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Abstract
Background—Numerous studies have examined gene × environment interactions (G×E) in
cognitive and behavioral domains. However, these studies have been limited in that they have not
been able to directly assess differential patterns of gene expression in the human brain. Here we
assessed G×E interactions using two publically-available datasets to assess if DNA variation is
associated with post-mortem brain gene expression changes based on smoking behavior, a
biobehavioral construct that is part of a complex system of genetic and environmental influences.

Methods—We conducted an expression quantitative trait locus (eQTL) study on two
independent human brain gene expression datasets assessing G×E for selected psychiatric genes
and smoking status. We employed linear regression to model the significance of the
Gene×Smoking interaction term, followed by meta-analysis across datasets.

Results—Overall, we observed that the effect of DNA variation on gene expression is moderated
by smoking status. Expression of 16 genes were significantly associated with single nucleotide
polymorphisms that demonstrated G×E effects. The strongest finding (p = 1.9×10−11) was
neurexin 3-alpha (NRXN3), a synaptic cell-cell adhesion molecule involved in maintenance of
neural connections (such as the maintenance of smoking behavior). Other significant G×E
associations include four glutamate genes.

Conclusions—This is one of the first studies to demonstrate G×E effects within the human
brain. In particular, this study implicated NRXN3 in the maintenance of smoking. The effect of
smoking on NRXN3 expression and downstream behavior is different based upon SNP genotype,
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indicating that DNA profiles based on SNPs could be useful in understanding the effects of
smoking behaviors. These results suggest that better measurement of psychiatric conditions, and
the environment in post-mortem brain studies may yield an important avenue for understanding
the biological mechanisms of G×E interactions in psychiatry.
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Introduction
The effects of gene by environment (G×E) interaction on behavior are presumably mediated
by differences in gene expression in the brain. There is a large and growing literature
assessing measured G×E interactions to behaviors (Duncan and Keller, 2011), and less
frequently with methylation or gene expression in peripheral tissues such as blood (Mehta et
al., 2013, Boulle et al., 2012, Bagot and Meaney, 2010). That said, there is an emerging
literature examining gene expression the prefrontal cortex to several important psychiatric
and health related outcomes. Early life adversity is associated with widespread variation in
gene expression in prefrontal cortex in rhesus macaques (Provencal et al., 2012). As well,
evidence for G × E variation in gene expression in the brain from these monkeys indicates
that serotonin transporter genotype interacts with early life stress to predict an epigenetic
mark, H3K4me3 binding at the SLC6A4 promoter in hippocampus (Lindell et al., 2012).
Generalization of brain research findings to human has been accomplished in with smaller
hypothesis-driven replication study designs (McGowan et al., 2009). However, there has
been no previous large sample study to directly examine G×E in brain-based gene
expression for complex human behaviors. This is, in part, due to the impossibility of
acquiring gene expression data in vivo and difficulty in acquiring appropriate behavioral and
environmental data retrospectively from a post-mortem cohort. Thus, although child and
adolescent psychiatry has made progress defining DNA variants and their relationship to
behavior, the gene expression mechanisms that mediate these relationships have only
recently begun being characterized (Naumova et al., 2013, Hebebrand et al., 2010).
Understanding the neural underpinnings of behavior would improve if direct links from
DNA variation to brain gene expression were to be studied in the context of behavior
(Richards et al., 2012b, Kleinman et al., 2011).

This study is the first to examine gene expression in a gene × environment interaction study
of smoking. Smoking is a leading cause of preventable death in the United States at about 1
in 5 deaths each year (US Surgeon General, 2012). And despite this fact, 88% of smokers
begin by age 18 (Center for Behavioral Health Statistics and Quality, 2011). However, the
neurobiological and epigenetic basis of smoking addiction is not well known. In this
introduction, we first discuss the intersection of behavior and molecular genetics and discuss
the advantage of gene expression studies on power to detect gene × environment
interactions. Next we define the eQTL study paradigm and design while explaining relevant
concepts. We then establish the basis of this present study, examining brain gene expression
and smoking behaviors. Next, we establish relevance of the molecular underpinning of
smoking maintenance effects on the brain as it relates to preventing smoking initiation in
youth and possible avenues for intervention. In the discussion section, we further argue how
the methods applied here may be generalized to other behavioral and psychiatric traits in
children and adolescents.

