
Clostridium difficile

The mouse model of C. difficile infection described by

Chen et al.33 was used for this study. Male mice, 5–8 weeks

old, were either left untreated or received an antibiotic

mixture of colistin (850 U/ml), gentamicin (0.035 mg/

ml), kanamycin (0.4 mg/ml), metronidazole (0.215 mg/

ml) and vancomycin (0.045 mg/ml) in sterile drinking

water for 3 days. The mice receiving the antibiotic cock-

tail were then switched to regular drinking water for

2 days. Afterwards, each of the treated mice was given a

single intraperitoneal dose of clindamycin (10 mg/kg) a

day before infection with C. difficile. The C. difficile strain

used in this study was the reference strain VPI 10463

(ATCC 43255), which was grown and prepared for inocu-

lation as previously described.35 Each mouse received

105 colony-forming units (CFU) of the bacterium in its

vegetative state by oral gavage. All the animals were mon-

itored for signs of disease including diarrhoea, hunched

posture and weight loss. All untreated and C. difficile-

infected mice were killed 42 h after the infection (Fig. 1).

Enrichment of intestinal leucocytes

Intestinal leucocyte enrichment was performed as previ-

ously described,14,37 with certain modifications. The cae-

cum and colon of each mouse were excised, opened

longitudinally and washed in PBS to remove the faecal

content. Afterwards, each caecum or colon was incubated

in calcium- and magnesium-free HBSS containing 2.5%

fetal bovine serum and 1 mM DTT for 20 min at 37° to

remove the mucus, washed three times and then incu-

bated twice in calcium- and magnesium-free HBSS con-

taining 2.5% fetal bovine serum and 1 mM EDTA for

20 min at 37° with one wash between the two incuba-

tions. Following the second incubation, the samples were

washed three times. The tissues were then incubated in

calcium- and magnesium-free HBSS containing 2.5% fetal

bovine serum, 400 U/ml collagenase type 3 (Worthington

Biochemical, Freehold, NJ) and 0.5 mg/ml DNase I

(Roche, Indianapolis, IN) for 90 min at 37°. The digested

samples were resuspended in a 20% Percoll solution

(Sigma-Aldrich, Milwaukee, WI) and centrifuged at 900 g

for 30 min at room temperature. The total number of

cells obtained from each digest was counted in the pres-

ence of trypan blue using a haemocytometer.

Antibodies

The conjugated antibodies used for flow cytometry

including those against B220 (clone RA3-6B2), CD4

(clone GK1.5), CD8 (clone 53-6.7), CD11b (clone M1/

70), CD11c (clone HL3), CD19 (clone 1D3), CD25 (clone

PC61), CD45 (clone 30-F11), CD69 (H1.2F3), FoxP3

(clone FJK-16s), Gr-1 (clone RB6-8C5) and MHC II

(clone M5/114.15.2), as well as an unconjugated antibody

against Fc RIII/II (clone 2.4G2) were purchased from BD

Biosciences (San Diego, CA), eBioScience (San Diego,

CA) and BioLegend (San Diego, CA). Immunoblotting

antibodies against b-actin (clone 13E5), calreticulin, phos-

pho-eIF2a (clone 119A11), eIF2a (clone L57A5), GAPDH

(clone 14C10), P58IPK (clone C56E7), phospho-AKT

(clone D9E), AKT (clone C67E7), phospho-STAT3 (clone

D3A7) and STAT3 (clone 79D7) were obtained from Cell

Signaling Technology (Danvers, MA). Anti-BiP (clone 40)

was from BD Biosciences. Alkaline phosphatase-conju-

gated secondary antibodies were purchased from Santa

Cruz Biotechnology (Santa Cruz, CA).

Flow cytometry

Cell suspensions prepared from spleens and mesenteric

lymph nodes,38 as well as caecal and colonic digests were

washed in staining buffer [Hanks’ balanced salt solution

(HBSS) containing 0.5% BSA and 0.1% sodium azide),

Day –6

Day –3 Day –1 Day 1

5 antibiotic cocktail in
drinking water

-Colistin
-Gentamicin
-Kanamycin

-Metronidazole
-Vancomycin

Mice
5–8 weeks old wild-type

male C57BL/6

42 hr
Harvest:

Spleen MLN Caecum Colon
Caecal and Colonic Contents

Day 0
Oral gavage of

C. difficile VPI 10463

Switch to normal water IP injection of
clindamycin

Monitor miceFigure 1. Experimental timeline of the Clos-

tridium difficile infection.
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and pre-blocked with unlabelled anti-FcRIII/II antibody.

