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Abstract
The evolution in our understanding of tumor angiogenesis has been the result of pioneering
imaging and computational modeling studies spanning the endothelial cell, microvasculature and
tissue levels. Many of these primary data on the tumor vasculature are in the form of images from
pre-clinical tumor models that provide a wealth of qualitative and quantitative information in
many dimensions and across different spatial scales. However, until recently, the visualization of
changes in the tumor vasculature across spatial scales remained a challenge due to a lack of
techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of
three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such
data from patients presents a serious hurdle for the development and validation of predictive,
multiscale computational models of tumor angiogenesis. In this review, we discuss the
development of multiscale models of tumor angiogenesis, new imaging techniques capable of
reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-
based models”of tumor blood flow and molecular transport. Collectively, these developments are
helping us gain a fundamental understanding of the cellular and molecular regulation of tumor
angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this
exciting integration of multiscale imaging and mathematical modeling to have widespread
application beyond the tumor vasculature to other diseases involving a pathological vasculature,
such as stroke and spinal cord injury.
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INTRODUCTION
Angiogenesis or the process of de novo blood vessel formation in cancer is a critical
determinant of its pathophysiological characteristics, such as invasiveness, metastatic
potential, and efficacy of therapies.6,39, 109 Seminal work by Dr. Folkman has demonstrated
that the progression of most solid tumors beyond 1–2 mm3 in size is angiogenesis-dependent
because of their requirement for oxygen and nutrients.38 This switch of tumors to an
angiogenic phenotype involves the upregulation of pro-angiogenic factors overwhelming the
anti-angiogenic defenses of the cells.10 Therefore, tumor progression relies upon the
continual interactions between the tumor microenvironment and the host’s immune
system.45

Tumor angiogenesis is characterized by uniquely adapted endothelial cells,17 aberrant
microvasculature, 108 anomalous blood flow,55 and disruption of homeostatic signaling
pathways.35 The evolution in our understanding of tumor angiogenesis has been the result of
pioneering studies spanning the endothelial cell,122 microvasculature3 and tissue levels.124

In recent years, our understanding of the angiogenic microenvironment has been
revolutionized by an explosion in imaging technologies.82 Many of these primary data on
angiogenesis are in the form of images from preclinical models that provide a wealth of
qualitative and quantitative information in many dimensions, and across different spatial
scales.82 Furthermore, high-throughput analyses of various cancer types have created an
abundance of “-omics”data, e.g., genomics, proteomics, metabolomics. These developments
have created a need for new image processing and visualization tools for extracting,
comparing and integrating these data124 (Fig. 1). The development of new imaging methods
in conjunction with ever increasing and affordable computing power has ushered in a new
area of bioinformatics that has been dubbed “bioimage informatics”.94

Another factor driving multiscale imaging and modeling initiatives has been the advent of
“systems biology”approaches to study disease models and pathways. For instance, the study
of how genotypic interactions give rise to the function and phenotype of a biological system
is inherently a multiscale problem. Therefore, there is a determined effort to develop image-
based phenotyping methods,84 particularly in murine models as they have become the
workhorse of human disease models.48 See the review by Kherlopian et al. 65 for a summary
of imaging techniques and their utility in systems biology applications.

Furthermore, computational models have greatly refined our understanding of the
microenvironmental changes that accompany tumor angiogenesis.103 These include changes
in tumor blood flow,30,83 oxygen transport61,111 vascular endothelial growth factor (VEGF)
distribution76 and extracellular pH.78 However, high-resolution, high-fidelity, 3-D imaging
data that simultaneously quantify tissue morphology and the molecular players involved
have not been readily available. Simultaneously visualizing changes in the complex
angiogenic microenvironment at different spatial scales remains a challenge due to the lack
of integration between micro- and macroscopic imaging data, and the difficulty in obtaining
such data from patients. Acquiring such data has been a major hurdle that needed to be
overcome to further advance quantitative oncology.

This review commences with a description of imaging techniques for visualizing the 3-D
tumor vasculature, followed by novel imaging strategies for characterizing the vascular
phenotype at different spatial scales. Next, we recapitulate insights about the tumor
vasculature that have been gleaned from pioneering mathematical models. Since the
description of microcirculatory phenomena requires an understanding of their interactions
with processes that occur at larger and smaller spatial scales, these traditional blood flow
models have now been expanded to “multiscale”models that range from endothelial
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receptors to microvascular sprouting, to the whole tissue level.103 Therefore, we introduce
‘image-based’ multiscale modeling, wherein the morphological data on the organ or tumor
vasculature is derived from one of several high-resolution, 3-D imaging methods. Finally,
we conclude with a summary of the challenges facing this burgeoning area of research.
Collectively, we expect that the integration of multi-resolution imaging and computational
modeling will yield novel insights into a range of diseases involving the pathological
vasculature.

IMAGING METHODS FOR VISUALIZING THE 3-D TUMOR VASCULATURE
Since pioneering neuroanatomist Ramon Cajal’s early drawings of angiogenesis,79 we have
come a long way toward “capturing”the heterogeneity of the tumor vasculature. While there
exists a range of methods for imaging the tumor vasculature (see the comprehensive reviews
by McDonald82 and Pathak90), the ensuing section highlights imaging methods capable of
digitally acquiring and quantifying the 3-D architecture of these unique vessels with high
fidelity.