Molecular genetic studies of gene × environment interactions require an assay of DNA
variants, a defined and measured behavior of interest, and an environment that can be
quantified or used for stratification/grouping (Caspi and Moffitt, 2006). Assaying DNA
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variation has become robust and routine. The choice of environment and selected metrics
pose another barrier as these choices come from an unbounded pool of candidates, many of
which may be related to behavior but not via interactions with genes; power is difficult to
establish when designing a study and generally assumed to be low (Duncan and Keller,
2011). Finally, in psychiatric studies, the behavioral or clinical outcome is separated from
processes involving DNA by many intervening biological steps.

By focusing in gene expression changes in human brain as the outcome, it is possible to
reduce the number of biological steps between G × E and the outcome. Moreover, power is
also enhanced by employing molecular variables that have strong a priori relationships
(Johnson et al., 2005). By doing so, it is possible to model the principles of a G × E
expression study in a setting that has greater signal to noise. However, we have chosen our
variable set to provide more than a demonstration of a G×E study, but to also understand
smoking behaviors, in a way that is relevant to prevention and intervention of smoking that
could ideally be applied to adolescents before the cumulative and gradual psychological and
medical consequences manifest (Audrain-McGovern et al., 2012, Baler and Volkow, 2011).
This is the first molecular genetic study of smoking behavior, using gene × environment
interactions directly associated with brain biology.

Mapping traits to DNA variation and gene expression
In animals and lower order model systems, it is possible to reverse engineer the role of genes
by modifying or even removing a gene and observing the consequences called the reverse
genetics paradigm (Lehner, 2013). However, the forward genetics paradigm applied to
humans maps observed characteristics to specific chromosomal regions, with the ultimate
goal of identifying specific genes and specific changes within those genes that influence the
observed characteristics. In psychiatry, forward genetics is an observational design, where
observed traits are measured in and DNA variation is assessed for an association with the
observed trait through one of several different statistical genetic paradigms (Bailey-Wilson
and Wilson, 2011, Dube and Hegele, 2013, Do et al., 2012). When the observed trait is
quantitative in nature, mapping the molecular genetic basis can be called quantitative trait
locus (QTL) mapping (Falconer and MacKay, 1996). The chromosomal location, or locus, is
the quantity of interest in the calculations. One quantitative trait that perhaps the most
fundamental in genetics is measurement of gene expression. This special type of QTL is
called an expression quantitative trait locus or eQTL (Damerval et al., 1994, de Vienne et
al., 1988). Therefore eQTL mapping is the paradigm for finding DNA variations that
underlie variation in gene expression. Since DNA (i.e., the chromosomal location) is the
direct template for the synthesis of RNA (i.e., gene expression), they represent a close
biological relationship and therefore eQTL studies have much greater effect sizes than
observed in behavioral studies.

Gene expression may vary by cell and tissue type, environmental conditions covering
everything from moment to moment changes in metabolic activities to fully extrinsic
variables like temperature and past experience (Maranville et al., 2012). Some genes are
stably expressed regardless of other factors while others may be expressed so quickly or in
such a complicated pattern that they cannot be studied using current technology. In between
these two boundary conditions lies genes that show variation in expression to some degree.
eQTL studies, when conducted on gene expression from the human brain will clearly not be
sensitive to genes with rapid responses to the environment as the logistics of tissue dotation
preclude the necessary speed in sample processing. However, many of the genes expressed
in brain do seem to have variability from person to person that is stable enough and can be
reliably measured for eQTL studies to successfully map eQTL’s (Colantuoni et al., 2011,
Gibbs et al., 2010, Heinzen et al., 2008, Kang et al., 2011, Liu et al., 2010, Myers et al.,
2007, Webster et al., 2009).
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To accommodate eQTL studies, datasets must include genotyping and expression profiling
in the same subjects, though only two such datasets have meaningful measures of behavior
(e.g., smoking status) at the time of death (Colantuoni et al., 2011, Liu et al., 2010). Here,
we interrogated those two studies within a meta-analysis framework, to increase power,
since the use of different microarray platforms prevented a single unified reanalysis. Our
study is able to find novel eQTLs using SNP, gene expression, and environmental measures,
in this case smoking status, and it quantifies the interaction between SNPs and the
environment that may affect gene expression in the brain.