Afterwards, the cells were stained in a final volume of

100 ll in 96-well round-bottom plates for 30 min. The

cells were then washed (twice) in the staining buffer and

resuspended in BD Biosciences’ stabilizing fixative. Data

on the samples were acquired on a three-laser Canto II

flow cytometer using FACSDIVA software (BD Biosciences).

The acquired data were analysed with the FLOWJO soft-

ware (TreeStar, Ashland, OR). First, leucocytes were

defined as cells with the surface expression of CD45.

The following leucocyte subsets were then identified

within this gate. Neutrophils were defined as Gr-1+

CD11c� MHC II� cells; CD11c+ MHC II+ cells were clas-

sified as dendritic cells; CD11b+ Gr-1� CD11c� cells were

defined as members of the monocyte/macrophage lineage,

with those expressing MHC II considered to be mature

and/or activated; lymphocytes were subdivided by the

surface expression of CD4, CD8 or B220 and CD19. CD4

T cells co-expressing FoxP3 and CD25 were defined as

regulatory T cells.

Western blot analysis

Caecum and colon snips obtained from untreated and

C. difficile-infected mice were homogenized on ice with a

rotor/stator-type homogenizer (Biospec Products, Bartles-

ville, OK) while immersed in ice-cold modified RIPA buf-

fer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM

EDTA, 1% Nonidet P-40, 1% sodium deoxycholate, 0.1%

SDS) supplemented with HALT protease and phosphatase

inhibitor cocktail (Thermo Fisher, Rockford, IL). All tis-

sue lysates were subjected to two rounds of centrifugation

at 10 000 g for 10 min. The BCA protein assay (Thermo

Fisher) was used to determine the protein concentration

of each of the cleared lysates. A 30 lg sample of each cae-

cum or colon lysate protein was boiled for 5 min in

reducing sample buffer containing DTT and resolved by

SDS–PAGE, transferred to PVDF membranes and probed

with the indicated antibodies. The membranes were

exposed to enhanced chemifluorescence substrate (GE

Healthcare, Piscataway, NJ), followed by scanning on a

Typhoon Trio+ imaging system (GE Healthcare) to obtain

a digital image of the probed protein. The bands were

then quantified with IMAGEQUANT software (GE Health-

care).

Quantification of mRNA levels using custom-made
quantitative RT-PCR cards

Caecum and colon snips obtained from untreated and

C. difficile-infected mice were homogenized with a rotor/

stator-type homogenizer while immersed in TRIzol RNA

reagent (Life Technologies, Grand Island, NY). The TRI-

zol RNA reagent and the RNeasy Mini kit (Qiagen,

Valencia, CA) were used in successive steps to isolate

RNA from the caecum and colon samples, each according

to its manufacturer’s instructions. An Agilent Bioanalyser

(Agilent Technologies, Palo Alto, CA) and a Nanodrop

instrument (Thermo Fisher) were used to determine the

quality and concentration of each RNA isolate, respec-

tively. Complementary DNA (cDNA) was generated from

each RNA sample using the RT2 First Strand kit (Qiagen).

Expression levels of the genes under study were deter-

mined by using two different sets of mouse RT2 Profiler

PCR cards (Qiagen), each custom-made to contain eight

replicate sets of 48 primer pairs (Table 1). Each well of

the replicate sets was loaded with 5 ng of cDNA reaction

product. Each card was run on a LightCycler 480 real-

time PCR system (Roche). The relative RNA expression

levels were inferred from the Ct values.

Detection of Xbp1 mRNA splicing

Xbp1 splicing was assessed as previously described.39

Briefly, the Superscript III RT-PCR kit (Life Technolo-

gies) was used to amplify both unspliced and spliced

Xbp1 in RNA samples obtained at the end of the experi-

mental period. The primers used in the assay flanked the

Xbp1 intron and had the following sequences: upstream:

ttgtggttgagaaccagg; downstream: tccatgggaagatgttctgg.