Intravital Microscopy
Laser scanning confocal microscopy (LSCM) is a commonly used, high-resolution
fluorescence imaging method. It differs from conventional fluorescence microscopy in that a
focused, scanning laser source is used to excite the sample point by point, and a pinhole
aperture in front of the detector and confocal (having the same focal point) to the source
pinhole aperture is used to block light not emitted from the focal point. This spatial filtering
of out-of-focus background fluorescence permits optical sectioning of tissue specimens up to
~100 µm thick. By scanning across a series of focal planes, a 3-D image can be constructed.
LSCM has been used for intravital imaging of the vasculature in window chamber tumor
xenografts labeled with fluorescent RGD-nanoparticles87 or after intravenous injection of
dextran-conjugated fluorophores.33

Two-photon microscopy (TPM) is another high-resolution fluorescence imaging method
capable of imaging the 3-D vascular architecture in vivo. Two-photon fluorescence is a
nonlinear optical process in which fluorescence is caused by the simultaneous absorption of
two photons, each with half the requisite excitation energy. Since the probability of two
photon absorption depends on the square of the light intensity, a focused ultra-short pulse
laser is used to selectively excite a small region around the focal point. This provides
inherent 3-D optical sectioning and reduces photobleaching and phototoxicity.29 In addition,
TPM uses near-infrared (NIR) excitation, which allows for a tissue imaging depth
approaching 1 mm. TPM has been used for intravital imaging of the vasculature in window
chamber tumor xenografts following intravenous injection of dextran-conjugated
fluorophores to provide contrast.1

Optical coherence tomography (OCT) is another technique used for 3-D intravital imaging
of tumor vasculature with a wider field of view (FOV) and greater depth of penetration than
TPM, which come at the expense of spatial resolution. And since contrast between vessels
and background tissue arises from the Doppler shift caused by the motion of circulating red
blood cells, OCT does not require exogenous contrast agents. In conventional time domain
OCT, a low coherence broadband light source is split into a reference arm and a sample arm;
the reflected light beams from the two arms are combined and produce interference if their
path lengths differ by less than the coherence length of the light source. Thus, the location
within the sample from which the sample light beam is reflected can be determined by
scanning the length of the reference arm and measuring the interference of the two beams,
allowing a 3-D image to be reconstructed.51 A frequency-domain OCT method called
optical frequency domain imaging (OFDI) allows for more rapid imaging by employing a
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frequency scanning light source while keeping the reference and sample arm lengths fixed.
Depth resolution is then obtained by Fourier analysis.127 Vakoc et al.119 used TPM and
OFDI to characterize the morphology of tumor vessels in various window chamber models.
A comparison of the two modalities showed that TPM was capable of resolving the smallest
superficial capillaries while OFDI was able to image vessels at depths of up to ~1–2 mm.
For vessels larger than 12 µm in diameter as measured by TPM, the vessel diameters derived
from the two modalities correlated well, but the lower spatial resolution of OFDI (~7 µm)
likely resulted in partial volume effects and thus overestimation of the diameters of smaller
vessels. Extensive details on intravital microscopy of the tumor vasculature can be found in
reviews by Tozer et al.117 and Fukumura et al.40

Magnetic Resonance Angiography
While TFM and OFDI allow high-resolution in vivo imaging of tumor vasculature, their
limited tissue penetration restricts their use to superficial vessels or transparent window
chamber models. Magnetic resonance angiography (MRA) is a method for imaging the
vasculature in vivo without the depth limitations of optical techniques. Although MRA
cannot resolve vessels at the capillary level, its spatial resolution can be increased for small
animal imaging. Doblas et al.31 used MRA (102 × 66 × 86 µm3) to assess the changes in
blood volume, vessel diameter and length with tumor progression in various rodent tumor
models, while Figueiredo et al.36 conducted time-of-flight MRA (TOF-MRA) of mouse
cerebrovasculature at a spatial resolution of 31 × 31 × 93 µm3.

TOF-MRA produces images in which the vasculature appears bright without necessitating
the use of exogenous contrast agents. Instead, pre-saturation radio-frequency pulses are used
to attenuate the signal from stationary tissue, while unsaturated spins carried into the
imaging FOV by inflowing blood exhibit higher signal, resulting in bright blood vessels.
However, since this method is sensitive to flowing blood, veins and vessels in regions of low
or intermittent flow such as those found in tumors can be difficult to image. Contrast
enhanced (CE)-MRA is an alternative technique, which involves intravenous administration
of contrast agents such as various gadolinium chelates to provide contrast between blood
vessels and background tissue. The development of long-circulating blood pool contrast
agents has enabled longer scan times, and thus, higher resolution and higher signal-to-noise
ratio (SNR) imaging.7 In addition, CE-MRA can achieve the same spatial resolution and
higher contrast- to-noise ratio (CNR) with a shorter imaging time than TOF-MRA.50 Van
Vliet et al.120 recently demonstrated the utility of high-resolution MRA by directly
correlating it with digital photography and intravital microscopy in a window chamber
tumor model. They found tumor angiogenesis could be mapped micro- and macroscopically
in vivo and showed excellent correlation with the other imaging techniques. In addition, they
showcased the clinical utility of CE-MRA for imaging tumor induced changes in
vascularity. Finally, it should be pointed out that with MRA, one can extract and quantify
changes in the 3-D morphology of blood vessels. For example, in an elegant demonstration
of the clinical utility of using MRA to monitor changes in blood vessel morphology, Bullitt
et al.16 were able to demonstrate that 3-D vessel tortuosity measurements on vascular trees
derived from MRA could predict brain metastases treatment response sooner than traditional
methods.