Gene expression as an outcome of smoking
Aside from demonstrating the veracity of human brain eQTL studies in understanding the
brain basis of G×E, smoking behavior represents an important outcome in its own right from
genetic, environmental, and biological perspectives. Smoking behavior and nicotine
dependence have strong genetic and environmental components, with genetics likely playing
a more significant role in dependence (Vink et al., 2005). A number of genetic loci have
been previously associated with smoking behaviors. For example, a recent meta-analysis
(Tobacco and Genetics Consortium, 2010) identified SNPs associated with the quantitative
phenotype number of cigarettes per day within the nicotinic receptor gene CHRNA3
(chromosome 15q25.1), in LOC100188947 (10q15) and in EGLN2 (19q13). In addition,
eight SNPs in the gene encoding brain-derived neurotrophic factor (BDNF) were associated
with smoking initiation. There is evidence for the involvement of a variety of other genes in
smoking-related behaviors, including those encoding the class of cell adhesion proteins
known as neurexins, specifically neurexin 3 (Bierut et al., 2007, Docampo et al., 2012,
Nussbaum et al., 2008). Neurexins are important developmentally and are associated with
dopamine neurons in experimental data in cell culture (Noelker et al., 2012) and indirectly
from their association protein-protein interactions with CASK (calcium/calmodulin-
dependent serine protein kinase), a protein where mutations in a binding partner causes
Parkinson’s disease (Houlden and Singleton, 2012) – a disorder to dopamine depletion.

Twin studies in humans also provide evidence that the genetics of smoking behavior in
adulthood is informative about the genetics in adolescence. Several meta-analyses of the
heritability of tobacco use report 37-60% of variation in smoking initiation behavior and
46-59% in persistence of smoking to be accounted by additive genetics (Hall et al., 2002, Li
et al., 2003, Sullivan and Kendler, 1999). When considering smoking initiation
longitudinally, the heritability was not found to change significantly from ages 13 to 46 in a
meta-analysis consisting of only longitudinal datasets (Bergen et al., 2007. More recent data
on the heritability of nicotine dependence (defined using DSM-III-R criteria), use here as an
indicator of smoking persistence, increased modestly from age 15 to 18, and thereafter
stabilized from age 18 to 21. However, the additive genetic correlation between ages 15 and
18, and between ages 18 and 21 was quite stable at 0.22 and 0.27, respectively (Tully et al.,
2010). Using cigarettes per day as a quantitative metric of smoking behavior assessed at
ages 14, 17, 20 and 24 showed that the majority of smoking persistence across those ages
was due to additive genetics (Vrieze et al., 2012).

The genetics of smoking from adolescence into adulthood also shows a longitudinally-stable
common risk factor with illicit drug use and alcohol use (Baker et al., 2011). The heritability
of this common genetic factor was consistent, estimated between 52% and 54% at each age
range 13-14, 16-17, and 19-20. Importantly, the heritability of the common variance across
ages was >40% for all time points, indicating that the majority of additive genetic effects
common to smoking, alcohol and illicit drug use is longitudinally stable.

Smoking is an environmental factor that impacts the brain, resulting in, for example, a
greater risk of dementia and cognitive impairments (Anstey et al., 2007). Animal studies
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have demonstrated that exposure to nicotine can drive changes in gene expression within the
cerebral cortex and other brain structures (e.g., (Kenny et al., 2001, Konu et al., 2001,
Trauth et al., 1999, Trauth et al., 2000)), and particularly genes associated with the
mesocorticolimbic dopaminergic pathway known to play a role in addiction (Flatscher-
Bader and Wilce, 2009). Thus, a natural question that we address in the present analysis is
whether the expression levels of certain genes in the human frontal cortex, treated as
quantitative phenotypes in the eQTL approach, are driven by interactions between genotype
and smoking history.