Quantification of Gadd34 and Wars mRNA levels

Quantitative RT-PCR, including methods for verifying

primer efficiency and specificity, were performed as previ-

ously described.40 The Ct value for each gene of each

sample was normalized against the geometric mean of the

Gapdh and Hprt for that sample.41

Statistical analyses

For the following assays, differences between untreated and

C. difficile-infected mice were evaluated for significance by

using paired t-tests at P ≤ 0.05: diversity of the bacterial

community examined by pyrosequencing; cell numbers

obtained by analysing the flow cytometric data; mRNA

expression for the UPR genes Gadd34 and Wars obtained

by single gene quantitative RT-PCR; and protein expres-

sion or phosphorylation assessed by immunoblotting. The

quantitative RT-PCR data acquired with custom-made

cards were normalized as previously described,39 with cer-

tain modifications. Briefly, the variation among the cards

was adjusted by defining a normalization constant for each

card based upon the mean Ct value of the 16 mRNAs that

had the highest mRNA abundance (lowest Ct values) in

each type of untreated tissue across the entire series of each

custom-made set of RT2 Profiler PCR cards. Each individ-

ual Ct value was then adjusted by adding in this card-spe-

cific normalization factor, so that each card had the same

average estimate of mRNA for the 16 most abundant
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mRNAs. The normalized numbers were used to calculate

DCt values for each gene by deducting the geometric mean

of the Actb and Gapdh Ct values of each sample from the

Ct value of each gene in that sample.41 The SAM (Statisti-

cal Analysis for Microarray) software developed by Tusher

and colleagues42 was then used to compare the expression

levels of each gene between the caeca or colons of

untreated and C. difficile-infected mice. In each case, genes

for which false discovery rates ≤ 0.05 were considered sig-

nificant. All the significant genes with at least a twofold

increase in expression were defined as up-regulated.

Results

The timeline for the infection, as described in the Materi-

als and methods section, is depicted in Fig. 1. Following

pre-treatment with antibiotics, the mice received an oral

gavage of 105 CFU of C. difficile strain VPI 10463 on day

0. At day 2, there was significantly lower bacterial species

diversity in the caecum and colon (see Supplementary

material, Figure S1 and Table S1), C. difficile infection

was established, and detectable levels of toxin were pres-

ent in the faeces (data not shown). At this time-point,

the infected mice had lost weight, and their caeca and

colons showed clear histopathological changes, which

included neutrophilic inflammation in the mucosa and

submucosa, varying degrees of submucosal oedema, epi-

thelial hypertrophy and luminal exudates (see Supplemen-

tary material, Figure S2).

To study the mucosal host response to C. difficile infec-

tion, we used a quantitative RT-PCR approach to exam-

ine the expression patterns of > 90 genes in the caeca and

colons of the infected mice, a scale of analysis not previ-

ously reported for this infection model. This was comple-

mented with flow cytometric analysis to determine the

type and number of different leucocyte subsets recruited

to the sites of infection. The list of selected genes

included chemokines, cytokines and related molecules,

transcription factors, Nod- and Toll-like receptors, anti-

microbial peptides, short-chain fatty acid receptors, tight

junction and adhesion proteins, as well as others (see the

full list in Table 1).

There was a significant up-regulation of the chemokin-

es Ccl2, Ccl4, Cxcl1, Cxcl2, Cxcl9 and Cxcl10 in the caeca

and colons in the aftermath of infection (Fig. 2a). There

was also a significant up-regulation of Ccl3 in the colon.

Both the caeca and colons of the infected mice displayed

a significant increase in the expression levels of the pro-

inflammatory cytokines Ifng, Il1b, Il6 and Il17f (Fig. 2b).

The colons, in addition, had significantly higher levels of

the cytokines Csf2, Csf3, Il9 and Tnfa.