High-resolution Ex Vivo Techniques
There are several ex vivo methods of imaging tumor vasculature in 3-D. Most of these
methods entail the creation of a vascular “cast”. A typical vascular casting procedure is
described in Verli et al.121; in brief, the animal is anesthetized and then perfused, first with a
solution such as heparinized saline for exsanguination, followed with a fixative such as
formaldehyde, and finally with a polymerizing resin. After the cast has polymerized, a
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corrosion step can be performed to macerate the surrounding tissue. The corrosion cast can
then be imaged by different methods such as scanning electron microscopy (SEM) and
microcomputed tomography (µCT). SEM uses a high-energy electron beam to produce very
high resolution images on the scale of 1 nm. Deane and Lantos used SEM to conduct some
of the earliest studies quantifying the morphological abnormalities of the endothelium of
experimental brain tumors.27 While it is not an inherently 3-D technique, stereo pairs of
SEM images can be used to obtain 3-D information.77 This SEM stereoimaging method has
been used for morphometric analysis (e.g., computation of the inter-vessel distance, inter-
branch distance, branching angle and vessel diameter) of vascular corrosion casts from
various tumor models.37 However, for SEM stereoimaging, 3-D reconstruction is limited to
vessels that are within the “line of sight”of the electron beam.

Micro-CT (µCT), on the other hand, is a true 3-D method in which a 3-D image is
reconstructed from 2-D X-ray projections taken at incremental angles around an axis of
rotation. Vascular casting resins are radiopaque (i.e., strongly attenuate X-rays) and thus
enable µCT imaging of the vasculature. Micro-CT is capable of imaging the vasculature of
entire tumors at resolutions up to ~3 µm.37 This is a sufficiently high resolution to image the
vascular architecture down to the capillary level, as demonstrated by a study that showed
excellent agreement between µCT- and SEM-measured cortical vessel diameters.47 Another
advantage of µCT is that tissue maceration is not required. While the vascular casting
technique is the same, the corrosion step is excluded, which allows samples to be preserved
for further study (e.g., histology). Micro-CT has also been successfully combined with MRI
to create a high-resolution, 3-D atlas of the neurovasculature in a CBA mouse.32 This rich
multi-modality dataset shows the placement of the major arteries, their branches and the
brain structures they feed. As one of the first 3-D atlases of the cerebral vasculature in mice,
it is proving an invaluable resource for comparative studies involving the murine
neurovasculature in healthy and disease models.

Risser et al.107 employed a synchrotron X-ray source to conduct synchrotron radiation µCT
(SRµCT) on 2.5 mm diameter cylindrical samples from 9L tumor-bearing rat brains and
obtained high contrast between the vasculature and background tissue at 1.4 µm resolution.
The sub-capillary spatial resolution of their 3-D images enabled them to ascertain that both
tumor and normal brain vasculature display fractal organization on small spatial scales.
Recently Chien et al.24 employed SRµCT to profile “microangiogenesis”in a panel of
subcutaneous tumor models as well as in an orthotopic pancreatic tumor model. They could
assess small differences between the vasculature of pancreatic tumors derived from control
or radiation activated PANC1 tumor cells. However, SRµCT is not widely available because
of the need for a synchrotron for generating the high-energy X-rays necessary for imaging.
Further applications of vascular imaging with µCT can be found in the review by Zagorchev
et al.128

Although ex vivo MR microscopy or micro-MRI (µMRI) has been employed to image the
vasculature of the mouse embryo11 and adult rat brain,62 it had not been employed to
characterize the aberrant vasculature of solid tumors. Therefore, recently we developed a
µMRI method to quantify the 3-D architecture of tumor blood vessels in a brain tumor
model.66 In our application, the vascular casting resin acts as a negative MRI contrast agent
because it lacks the mobile water protons necessary for producing an MR signal. Thus, a 3-
D image can be acquired in which blood vessels appear dark against bright background
tissue. While the spatial resolution of µMRI is less than that of µCT, at 60 µm isotropic
resolution we were able to quantify and distinguish the vascular phenotype of 9L brain
tumor xenografts from contralateral brain as well as between brain tumors at different
stages. An advantage of µMRI is that it permits the assessment of tumor vascular
morphology while providing complementary, co-registered information about the tumor
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microenvironment. This is achieved by exploiting different physiological MR contrast
mechanisms. For example, we recently used vascular µMRI in conjunction with diffusion
tensor imaging (DTI) to visualize the interplay between tumor angiogenesis and white
matter reorganization that often accompanies brain tumor invasion.91 Since µMRI is a
“mesoscopic”scale imaging technique, it facilitates co-registration and bridges the spatial
resolution gap between microscopic µCT and macroscopic in vivo MRI angiogenesis data.22