Gene by smoking interactions in child and adolescent psychology
In this study, we examined whether smoking behavior changes the expression of genes in
the frontal lobe and whether these changes can be explained by interactions between
smoking status and SNPs. It is important to note, that since the environmental variable
measured here is smoking at the time of death, this study design may not be sensitive to
genetic factors related to the initiation of smoking (Thorgeirsson et al., 2010, Tobacco and
Genetics Consortium, 2010, Yoon et al., 2012), but will be important for understanding the
effect of smoking on the genetic regulation of the maintenance of smoking behavior. For this
reason, we are interested in the extent to which the reward pathways typically studied in the
addiction literature are similar to or distinct from neural pathways related to learning and
stabilization of synaptic connections to maintain a behavior.

To accomplish the goal of the study, to understand which genes are involved in smoking
maintenance in a gene × environment analysis, smoking status at time of death was used
here as a measure of the environment. Regular doses of nicotine to the brain alter the
environment for neurons and drive changes in gene expression to adapt to that environment
(Flatscher-Bader and Wilce, 2009). The outcome of interest was the statistical significance
of the interaction term from a linear regression of gene expression values on SNP×Smoking.
A significant interaction term indicates a non-additive effect of smoking and SNP, whereby
the effects of smoking on gene expression are not the same across all levels of SNP
genotype. We focused our study to genes most commonly studied in psychiatric genetics
since these genes have the greatest a priori likelihood for association.

Methods
In this section we include a general outline of the methods, leaving more specific details,
mostly from genomic and bioinformatics aspects of the study, for the online appendix
(Online supporting information: Methodology). The greater detail included in the online
supplementary information provides additional data and citations to allow for replication of
our work. Note that we used publicly available deidentified datasets where informed consent
was obtained by the primary dataset investigators.

We began with a text mining of the psychiatric genetics literature to determine the most
commonly studied genes (see Online supplementary information: Methodology). The top
100 genes from this text mining approach were initially selected for study inclusion. We also
expanded the list to include additional neurotransmitter family genes including receptors and
metabolism genes for the major neurotransmitter systems: acetylcholine, dopamine, GABA,
glutamate and serotonin. Table 1 shows the 158 genes selected based on these criteria.
However, after filtering expression data (see below) for data quality, suitable variability for
analysis, and number of subjects with expression values above background detection levels,
as well as requiring that gene expression data were available in both datasets, only 29 genes
remained (bolded in Table 1).
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The data consisted of two publicly available human brain eQTL datasets, (Colantuoni et al.,
2011, Liu et al., 2010), COLANTUONI and LIU respectively, that include smoking status at
time of death, genome-wide SNP microarray genotypes that assay genetic variants
distributed across the entire human genome, and microarray-based gene expression profiles
from frontal lobe samples. Each dataset, COLANTUONI and LIU, was pre-processed
independently. For gene expression data, we performed covariate correction, including
correction for multiple batches run at different times, tissue source, sex, ancestry, age,
postmortem interval (PMI), RNA integrity number (RIN), brain pH and psychiatric status
for LIU subjects (see online supplementary information: Methodology for statistical details
on covariate correction). A sudden cause of death was reported in 86% of the subjects and
no agonal states were reported to be neurologically based. These datasets then underwent
quality control checks to ensure the processed data were appropriate for downstream eQTL
analysis (see sections COLANTUONI gene expression and LIU gene expression in the
online supporting information: Methodology). Genotypes were filtered for quality before use
in (1) estimating ancestry principal component covariates, which are critical for controlling
false positives related to ethnic stratification, and (2) input for genotype imputation, a
method that makes meta-analysis possible by ensuring that both datasets are genotyped
using the same set of SNPs.

After the above pre-processing workflow was carried out, G×E analysis included N=144
subjects from COLANTUONI (38 smokers and 106 non-smokers; ages 18-77, avg=43.1;
68% male) and N=84 subjects from LIU (56 smokers and 28 non-smokers; ages 19-65,
avg=44.6; 70% male). These datasets were used for the primary analysis in the study.
Secondary analysis of the effects of SNPs without regard to smoking was carried out using
larger sample sizes, since information on smoking status was not a requirement in the
filtering process (N=186 for COLANTUNI and N=127 for LIU). Within or nearby the genes
selected for analysis there were 405,875 SNPs in common across both datasets.