The observed chemokine and inflammatory gene

expression pattern was clearly reflected in the composi-

tion of the inflammatory infiltrates in the caeca and

colons of the C. difficile-infected mice. Both organs con-

tained significantly higher numbers of neutrophils after

the infection (Fig. 3a), a finding consistent with the sig-

nificant up-regulation of Cxcl1, Cxcl2 and Il17f. In addi-

tion, there was a substantial increase in CD11b

expression on the recruited neutrophils (Fig. 3b). Flow

cytometric analysis showed a significant increase in the

number of dendritic cells and cells of the monocyte/mac-

rophage lineage in the caeca of the C. difficile-infected

mice (Fig. 4a,b; compare with Supplementary material,

Figure S3A and B); which was consistent with the

increased expression levels of Ccl2. The infected colons

showed a similar trend. A substantial fraction of the

monocyte/macrophage lineage cells in the caeca and

colons of the infected mice expressed low levels of MHC

II (Fig. 4c), which was consistent with their recent

recruitment. The significant increase in the number of

lymphocytes (B cells, CD4 T cells and CD8 T cells) in

the caeca and colons of the C. difficile-infected mice

(Fig. 5a; compare with Supplementary material, Figure

S4A) also correlated with the heightened expression of

chemokines and pro-inflammatory genes. Nonetheless,

the recruited CD4 T cells expressed levels of CD69 that

were comparable with that found in their untreated

counterparts (Fig. 5b; compare with Figure S4B) and had

low levels of CD25 expression (assessed on CD4 T cells

with gating to exclude the FoxP3+ subset) (Fig. 5c; com-

pare with Figure S4C). These observations were in full

biological concordance with the lack of any significant

change in Tbx21, Gata3 or Rorc expression levels or in

that of cytokines secreted by polarized T cells (data not

shown).

There was a significant up-regulation of Il22 expression

and a number of anti-microbial peptides in the caeca and

colons of the infected mice. These included Defa1,

Defa28, Defb1 and Slpi in the colon and Reg3g in the cae-

cum (Fig. 2c). There was also an increase in Reg3g levels

in the colons of infected mice; however, in these experi-

ments, the increase did not reach statistical significance.

To assess the activation of the UPR in C. difficile infec-

tion in mice, caecal and colonic samples from untreated

and C. difficile-infected mice were examined for their

expression of numerous UPR markers. Immunoblotting

showed a significant increase in the level of eIF2a phos-

phorylation, the most rapid aspect of the UPR, in the

caeca and colons of the infected mice (Fig. 6a). This

coincided with the significant up-regulation of Gadd34

and Wars mRNA expression levels, both downstream of

eIF2a phosphorylation, in the infected samples (Fig. 6b).

By contrast, the caecal and colonic tissues from the

infected mice did not undergo Xbp1 splicing (Fig. 6c),

thereby ruling out the activation of the IRE1 pathway.

Up-regulation of ER chaperones is the hallmark of UPR

activation. When assessed by immunoblotting, the caecal

and colonic protein samples from the infected mice did

not show the induction of BiP, P58IPK or calreticulin as
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Inflammation and pro-survival signalling in C. difficile infection



a result of infection (Fig. 6d–f). There was no indication

of ER chaperone up-regulation at the mRNA level either

(data not shown).

The phosphorylation of eIF2a and the up-regulation of

Il22 in the caeca and colons of C. difficile-infected mice,

as well as the up-regulation of Reg3g in their caeca, raises

the prospect of pro-survival signalling in these tissues in

response to infection. To investigate this possibility, caecal

and colonic protein lysates from untreated and C. diffi-

cile-infected mice were probed for the phosphorylation

levels of AKT and STAT3. Both the caeca and colons of

the infected mice showed a significant increase in AKT

(Fig. 7a) and STAT3 (Fig. 7b) phosphorylation levels in

comparison to their untreated counterparts. These data

support the induction of pro-survival signals in C. diffi-

cile-infected mice.
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Figure 2. Significantly up-regulated genes in

the caeca and colons of Clostridium difficile-

infected (CDI) mice. Custom-made RT-PCR

cards were used to evaluate gene expression

levels in the caeca (n = 12 pairs) and colons

(n = 12 pairs) of untreated and CDI mice

from three sets of experiments. (a) significantly

up-regulated chemokines in the caeca and

colons of CDI mice; (b) pro-inflammatory

cytokines that had significantly higher expres-

sion levels in these tissues; (c) significant up-

regulation of Il22 and anti-microbial peptide

mRNAs. Each bar represents the mean � SEM

of the relative expression of the depicted gene.

⋆ denotes a significant difference in expression

levels between untreated and CDI mice, i.e.

false discovery rate ≤ 0.05. The up-regulation

of Reg3g in the colon did not reach statistical

significance.