MULTISCALE IMAGING OF THE TUMOR VASCULATURE
As described above, the vasculature in pre-clinical tumor models has been traditionally
characterized at the “cellular”scale using optical imaging methods, and the “systemic”scale
using in vivo CT and MRI. While optical imaging and histology are powerful for
quantifying changes in the tumor vasculature at submicron resolutions, they suffer from
limited spatial coverage which makes co-registration with in vivo imaging data challenging.
Also, 3-D blood vessel and tissue architecture once destroyed by sectioning is extremely
difficult to reconstruct.43 Conversely, imaging modalities such as in vivo MRI provide
quantitative data, but lack the spatial resolution and specificity to relate changes in
angiogenic parameters (e.g., tumor blood volume) to the distribution of angiogenic proteins
(e.g., vascular endothelial growth factor or VEGF). Furthermore, integrating 3-D imaging
data from disparate sources into computational models of tumor angiogenesis remains
challenging. For example, if one wished to simulate the changes in tumor blood flow that
accompany tumor progression, one would require high-resolution 3-D data describing the
vascular geometry of the tumor at different time points. The scarcity of such high-quality
datasets remains a serious hurdle for: (i) simultaneously visualizing changes in the
angiogenic microenvironment at different spatial scales; (ii) incorporating these data in
multiscale computational models of angiogenesis and their validation; (iii) phenotyping the
dynamic tumor microenvironment; and (iv) obtaining an integrated, global perspective of
the angiogenic microenvironment.

Some of the most exciting developments in “multiscale”imaging of the vasculature have
been a consequence of advances in µCT47 and µMRI91 imaging techniques. Both methods
permit high-resolution, 3-D, ex vivo imaging of the vascular network of entire organs as
opposed to imaging the vasculature of excised tissue samples from limited regions of
interest. Additionally, the integration of µCT and µMRI imaging with imaging modalities
capable of covering complementary spatial scales permits “wide area mapping”of the
vasculature.

For example, in an elegant study, Heinzer et al.47 demonstrated the feasibility of true
“hierarchical”imaging of the vascular network in the murine brain. In this study, the authors
were able to acquire co-registered images of the murine neurovasculature over a range of
spatial scales by exploiting the complementary strengths of µCT, SRµCT and SEM. To
facilitate the integration of 3-D imaging data from different spatial scales, the authors
utilized a specialized sample holder that facilitated registration of images from different
modalities into a common image coordinate system. Large vessels visible in each image and
the relative positions of regions of interests (ROIs) with respect to pins in the sample holder
facilitated accurate intermodality image registration. Using this unique imaging platform,
they were able to image the murine neurovasculature at spatial resolutions spanning several
orders of magnitude that ranged from the endothelial cell level using SEM (~0.1 µm),
through the capillary/arteriole/venule level using SRµCT (~µm) and finally to the whole
brain vasculature using µCT (~10 µm) (Fig. 2). Finally, using hierarchical imaging, the
authors successfully visualized and quantified differences in the morphology of the
neurovasculature in a control mouse and an APP23 transgenic mouse model of Alzheimer’s
disease.
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From the standpoint of multiscale modeling, it is desirable to integrate in vivo imaging data
with ex vivo and histologic data. As illustrated in Fig. 3, this would enable: (i) bridging the
spatial resolution gap between the micro- and macroscopic imaging scales; (ii) mapping the
distribution of cellular factors (e.g., distribution of VEGF) obtained using optical
microscopy to parametric in vivo MRI maps (e.g., tumor blood volume); (iii)
implementation and validation of multiscale models of tumor angiogenesis (see following
section for details). To facilitate the integration of ex vivo microscopic vascular data
obtained using µCT (~10 µm resolution) and macroscopic blood volume data obtained in
vivo with MRI, we developed a “mesoscopic”scale vascular imaging method that employs
µMRI.91 As described above, µMRI offers high 3-D imaging resolutions (~25 µm), is
nondestructive, provides excellent soft tissue contrast, and preserves tissue and blood vessel
architecture.63 This platform also enabled multiscale imaging of brain tumor angiogenesis,
wherein we directly compared in vivo MRI blood volume measurements with ex vivo
vasculature data obtained from µMRI (Fig. 4).