A meta-analysis of the two eQTL analyses (see Statistical Analysis in online supporting
information: Methodology) to test for G×E effects was conducted by assessing the
significance of the linear regression interaction term (SNP genotype × smoking status) as a
predictor of gene expression. After correcting for multiple testing (see online supporting
information: Methodology), the threshold for significance is 8.1×10−8. Additional follow-up
analyses to assess if smoking alone or SNP genotype alone (i.e., main effects) accounted for
additional variance in gene expression. Meta-analysis R2 values were obtained by pooling
sums of squares for residuals and sums of squares for error across studies and applying the
standard adjusted R2 formula with pooled df to account for both studies. Lastly, properties
of the SNPs and the loci were examined to interpret the main findings (see SNP annotations
in the online supporting information: Methodology).

Results
Analysis of SNPs (G) × Smoking Status (E) on gene expression

G×E analysis was conducted on all SNP-gene pairs (405,875 SNPs and 29 genes; with
multiple gene measurements present in some COLANTUONI genes). The metaanalysis
yielded 312 SNPs (328 SNP-gene pairs) meeting the typical cut-off for significance in a
genome-wide association study, p = 5×10−8, with the most significant result found for
expression of the neurexin 3 (NRXN3) gene at SNP rs12411798 (p = 1.9×10−11). There
were 16 genes associated with significant G×E interactions (see Table 2), including four
glutamate related genes (GRIK1, GRIK2, GRIK5, are kainite-sensitive ionotropic receptor
subunits and GRM3, a metabotropic glutamate receptor) and three gamma-aminobutyric
acid (GABA) related genes (ABAT, GAD1, involved in synthesis and GABBR2, a GABA
receptor subunit), in addition to another member of the neurexin family, NRXN1, implicated
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in stabilizing synaptic proteins and possibly a special role in dopamine reward pathways.
Most SNPs were more than 1 Mb distant from the associated gene, indicating an indirect
effect on transcription is most likely (i.e., the effect is mediated by at least one other gene).
Many associated SNPs are close together and represent the same underlying eQTL. We
examined this by assuming correlation patterns among nearby SNPs (called linkage
disequilibrium) represent the same locus (i.e., the same cause in gene expression change).
Table 2 lists the number of independent G×E loci for the top 16 genes. The proportion of
variance accounted for by SNPs and G×E in this study was determined by forward selection
of regression terms with R2 values presented in Table 2. While the average R2 was 0.16,
comparison of the two studies indicated a average shrinkage of 60% indicating that
additional studies will be needed to more accurately estimate the true effect sizes. A
regression of eQTL number on gene length indicates a relationship (R2 = 0.50, p = 0.002),
whereby longer genes have more eQTLs that remains significant when only trans SNPs are
included. This indicates that when a gene is important for G×E, length offers more
opportunities for trans regulation of gene expression.

We examined if the SNPs in our study had previously described biological functions (i.e.,
database annotations) to determine if the eQTLs had a common underlying functional
characteristic. No such trends were observed. Only 0.3% of SNPs were located in a
transcription factor binding site, where the SNP could possibly disrupt binding as a
mechanism to alter transcription. Only one SNP was predicted to have functional
consequences at the protein level using standard prediction tools SIFT and PolyPhen 2
(Kumar et al., 2009, Ramensky et al., 2002). We examined CHiP-seq data from all neutrally
derived cell lines from the whole genome survey known as the Encyclopedia of DNA
Elements (ENCODE) database to see if any of our SNPs fell within a experimentally
determined DNA binding proteins (presumed regulatory regions) or open markers of
chromatin (presumed transcriptionally active regions). A total of 69% of the genome fell
within ENCODE regions while 75% of the significant SNPs fell within those regions. This
enrichment was significant, (binomial test, P=.009) though the mechanism for how our
eQTL SNPs affect transcription requires additional experimental work.