15 000 50 000

40 000

30 000

20 000

10 000

0

10 000

5000

0
Neutrophils Neutrophils

P = 0·006*
P = 0·05*

Caecum Colon

Caecum Colon

A
bs

ol
ut

e 
ce

ll 
nu

m
be

r

A
bs

ol
ut

e 
ce

ll 
nu

m
be

r Untreated

Untreated Untreated

CDI
CDI

CDI

100

80

60

40

20

0

100

80

60

40

20

0
0 103 104 105

CD11b
0 103 104 105

CD11b

(a)

(b)

Figure 3. Recruitment of neutrophils to the

caeca and colons of Clostridium difficile-

infected (CDI) mice. (a) Bar graphs showing

the increased number of neutrophils in the ca-

eca and colons of CDI mice in comparison to

untreated mice. The bars represent the mean

� SEM of nine pairs of caeca and colons. A

P-value ≤ 0.05 indicates a significant difference

between the untreated and CDI samples and is

marked with a ⋆. (b) Histograms showing

increased expression levels of CD11b on neu-

trophils in the caeca and colons of CDI mice.
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Discussion

This study contains two major novel elements. (i) It anal-

yses the host response in the caeca and colons of C. diffi-

cile-infected mice with a panel of > 90 of the genes

involved in mucosal biology, and correlates these changes

with the cellular response at these sites of infection, as

determined by flow cytometry. (ii) It examines the induc-

tion of the UPR and pro-survival signals at these sites in

the aftermath of C. difficile infection.

Collectively, the gene expression and flow cytometric

results point to four main trends in the local response to

C. difficile infection.

First, they show an up-regulation of chemokine genes

involved in recruiting effector cells of the innate immune

response to the sites of infection. CXCL1 and CXCL2

are potent neutrophil chemoattractants and activators,

and induce neutrophil mobilization from the bone mar-

row.43,44 CCL2 is in turn a chemoattractant for mono-

cytes. Most nucleated cells express CCL2 in response to

pro-inflammatory cytokines such as interleukin-1b (IL-

1b)45 or upon engagement of innate immune receptors

by a number of microbial products. Flow cytometric

analysis had shown a substantial increase in the number

of neutrophils in the caeca and colons of the infected

mice and up-regulated levels of CD11b on the recruited

neutrophils, an indication of their potential activation.46

It also documented that a higher fraction of cells of the

monocyte/macrophage lineage express low levels of MHC

II in the caeca and colons of the infected mice, further

confirming monocyte recruitment to the site of infection

and raising the prospect of their differentiation after

exposure to cytokines and/or microbial products.47 The

up-regulation of Cxcl1, Cxcl2 and Ccl2 in the caeca and

colons of C. difficile-infected mice is consistent with the

flow cytometric evidence of neutrophil and monocyte

recruitment to the site(s) of infection, and is in agree-

ment with previously published findings.13,14,48–50

Second, the quantitative PCR data document the induc-

tion of pro-inflammatory cytokine genes. Interleukin-1b,
IL-6, tumour necrosis factor-a (TNF-a), Colony Stimulat-

ing Factor 2 (CSF2), Colony Stimulating Factor 3 (CSF3)

and interferon-c (IFN-c) are all potent pro-inflammatory

cytokines. Moreover, IFN-c can induce both CXCL9 and

CXCL10 expression, which explains the significant up-

regulation of Cxcl9 and Cxcl10 in our quantitative PCR

analysis. In synergy with IL-1b and TNF-a, IL-17F induces

CCL2 and CXCL1 production in vitro51 and recruits neu-

trophils to the site of infection in vivo.52 The up-regulation

of genes for this group of cytokines at the site(s) of

C. difficile infection further underscores the innate nature

of the response in this model.
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Figure 4. Increased number of dendritic cells

and cells of the monocyte/macrophage lineage

in the caeca of Clostridium difficile-infected

(CDI) mice. Bar graphs showing the number

of dendritic cells (a), and cells of the mono-

cyte/macrophage lineage (b), in the caeca and

colons of CDI mice in comparison to

untreated mice. The bars represent the mean

� SEM of nine pairs of caeca and colons. A

P-value ≤ 0.05 indicates a significant difference

between the untreated and CDI samples and is

marked with a ⋆. (c) Histograms showing the

higher fraction of monocyte/macrophage line-

age cells expressing low levels of MHC II in

the caeca and colons of CDI mice.
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Third, the quantitative PCR data do not show an

increase in Tbx21, Gata3 or Rorc expression levels or

the cytokines secreted by polarized T cells. CD69 and

CD25 expression levels are used to assess early T-cell

activation.53–55 Although flow cytometry confirmed the

recruitment of lymphocytes to the sites of infection,

CD4 T cells of the untreated and C. difficile-infected

mice expressed comparable levels of CD69, and had low

levels of CD25 expression on their surface. Our infer-

ence from the flow cytometric data is that the CD4 T

cells recruited to the sites of infection are at best at the

very early stages of activation and therefore unlikely to

exert a polarized T cell’s effector function(s). The

absence of a significant increase in Tbx21, Gata3 or

Rorc expression levels or that of cytokines secreted by

polarized T cells gives further credence to this notion.