Furthermore, we recently conducted multiscale angiogenesis imaging of tumor xenografts
derived from the MDA-MB-231 human breast carcinoma cell line at three complementary
spatial scales: (i) at the macroscopic scale with susceptibility contrast enhanced in vivo
MRI; (ii) at the mesoscopic scale with ex vivo µMRI; and (iii) at the microscopic scale with
µCT (Fig. 5). In vivo susceptibility-contrast enhanced MRI exploits the difference in intra-
and extravascular magnetic susceptibility (i.e., “magnetizability”of a material placed in an
external magnetic field) created by paramagnetic or superparamagnetic blood pool contrast
agents such as gadolinium chelates and iron oxide nanoparticles, respectively. This
susceptibility difference hastens the exponential decay of the MR signal, characterized by
the transverse relaxation rate constant, which is sensitive to the underlying vasculature of the
tissue being imaged.89 It has been shown that the change in the spin echo (SE) MRI
relaxation rate ΔR2 is maximally sensitive to the microvascular blood volume (i.e., venules,
capillaries, arterioles), while the change in the gradient echo (GE) MRIrelaxation rate ΔR2*
ismore sensitive to the global blood volume (i.e., larger vessels).13 One can therefore create
micro- and macrovascular blood volume maps to track tumor angiogenesis in vivo. We then
employed µMRI as an “integrator”(as described in Fig. 3) to bridge the resolution gap
between µCT and in vivo MRI blood volume data.22 To achieve this, we first extracted the
3-D tumor vasculature from µMRI and µCT data as described in Kim et al.66 and Cebulla et
al.22 Next, 3-D µMRI data were co-registered to the in vivo MRI data using images from the
first echo time (TE). We then co-registered the µCT vascular data to the µMRI vascular data
using landmarks placed on large vessels. Fractional blood volume (FBV) maps were
computed from high-resolution µMRI and µCT vascular data by re-sampling these data onto
the in vivo MRI spatial grid, and calculating the fractional occupancy of vessels in each in
vivo voxel as described in Kim et al.66 and Cebulla et al.22 The FBV calculated from µMRI
systematically overestimated the values calculated from µCT (Figs. 5b–5c). This was likely
the result of partial volume effects resulting from the coarser spatial resolution of µMRI
relative to µCT. And while two disparate contrast mechanisms were used to generate the in
vivo and ex vivo FBV maps, there was good qualitative correspondence between the three
modalities (Figs. 5a–5c). Additionally, tumor rim and core ROIs were identified using
morphological erosion of the tumor ‘mask’ such that the numbers of pixels in the two
regions were approximately equal. It was found that consistent with the vascular phenotype
of this human breast cancer model, the FBV in the tumor core was significantly lower
compared to the rim at all three spatial scales (Figs. 5d–5f).

In recent years there has been a concerted effort toward acquiring multiscale data in a range
of preclinical disease models. A major driving force in this integration has been the
development of novel optical 34 and molecular imaging techniques.92 Innovations include
the development of brighter, more photostable, and switchable contrast agents that enable
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imaging of gene expression, protein compartmentalization, target localization, and receptor
kinetics. Collectively, these advances have facilitated the integration of traditional imaging
techniques with “-omic”approaches for elucidating the systems biology of cells, entire organ
systems and animals. As this review is focused on multiscale, 3-D imaging of the tumor
vasculature, readers are referred to outstanding reviews by Megason et al.84 and Du et al.34

for detailed treatment of these topics.

INSIGHTS ABOUT THE TUMOR VASCULATURE FROM MATHEMATICAL
MODELING

The acquisition and reconstruction of “wide-area”, 3-D microvascular networks from high-
resolution imaging data is technically challenging and computationally intensive and such
data are only now becoming available. Thus, in the past researchers had to employ in silico
synthesized vascular networks to study hemodynamics in the microcirculation.8,15,54,115

Modeling of microvascular hemodynamics has been reviewed in Lee and Smith68 and Popel
and Johnson.96 Blood flowing in microvessels exhibits non-Newtonian rheological
properties, e.g., the effective viscosity is dependent on vessel diameter. Based on
experimental measurements of blood flow in rat mesentery, Pries, Secomb and co-authors
have derived empirical relationships to account for the in vivo Fahraeus effect (tube
hematocrit lower than discharge hematocrit), Fahraeus-Lindqvist effect (effective viscosity
in a microvessel lower than bulk viscosity) and phase separation effects of red blood cells in
bifurcations.101,102 Subsequently, their models have included the remodeling of blood
vessels due to hemodynamic and metabolic stimuli, as well as the effect of the endothelial
surface layer (ESL) on effective viscosity.99,100 The Pries and Secomb analysis has been
applied to calculations of microvascular blood flow and hematocrit distribution in skeletal
muscle,9,71,118 brain,74,75 heart,69 lung,126 eye42 and other tissues and organs; constant
Newtonian viscosity calculations assuming Poiseuille flow in vascular segments have been
carried out in the heart, taking into account myocardial contractions.26

In contrast to the vasculature of healthy tissues, a hallmark of the tumor microvasculature is
its highly irregular morphology.67 Consequently, the distribution of blood,55 oxygen and
nutrients is extremely heterogeneous, leading to the creation of hypoxic regions in the
tumor.40,98 Hyperpermeable tumor vessels result in elevated interstitial fluid pressure that
negatively affects drug delivery, targeted chemotherapy and radiation therapy.41 Therefore,
mathematical simulations of microvascular hemodynamics at the whole-tumor level will
benefit the development and optimization of new therapies for inhibiting cancer growth and
angiogenesis.