The effect of smoking alone
We examined if smoking is associated with changes in gene expression independent of SNP
genotype. Analysis of each dataset yielded no significant genes with differential expression
by smoking status. Top genes in COLANTUONI included two genes with prior evidence for
a relationship with smoking, DUSP27 (Nielsen et al., 2010) and YIF1B (Carrel et al., 2008),
though the best false discovery rate (FDR) was 0.57, far from the necessary cut-off of 0.05.
The fact that two genes previously identified as having expression changes associated with
smoking were highlighted by the analysis but not at an appropriate significance level may
indicate low power. Top hits within the LIU dataset had an FDR of 0.37, with no overlap of
the top 100 genes from COLANTUONI.

NRXN3
SNPs associated with NRXN3 expression comprised 6 of the top 10 SNPs based on p-value
from the eQTL analysis, including the top SNP, and thus we sought to further characterize
results related to this gene. Upon visual inspection of the data, the G×E loci display the
classical “X” shape (Figure 1), which can cause assessment of the main effect of genotype
and the main effect of smoking to be absent, since averaging over either factor minimizes
the remaining effect. In agreement with this observation, regression of gene expression on
these SNPs does not yield significant SNP effects. To assess the possibility that the additive
linear model was only approximating a more genetically complex model, we performed
Bayesian genetic modeling to estimate parameters that can differentiate between the additive
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model and models that have dominance (i.e., where one copy of an allele has the same effect
as two copies of that allele, thus introducing a non-linearity). Parameter estimates were fully
consistent with the additive linear model for the top 100 G×E SNPs, indicating that the
linear regression model was adequate for these loci.

Discussion
This study represents the first attempt to examine G × E effects on gene expression in the
human brain. In this study we have demonstrated a significant interaction between genotype
and smoking status on the expression of a set of 16 genes that were of previous interest in
psychiatric genetics, though none had been shown to be involved in smoking persistence
through G × E effects. These novel findings for psychiatrically important genes suggest that
those genes may predispose a variety of behaviors specifically through gene expression
changes as demonstrated by our results. The most significant results were for six SNPs in
the neurexin 3 gene (NRXN3), one of three genes in the neurexin family. Neurexins are pre-
synaptic cell adhesion proteins that play an important role in the formation and function of
synapses. The three neurexin genes are each transcribed from two promoter regions,
resulting in alpha and beta neurexin proteins, which are alternatively spliced, yielding more
than 1000 distinct isoforms that are differentially expressed in the brain (Ullrich et al.,
1995). As a whole, neurexins are widely expressed in the mammalian brain, including in the
prefrontal cortical areas studied here. Neurexin genes have been previously associated with
smoking (Bierut et al., 2007, Docampo et al., 2012) and also with alcohol (Hishimoto et al.,
2007) and opioid (Lachman et al., 2007) dependence. SNPs in NRXN3 specifically have
been previously associated with susceptibility to smoking (Docampo et al., 2012), and with
degree of smoking in schizophrenic patients (Novak et al., 2009). The present results add
new evidence indicating that NRXN3 expression in the human prefrontal cortex is
differentially affected by smoking behavior depending on an individual SNP profile. And
like previous studies, the association is exclusively with the membrane-bound NRXN3-
alpha transcript and not in the soluble NRXN3-beta isoform (Docampo et al., 2012, Novak
et al., 2009). The association of both glutamatergic and GABAergic genes may imply that
the balance between excitation and inhibition neural circuitry of prefrontal corticolimbic
circuitry associated with addiction, specifically prefrontal cortex-striatal circuitry. In
addition to neurotransmitter findings, neurexins, involved in stabilizing synaptic proteins to
perhaps modulate transmission efficiency, might effect the balance of excitation and
inhibition to alter smoking persistence.

The lack of a main effect of smoking on expression of NRXN3 in this study is accounted for
by the nature of the observed cross-over interactions (Dick and Kendler, 2012), between a
large set of SNPs and the categorical smoking variable on NRXN3 expression. In particular,
interactions such as those depicted in Figure 1 (X-shaped), result in the effect of either factor
(genotype or smoking status) being largely eliminated when averaging across levels of the
other. Such a result indicates, for instance, that even the direction of the effect of smoking
on NRXN3 expression in these brain areas depends on specific genomic variations. The lack
of any observable main effects of smoking (i.e., genes that are differentially expressed in
smoking group vs. non-smoking group) may reflect heterogeneity within the two groups of
subjects or lack of statistical power.