It also indicates that any study of the adaptive immune

response and potential polarization of the T-cell

response should be undertaken in a protracted, chronic

model of C. difficile infection.

Lastly, the quantitative PCR data demonstrate the

higher expression of genes involved in containing the

inflammation and restoring mucosal homeostasis and

integrity. Interleukin-22 serves a crucial role in maintain-

ing the barrier function of mucosal surfaces by promoting

anti-microbial immunity and tissue repair.56,57 It plays a

part in the expression of defensins in keratinocytes.58,59

More importantly, IL-22 has a direct role in the induc-

tion of RegIIIc in the gut.60 RegIIIc in turn, promotes a

spatial separation between intestinal microbiota and the

host, thereby minimizing the chance of harmful immune

responses.61 The up-regulation of Il22 in the caeca and

colons of the infected mice, as well as the significant

increase in expression of anti-microbial peptides, particu-

larly Reg3g, all point to the host’s efforts to contain the

inflicted damage and to restore epithelial homeostasis at

the infected sites.

The previous use of C. difficile toxins alone in experi-

mental ileal loop models has documented a small fraction

of our findings in the current study. These include the

ability of TcdA to induce the release of the pro-inflam-

matory mediators IL-1b,62 TNF-a,63 IFN-c,64 CXCL1,48

CXCL249 and CCL3,65 as well as the fact that both IFN-

c�/�64 and CCR1�/�65 mice have a milder form of enteri-

tis in response to TcdA injection. Despite the useful

insights provided by the ileal loop model into the actions

of C. difficile toxins, it should be noted that the model

has some important shortcomings. First, it is a surgery-

based model, which entails the injection of C. difficile

toxin preparations into the animal and not infection with

the bacterium itself; second, it targets the wrong organ

for disease, i.e. ileum instead of the colon; and third, it

does not reflect any interaction of C. difficile with the

host’s microbiota.
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Figure 5. Recruitment of various lymphocyte

subsets to the caeca and colons of Clostridium

difficile-infected (CDI) mice. Bar graphs show-

ing the number of B cells, CD4 T cells and

CD8 T cells in the caeca and colons of CDI

mice in comparison to untreated mice (a). The

bars represent the mean � SEM of nine pairs

of caeca and colons. A P-value ≤ 0.05 indicates

a significant difference between the untreated

and CDI samples and is marked with a ⋆. (b)
and (c) respectively show histograms of CD69

and CD25 expression levels in the CD4 T cells

of caeca and colons of CDI mice in compari-

son to untreated mice.
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The current work is the first to assess the induction

of the UPR during acute C. difficile infection. A number

of recent studies have implicated the UPR in the

response to different forms of intestinal inflammation.

These include the protective role(s) of XBP1,17 ATF618

and eIF2a phosphorylation19 against dextran sodium sul-

phate-induced colitis. Despite the phosphorylation of

eIF2a and the slight up-regulation of the phospho-eIF2a
targets Wars and Gadd34 in the caeca and colons of

C. difficile-infected mice (which serve as an early indica-

tion of phospho-eIF2a exerting its downstream effect),

the lack of Xbp1 splicing and the absence of ER chaper-

one up-regulation in these tissues cast serious doubt on

the activation of the UPR in this model of infection.