Jain has proposed that anti-angiogenic therapy can normalize tumor blood flow by reducing
vascular heterogeneity and allowing more efficient delivery of anticancer agents.56 On the
other hand, excessive anti-angiogenic therapy could ultimately lead to destruction of tumor
blood vessels and enhance the tumor’s resistance to therapy. Therefore, it would be
invaluable to be able to identify the “window of opportunity”for vascular
normalization.20,56,57 Based on these concepts, Jain and coworkers developed a
mathematical model and showed that anti-angiogenic therapy can affect a number of key
aspects of the tumor microenvironment, such as interstitial fluid pressure and vascular
permeability.60 Wu et al.125 developed a 3-D computational framework to predict the effects
of vascular normalization on a synthetic tumor vascular network induced by anti-angiogenic
therapy. In conjunction with physiologically derived parameters, a detailed knowledge of the
3-D geometrical features of the tumor vessel network would enable more realistic
simulations of blood flow in every segment of the de facto tumor vascular network.59

Furthermore, computational models of blood flow, shear rate and hematocrit have the
potential to quantify the functional and structural heterogeneity and remodeling of tumor
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vascular networks in comparison to normal ones.97,110 Due to the disorganized nature of
tumor vasculature, microvessel density alone is not an adequate biomarker of successful
anti-angiogenic therapy. 58 As a result, a number of functional and morphological indices
have been proposed to assess the efficacy of drug delivery5,97 and anti-angiogenic therapy90

in tumors. Finally, predictions of shear stress values across the tumor vasculature can
provide valuable information related to the mechanotransduced activation of genes related to
angiogenesis.64

Collectively, these computational advances have the potential to: (i) contribute to a
“systems-level”view of angiogenesis; (ii) increase the efficacy with which circulating
pharmaceutical agents can be administered12; and (iii) aide in the development of clinical
blood biomarkers (e.g., cancer proteins secreted into the blood) of cancer detection.49

IMAGE-BASED MODELS OF TISSUEAND ORGAN-LEVEL BLOOD FLOW
The advances in imaging described above, together with multiscale models of blood flow
constitute a new computational framework for elucidating the function of various organ
systems under normal and pathophysiological conditions.52 An accurate quantitative
description of the 3-D blood vessel architecture is necessary for numerically solving partial
differential equations of fluid dynamics. Advances in processing power and high-resolution
imaging have resulted in sophisticated new image-based “macroscale”(i.e., at the spatial
scale of arteries and assuming Newtonian properties of blood) computational models of
blood flow in vascular networks to elucidate systemic disease states (Fig. 6). These
approaches span from one-dimensional (1-D) models up to 3-D models attempting to
characterize the entire arterial network by applying the appropriate boundary conditions
(Table 1). For example, Zhou et al.129 applied a 3-D finite element method (FEM) to predict
cardiovascular flow in a whole-body model based on vascular data derived from CT
imaging. Similarly, elegant multidomain approaches have been developed to describe 3-D
hemodynamics in major arteries. In these multiscale systems, the computational fluid
dynamic (CFD) models are linked to lumped parameter (e.g., windkessel) models to account
for the impedance of various organs and the downstream vascular bed.123

Theoretical approaches to describe the dynamics of blood flow in image-based vasculature
of several physiological subsystems have been reported. Grinberg and Karniadakis applied a
3-D spectral element method to simulate the intracranial blood flow network. In this model
they imposed Resistance–Capacitance (RC) and RCR (two- and three-element windkessel
models) pressure boundary conditions for the closure linking the outlet domain resistances
with their flow rates ratio.44 A 3-D FEM approach was used by Tang et al.116 to describe
blood flow in major pulmonary arteries based on MRI-acquired vessel structure. A summary
of representative macroscale hemodynamic studies using image-derived vascular geometries
is presented in Table 1.

Recently, Lorthois et al.74,75 simulated blood flow and predicted hematocrit distribution in a
human cerebral microvascular network, comparing different boundary conditions. The data
for this study were derived from confocal microscopy of thick sections of India ink-injected
human brain.21 Benedict et al.9 also used confocal microscopy to obtain vascular data on
immunostained skeletal muscle and performed hemodynamic simulations. SRµCT-derived
vascular data was used by Reichold et al.105 to simulate cerebral blood flow. Micro-CT data
were used by Lee and Smith to implement a novel approach linking blood flow and
hematocrit in a coronary microvascular network model.69 Yang et al.126 also employed
µCT-derived 3-D vascular data to simulate the hemodynamics of the rat placenta and lung
vasculature (Table 2).
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IMAGE-BASED MODELING OF TUMOR BLOOD FLOW
Several factors have contributed to the rapid progress of multiscale computational models of
solid tumors, e.g., the development of new modeling methodologies, such as agent-based
modeling and the integration of the molecular, cellular, and tissue scales. Agent-based
models represent a class of computational models in which a discrete rule-based approach is
used to simulate the interaction of individual entities of interest (e.g., cells, macromolecules
etc.) with one another and with their microenvironment. The rules that dictate the behavior
of these agents can be defined more succinctly due to the availability of high-throughput
genomic and proteomic data. These advances in modeling tumor growth and progression are
summarized in Chaplain et al.,23 Hatzikirou et al.,46 Anderson and Quaranta,2 Byrne,18