Our analyses used only a single categorical variable, which was coded in the existing eQTL
datasets, to determine smoking behavior. Such a binary variable cannot account for the full
complexity of smoking-related phenotypes, and quantitative measures (e.g., number of
cigarettes per day) might provide additional power if they were available. Indeed, it has been
suggested that smoking initiation, number of cigarettes per day, and nicotine dependence
each reflect distinct stages of smoking behavior, and may involve distinct biological and
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genetic mechanisms (Mayhew et al., 2000, Breitling et al., 2011). However, the lack of more
detailed smoking behavioral indicators would only reduce study power and would not
induce false positive results. Therefore, our findings are likely to be an underestimate of the
number of specific genetic loci that are involved in smoking and gene expression in the
human brain.

The overall results of this study reflect the utility of analyzing eQTLs, in which associations
are tested between individual SNP genotypes and gene expression levels in brain tissue
samples, and of G×E analyses, in which the effects of genotype and environmental variables
on the phenotypic measure (gene expression in this case) are simultaneously modeled. In
particular, we have shown that the effects of smoking to alter expression of psychiatric
genes in the brain can depend on particular genotypes, based on two independent studies.
These data imply that G × E for smoking persistence is driven by differential expression of
genes based upon the genotype at nearby SNP loci. Or, to reframe the conclusion,
expression of psychiatric genes relevant to smoking depends upon the environment and
genotypes of the individual.

An issue when interpreting the lack of main effects on gene expression for G×E SNPs is the
possibility that smoking causes epigenetic changes, here referring to modifications of DNA
that change the regulatory potential of the DNA without changing the sequence (The
ENCODE Project Consortium, 2012). Therefore, a SNP that is normally silent can induce
changes in gene expression when one of the two alleles is more likely to be epigenetically
modified than the other. Without assessing the known markers for DNA modification, such
as methylation or histone binding, it is not possible here to assert positive evidence for this
hypothesis. Regardless of the specific mechanism, however, understanding how the
environment changes gene expression will shed light on which genes to study in more detail
in conjunction with other behavioral designs. Because no main effect of smoking was found
on NRXN3 expression, nor was there a significant main effect of genotype, it is clear that
many standard statistical models, which do not explicitly account for G×E effects, will miss
such results. Thus, we suggest that the combination of the eQTL approach with modeling of
G×E interactions is a promising direction for establishing the relationships between genes,
brain, and behavior in complex psychiatric disorders. These results also suggest the
importance of – where feasible – including environmental and behavioral measures from
individual subjects as future eQTL datasets are gathered.

Brain gene expression profiling has only recently been used in the domain of psychiatric
disease etiology (Geschwind and Konopka, 2009, Luykx et al., 2013, Mexal et al., 2005,
Richards et al., 2012a), but this study extends that approach to G×E and indicates that future
studies using this approach may be powerful for addressing other types of questions. This
study suggests that human brain gene expression datasets, when coupled with behavioral and
genetic data, provide useful phenotypes that can be incorporated in psychiatric genetics
studies, and provides the first demonstration of G×E effects on gene expression in the
human brain. As brain banks for child and adolescent subjects continue to grow, it would be
invaluable to the field to collect environmental data wherever possible to facilitate additional
studies on issues more widely appreciated in younger developmental stages.
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Key Points

• Gene by environment interaction effects on human behavior are assumed to be
mediated by changes in gene expression patterns in the brain, though no
empirical demonstrations exist.

• An expression quantitative trait locus study assesses the relationship between
DNA loci and gene expression values and can be extended to include a linear
regression interaction term for DNA locus by environment (e.g., smoking).

• We observed that the effect of DNA variation on gene expression changes
depends on smoking status, demonstrating that behavioral gene by environment
interactions can affect brain gene expression.