Although numerous laboratories have shown that the

UPR output can be modulated in a context-specific

manner,66,67 a more likely explanation for the current

set of findings is the phosphorylation of eIF2a by a

kinase other than PERK. Of the four kinases that can

phosphorylate eIF2a, Protein Kinase RNA-activated

(PKR) is the most plausible candidate. The phosphoryla-

tion of AKT and STAT3, as well as eIF2a, in the C. dif-

ficile-infected mice gives further credence to this

hypothesis because, in addition to phosphorylating

eIF2a, PKR is an upstream inducer of both AKT and

STAT3 phosphorylation.68

AKT plays an important role in promoting intestinal

epithelial homeostasis and wound repair during intestinal

inflammation.69 Furthermore, the protective effect of

lysophosphatidic acid against C. difficile toxin-induced

cell death in vitro is in part due to its induction of

AKT phosphorylation.70 Therefore, the phosphorylation
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Figure 6. Assessment of the unfolded protein

response in Clostridium difficile-infected (CDI)

mice. Protein lysates from the caeca and colons

of untreated and C. difficile-infected mice were

used to evaluate the phosphorylation of eIF2a
(n = 6 pairs) (a), and the expression levels of

BiP (n = 6 pairs) (d), P58IPK (n = 6 pairs) (e)

and calreticulin (n = 6 pairs) (f). In each case,

the panel on the left shows the image of the

immunoblot for the evaluated molecule for

three pairs of caeca and colons and the bar

graph on the right depicts the mean � SEM of

the response for all the six evaluated pairs. The

expression levels of Gadd34 and Wars were

determined by quantitative RT-PCR (n = 12

pairs). Each bar represents the mean � SEM of

the relative expression of the depicted gene (b).

Conventional RT-PCR was used to determine

the lack of Xbp1 splicing (n = 12 pairs, of which

6 are shown) (c). A P-value ≤ 0.05 indicates a

significant difference between the untreated and

CDI samples and is marked with a ⋆.
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of AKT in the C. difficile-infected mice may be a

pro-survival signal that aims to counteract and contain

the inflicted epithelial damage.

The phosphorylation of STAT3 in the C. difficile-

infected mice should be viewed from a broader perspec-

tive. First, the use of STAT3IEC-KO mice has shown that

activation of intestinal epithelial STAT3 regulates immune

homeostasis in the gut by promoting IL-22-dependent

mucosal wound healing.71 The up-regulation of Il22

expression in the caeca and colons of C. difficile-infected

mice, and the significantly higher expression of Reg3g,

suggests a scenario where the recruitment of STAT3 to

the IL-22 receptor72,73 and its consequent phosphoryla-

tion would initiate signalling pathways involved in epithe-

lial repair and wound healing. Second, given the

concurrent phosphorylation of eIF2a, AKT and STAT3 in

the caeca and colons of the infected mice, STAT3 phos-

phorylation may be in part mediated by PKR. The phos-

phorylated STAT3 generated in this manner can then

contribute to epithelial homeostasis and wound repair.19

Third, one can raise the possibility of STAT3 recruitment

to, and its phosphorylation on, the IL-10 receptor. Inter-

leukin-10 can inhibit the production of a distinct, yet

diverse, set of inflammatory mediators. This is achieved

by selectively inhibiting transcription and requires STAT3

activation on the IL-10 receptor.74 The pro-inflammatory

genes Ccl2, Ccl3, Csf2, Cxcl1, Il1b, Il6 and Tnfa, that are

up-regulated in the caeca and/or colons of the C. difficile-

infected mice, belong to the subset of genes whose

transcription is controlled in this manner. However, the

fact that C. difficile-infected mice do not display an

increase in Il10 expression as a result of the infection,

makes this an unlikely scenario.

We contend that the concomitant induction of a local

pro-inflammatory response, and the production of IL-22

and RegIIIc, constitute the host’s standard way of con-

taining and counteracting an acute infection in the gut.

Our study shows the phosphorylation of eIF2a in the

infected mice, but not the full-fledged induction of the

UPR. On the weight of evidence, it is plausible that PKR,

and not PERK, is responsible for the phosphorylation of

eIF2a. This prediction can be put to the test by using

intestinal epithelial cell-specific PERK and PKR knockout

mice. Our study also provides evidence for the induction

of pro-survival signalling, which may contribute to the

host’s return to epithelial homeostasis. The phosphoryla-

tion of eIF2a as a result of infection raises the prospect

that phosphorylated eIF2a confers the same protective

effect in acute C. difficile infection as the one it confers

against chemically induced colitis.19 This, in conjunction

with the induction of pro-survival signals, can be used to

argue that manipulation of common biochemical path-

ways such as those related to translational control and

pro-survival signalling, rather than disease-specific and

pathogen-specific approaches, could potentially be of

therapeutic benefit across a spectrum of conditions with

analogous and/or shared pathophysiologies.75
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