Deisboeck et al.,28 Rejniak and Anderson,106 Stefanini et al.114

While ex vivo and in vivo optical imaging data have been employed to develop multiscale 3-
D models of tumor growth,25,95 models of tumor blood flow based on high-resolution
imaging data are only emerging.86 We have recently applied the hemorheological
formulation described above to the “wide-area”digitized microvasculature of a human triple-
negative breast cancer xenograft model acquired with 8 µm spatial resolution using µCT.22

The tumor was excised 5 weeks after orthotopically inoculating MDA-MB-231 human
breast cancer cells in the mammary fat pad of SCID mice. Details of the experimental
procedure, image acquisition and processing are described in the section on Multiscale
Imaging above. Following segmentation of the tumor vasculature, we identified the
topological features of the microvascular network (e.g., node position vectors and adjacency
matrix) and filtered any morphological discrepancies present in the images.21 The
reconstructed network (Fig. 6a) exhibited all the known characteristics of breast tumor
microvascular morphology such as trifurcations, tortuosity, self-loops and blind ends.70

Pressure boundary conditions were imposed in hemodynamic simulations. The Amira
(Visage Imaging) software package was used for visualization of the results. Figures 6b and
6e illustrate the simulated microvascular flow rate and pressure drop in each of the segments
of the µCT-derived tumor vasculature. Figure 6f illustrates the distributions of vessel radius
and flow rate for two ROIs selected in the tumor rim (Fig. 6c) and core (Fig. 6d),
respectively. Our hemodynamic analysis revealed functional “shunting”(i.e., high flow, low
resistance paths) that is often observed in tumor vascular networks. In addition, it indicated
the remarkably elevated vascularization and blood flow in the rim compared to the core of
the tumor vascular network. These results are consistent with the ROI analysis of FBV
obtained from multiscale imaging presented in Fig. 5. Much remains to be accomplished to
make comprehensive and validated predictions at different stages of tumor growth and for
different tumor types, with and without therapeutic interventions.

CHALLENGES AND FUTURE STEPS
While considerable advances have been made in the fields of multiscale imaging and
modeling, significant challenges still remain. It remains necessary to rigorously validate the
predictions of multiscale blood flow models on a scale similar to that employed in the
simulations. Such validation would involve multiscale imaging that spans from the capillary
to the macro-vascular scale. For example, one could employ laser speckle imaging104 or
microsphere-based techniques80 to assess microvascular perfusion, and in vivo MRI89 or CT
and ultrasound14 to assess perfusion at the whole tumor/organ level. It will also be necessary
to develop new image processing schemes and databases for seamlessly integrating and
mining these multiscale datasets. We will need to develop strategies for exploiting the
availability of online repositories of gene expression and proteomic data (e.g., the Allen
Brain Atlas Project88) for integration into, and validation of these models. Finally, it will be
necessary to establish a unified framework for disseminating these multiscale models and
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imaging data to the widest possible audience. Taking these future steps will herald a new
understanding of phenomena as diverse as the tumor microenvironment, structure–function
relationships in disease and drug delivery.

CONCLUSION
Although focused on the tumor vasculature, the multiscale imaging methods described here
can be employed in a variety of disease models that involve a pathological vasculature, e.g.,
stroke and spinal cord injury. The eventual integration of hierarchical imaging platforms
with widely available genomic databases will enable systems biology researchers to gain
insights into a range of issues, such as the mechanisms of resistance to anti-angiogenic
therapies. When incorporated in computational models of MR susceptibility contrast such as
the finite perturber method,93 multiscale data could help elucidate the biophysical
relationship between the MRI signal and the underlying vasculature. This would facilitate
the development of more accurate clinical biomarkers of angiogenesis and anti-angiogenic
therapy. Moreover, image-based blood flow modeling of the tumor vasculature provides
valuable information on the hemodynamic properties of the network that influence
endothelial sprouting and vascular remodeling.98,112 This will also enable development of
multiscale mathematical platforms of tumor growth and angiogenesis based on detailed
experimental data, without the need to rely on idealized vascular structures.19,73,95