• Several psychiatrically important genes involving neural connectivity and
glutamate transmission associate with DNA variants that interact with smoking,
suggesting an important role for these genes in the maintenance of smoking.
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Figure 1.
Examples of the observed SNP×Smoking interactions. Mean gene expression from the
SCAN normalization method (y-axis) with standard error bars are plotted by SNP genotype
(x-axis) and smoking status (symbols). A gene expression value of 0 indicates background
levels (no expression). The pattern of results indicates an interaction effect that implies little
to no main effects for either SNP or Smoking since averaging over either predictor variable
will largely eliminate the effect of the other.
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Table 1

Genes of Interest from Text Mining Psychiatric Literature*

AANAT ABAT ACHE ADRA1D ADRA2A

ADRA2B ADRB1 ADRB2 ADRB3 AKT1

APOE APP BDNF CHAT CHRFAM7A

CHRM1 CHRM2 CHRM3 CHRM4 CHRM5

CHRNA1 CHRNA10 CHRNA2 CHRNA3 CHRNA4

CHRNA5 CHRNA6 CHRNA7 CHRNA9 CHRNB1

CHRNB2 CHRNB3 CHRNB4 CHRND CHRNE

CHRNG CLOCK COMT CRELD2 CRHR1

DAG1 DAOA DBH DBI DDC

DISC1 DISC2 DRD1 DRD2 DRD3

DRD4 DRD5 DTNBP1 DUSP27 DUT

EFNB3 FOXP2 GABBR1 GABBR2 GABRA1

GABRA2 GABRA3 GABRA4 GABRA5 GABRA6

GABRB1 GABRB2 GABRB3 GABRD GABRE

GABRG1 GABRG2 GABRG3 GABRP GABRQ

GABRR1 GABRR2 GABRR3 GAD1 GALR3

GRIA1 GRIA2 GRIA3 GRIA4 GRID1

GRID2 GRID2IP GRIK1 GRIK2 GRIK3

GRIK4 GRIK5 GRIN1 GRIN2A GRIN2B

GRIN2C GRIN2D GRIN3A GRIN3B GRINA

GRM1 GRM2 GRM3 GRM4 GRM5

GRM6 GRM7 GRM8 HTR1A HTR1B

HTR1D HTR1E HTR1F HTR2A HTR2B

HTR2C HTR3A HTR3B HTR3C HTR3D

HTR3E HTR4 HTR5A HTR6 HTR7

HTR7P1 ISOC2 KIAA0125 MAOA NOTCH4

NRXN1 NRXN3 NTRK2 OPRM1 PPP1R1B

PRODH RGS4 RIC3 SLC18A2 SLC18A3

SLC22A2 SLC29A4 SLC32A1 SLC36A1 SLC5A7

SLC6A1 SLC6A11 SLC6A12 SLC6A2 SLC6A3

SLC6A4 SLC6A7 SNAI3 SNAP25 SOD2

TPH1 TPH2 YIF1B

*
Bolded genes passed probe filtration and were included in the analysis
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Table 2

List of top 16 genes and their characteristics

Gene Significant
eQTLs

Significant
SNPs Peak SNP Peak p-

value
Peak

adjusted R 2

NRXN3 17 150 rs12411798 1.87×10−11 0.25

ABAT 4 23 rs6558338 9.30×10−10 0.14

GRIK1 3 5 rs2268132 9.50×10−10 0.12

GRIK5 2 22 rs118031442 1.09×10−9 0.12

NRXN1 4 20 rs1646239 1.94×10−9 0.17

GRIK2 4 21 rs2585459 1.98×10−9 0.13

NTRK2 1 5 rs11135168 3.95×10−9 0.08

RGS4 1 1 rs35472486 8.42×10−9 0.17

APP 3 22 rs4608331 8.74×10−9 0.29

ISOC2 7 18 rs1046695 9.77×10−9 0.15

GAD1 1 4 rs149541349 1.08×10−8 0.16

PRODH 6 14 rs73735512 1.27×10−8 0.15

GABBR2 3 7 rs216137 1.30×10−8 0.13

SNAP25 4 14 rs8073177 1.54×10−8 0.22

HTR2A 1 1 rs35472486 1.95×10−8 0.13

GRM3 1 1 rs74005241 4.08×10−8 0.11
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