Multiscale modeling can be exploited to assess various anti-tumor and anti-angiogenic
treatment scenarios, as well as guide the administration of these agents. We believe that
multiscale imaging and modeling will be an invaluable resource for researchers for years to
come, and will greatly enhance our understanding of the complex system that is the tumor
microenvironment.
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FIGURE 1.
Schematic illustrating “multiscale”imaging of the angiogenic phenotype. (a) In vivo MRI of
a 9L brain tumor bearing mouse brain at the ‘macroscopic’ scale (~150 µm resolution); 3-D
ex vivo MR microscopy (µMRI) at two ‘mesoscopic’ scales. (b) ~60 µm, and (c) ~30 µm in
which the neurovasculature has been segmented into tumor vessels (gold) and cortical
vessels (red). One can visualize the abnormal tumor vessel architecture and appreciate
changes in vessel morphology at the tumor-host tissue interface (arrows). Imaging at the
‘microscopic’ scale: fluorescence microscopy images of (d) CD34 stained tumor vessels
(10×), and (e) a lectin-labeled arteriole (40×). (f) Cartoon illustrating microarray analysis of
the endothelium at the ‘molecular’ scale.
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FIGURE 2.
Hierarchical imaging of the mouse brain vasculature. (a) Intact mouse brain vasculature
scanned at medium resolution (16 µm voxel size) using a µCT system. (b) Slice of the
section marked red in panel (a), revealing the frontal cortex. The red square labeled
“C1”denotes a region of interest (ROI) which was measured using SRµCT. (c) Slice of
SRµCT high-resolution data visualizing intracerebral arteries and the capillary network. The
latter is not visualized in the medium resolution data (b) but provides essential structural
characteristics of the vasculature, as for example the microinfarct marked by the red
rectangle. (d) Surface rendering of the infarct region marked in panel (c) suitable for detailed
3-D analysis. Scale bar: 100 µm. (Adapted with kind permission from Heinzer et al.47).
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FIGURE 3.
Schematic illustrating the bidirectional feedback between multiscale imaging and multiscale
modeling of tumor blood flow. Following acquisition of the hierarchical angiogenesis data,
certain imaging parameters will serve as inputs to the multiscale model of tumor blood flow,
while others will be employed to validate model predictions. For example, the µCT-derived
3-D tumor vessel geometry could serve as the input for large-scale tumor blood flow
simulations. Predictions of the blood flow simulations will inform an oxygen transport
model, which in turn will determine results of a VEGF secretion model. The VEGF
secretion model will predict the spatio-temporal distribution of VEGF within the tumor,
which will be validated against the spatial distribution of VEGF obtained from confocal
microscopy of immunostained tumor sections. It should be borne in mind that acquiring
macroscopic 2D (1 mm thick slices) in vivo MRI data over a 1–2 cm axial FOV at 125 µm
in-plane resolution takes 5–10 min and results in ~MB of data. In contrast, a mesoscopic
µMRI acquisition of the same volume at ~40–50 µm isotropic resolution takes 8–10 h,
resulting in ~100 MB of data, while a microscopic µCT acquisition of the same volume at
~8 µm isotropic resolution takes 10–12 h, resulting in ~1 GB of data.
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FIGURE 4.
Bridging “macroscale”and “microscale”with MRI. (a) In vivo macrovascular cerebral blood
volume (CBV or ΔR2*) map. (b) Co-registered ex vivo fractional blood volume (FBV) map
obtained from µMRI. The tumor region of interest (ROI) is highlighted by hatched lines in
each panel. (c) Histograms showing the relative distribution of the ΔR2* between tumor and
contralateral ROIs. (d) Histograms showing the relative distribution of the FBV between
tumor and contralateral ROIs. Tumor blood volume is elevated relative to the contralateral
brain across these “multi-scale”data. Adapted from Pathak et al.91
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FIGURE 5.
Co-registered, multiscale blood volume maps in a human (MDA-MB-231) breast cancer
model. (a) Macrovascular blood volume map computed from in vivo MRI (~100 µm). Co-
registered maps of fractional blood volume (FBV) computed from (b) µMRI (~40 µm) and
(c) µCT (~8 µm). One can differentiate the well-vascularized rim from the poorly
vascularized tumor core in (a–c). (d–f) Distributions of FBV from each spatial scale
demonstrating elevated blood volumes in the rim vs. the core for this xenograft model. The
rim and core were identified using morphological erosion on a tumor ‘mask’ such that the
numbers of pixels in the two regions were approximately equal. The lines superimposed on
the histograms represent normal distributions fitted to the histogram data.
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FIGURE 6.
Image-based hemodynamic modeling in a human breast cancer model. (a) Reconstructed
“wide-area” 3-D microvascular network derived from µCT data acquired from a 5-week-old
MDA-MB-231 breast cancer xenograft. (b) Blood flow map (in nl/s). Magnified blood flow
maps corresponding to (c) a rim ROI (blue box), and (d) a more central ROI (red box). (e)
Pressure distribution (in mmHg) for the entire tumor vasculature. (f) Radius (in µm) and
blood flow (in nl/s) distributions corresponding to the tumor rim and core ROIs in (c–d).
The lines superimposed on the histograms represent normal distributions fitted to the
histogram data.
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TABLE 2

Summary of representative microvascular image-based blood flow simulations using the empirical
hemorheological Pries–Secomb relationships.

System/organ Imaging method Outlet boundary conditions Species References

Intra-cortical vascular network Confocal microscopy Pressure/zero flow/flow rate Human Lorthois et al.75

Retinal microvasculature Confocal microscopy Pressure Mouse Ganesan et al.42

Retinal arterial microvasculature Fundus camera Structured tree Human Liu et al.72

Skeletal muscle microvasculature Confocal microscopy Pressure Rat Benedict et al.9

Coronary microvasculature µCT Pressure Rat Lee and Smith69

Intra-cortical vascular network SRµCT Pressure Rat Reichold et al.105

Fetoplacental and pulmonary vascular network µCT Pressure Mouse Yang et al.126

SRµCT: Synchrotron Radiation Based Micro-CT.
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