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Abstract
This study is a follow-up to a paper by Carr et al. that determined a design structure to optimally
test for departures from additivity in a fixed ratio mixture of four perfluoroalkyl acids (PFAAs)
using an in vitro transiently-transfected COS-1 PPARα reporter model with a mixing ratio that is
based on average serum levels in NHANES subjects. Availability of information regarding
potential for additivity of PFAAs in mixtures is critically important for risk assessors who are
concerned with the ability of the compounds to affect human health and impact ecological
systems. It is clear that exposures are not to single compounds, but to mixtures of the PFAAs. This
paper presents the results from the data collected using the design from Carr et al. along with
subsequent analyses that were performed to classify the relationships among mixtures of PFAAs.
A non-linear logistic additivity model was employed to predict relative luciferase units (RLU), an
indicator of PPARα activation. The results indicated a less than additive relationship among the
four PFAAs. To determine if the possible “antagonism” is from the competition among or between
carboxylates and sulfonates, four different binary mixtures were also studied. There was a less
than additive relationship in all four binary mixtures. These findings are generally similar to two
other reports of interfering interactions between PFAAs in mixtures. The most conservative
interpretation for our data would be an assumption of additivity (and lack of a greater than
additive interaction), with a potential for antagonistic interactions.
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1. Introduction
The single-chemical effects of perfluoroalkyl acids (PFAAs) have been extensively studied
and a range of toxicological endpoints have been reported following exposure in laboratory
studies and wildlife, as reviewed in (Lau et al., 2007). These outcomes include
immunotoxicity, hepatotoxicity, hormonal effects, and developmental toxicity. The
mechanism of action for the biological effects of the PFAAs remains largely unknown, but
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activities mediated through the peroxisome proliferator activated receptor alpha (PPARα)
have been considered key steps in the induction of liver tumors in the rat (Kennedy et al.,
2004; Klaunig et al., 2003). PPARα was also shown to be necessary to mediate the
developmental toxicity induced by perfluorooctanoic acid (PFOA) and perfluorononanoic
acid (PFNA) in the mouse (Abbott et al., 2007; Wolf et al., 2010). Exposure to PFOA or
PFNA throughout gestation in CD-1 or 129S1 strains of mice resulted in high rates of
neonatal mortality in the first few hours or days after birth (Abbott et al., 2007; Wolf et al.,
2010). However, in PPARα knockout mice, the neonatal mortality, growth deficits and
developmental delay were not observed after exposure to PFOA or PFNA (Abbott et al.,
2007; Wolf et al., 2010). These studies in mice suggested an important role for PPARα in
mediating responses to PFAA compounds. There is also considerable evidence that PFAAs
modify expression of genes that are directly regulated by PPARα (Abbott et al., 2012;
Rosen et al., 2007, 2008, 2009). To further support that PPARα is involved in mediating
effects of PFAAs, a recent study characterized the patterns of expression of PPAR receptors
in developing human fetal tissues and effects of PFOA on fetal and postnatal mouse gene
expression in nine different tissues (Abbott et al., 2010, 2012).

The ability of PFAA compounds to activate PPARα has also been demonstrated using
transiently transfected COS-1 cells (Wolf et al., 2008, 2012). In those studies, a luciferase
reporter was used to compare the ability of members of the PFAA family of compounds to
activate mouse or human PPARα and it was revealed that the carbon chain length and
functional moiety (carboxylate or sulfonate) of the compound influenced the responsiveness
and that mouse PPARα was more responsive that human PPARα. This in vitro approach
thus provides a valuable means to evaluate the potential interactions of various PFAAs in a
mixture paradigm.

The biological effects described for individual PFAA compounds have led to an increased
interest in the effect of the combinations of PFAAs. PFAAs are classified into two
categories – carboxylates and sulfonates. The purpose of this report is to test the hypothesis
that the single chemical data can be combined in an additivity model that may be used to
predict their in vitro response from an environmentally relevant mixture of the PFAAs. For
this investigation, two compounds with longer half-lives were selected from each group.
From the carboxylates, PFOA and PFNA and from the sulfonates, perfluorooctane sulfonate
(PFOS) and perfluorohexane sulfonate (PFHxS). All four of these PFAA chemicals have
been detected in the U.S. general population at varying degrees in the NHANES
biomonitoring program (Kato et al., 2011). In vitro data were previously published for each
of these four compounds individually (Wolf et al., 2008). The present study extends the
investigation for a fixed-ratio mixture for these four compounds as well as several binary
mixtures.

2. Methods
2.1. Experimental data

In vitro data were collected for activation of mouse PPARα by Wolf et al. (2008) at varying
concentrations (0 μM-100 μM) for each compound (i.e., PFOA, PFNA, PFOS, and PFHxS),
tested on at least two transient transfection assays performed on different dates using COS-1
cells, as per common laboratory practice in measuring PPARα activation (Wolf et al., 2008).
A concentration of 250 μM was also evaluated for PFOS, and these data were used in the
analysis. Using biomonitoring data from the NHANES 2005–2006 dataset, a relevant
mixing ratio was determined that represented the average proportion of each of the four
PFAAs from human serum. Using the mixing ratio and the single chemical data, a model
under the assumption of additivity was estimated and used to determine a local D-optimal
design for a mixture study that would be robust to model misspecification since a design for
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a nonlinear model is dependent specification of model parameters a priori (Carr et al.,
submitted for publication). A D-optimal design is one that chooses dose locations in order to
minimize the variance of the parameter estimates. In other words, the design lends itself to
more precise estimation of the dose-response curves. The optimal design included 7 dose
groups: 0, 20, 40, 50, 80, 100, and 200 μM, (combined total concentration of the 4
compounds). In experiments for this study, data were generated for a mixture of all 4
compounds and for selected binary mixtures of the compounds. The mixture data (expressed
as Relative Luciferase Units, RLU) were collected under the same methods as the single
chemical data (as described in Wolf et al., 2008) and experimental design details specific to
the 4 compound and binary mixtures follow.

2.1.1. Mixture of 4 compounds—In vitro data were collected for activation of mouse
PPARα following exposure to a mixture of PFOA, PFNA, PFOS, and PFHxS. The mixture
and individual compounds were tested on 96-well plates with three replicate plates per assay
and 3 independent assays total (each at different dates using cells of a different passage
number). There were 7 dose groups (0, 20, 40, 50, 80, 100, and 200 μM) and each
concentration was present in 8 wells on each plate. The total sample size for each dose is 72
(3 assays × 3 plates × 8 wells per plate = 72). Each plate also included a positive control
Wy14643 at 10 μM and its vehicle, DMSO, with 4 wells for each of these controls. The
plate also included the individual compounds at the concentrations present in the 100 μM
mixture with 8 wells for each individual compound.

2.1.2. Binary mixtures—In vitro data were collected for activation of mouse PPARα
following exposure to selected binary mixtures (PFOA:PFNA, PFOS:PFHxS, PFOA:PFOS,
and PFNA:PFOS). As described for the 4 compound mixture studies, the mixtures were
tested on 96-well plates with 3 replicate plates per assay and 3 independent assays total
(each using cells at a different passage number). Binary mixtures were tested across a range
of 9 concentrations in which the pair of compounds being tested was held at the previously
determined mixing ratio, while the total concentration increased. As shown in Table 1, the
range for the total concentration varied between the binary pairs. Each binary mixture assay
included 4 wells of DMSO and 4 of WY14643, 8 wells of the water control, 8 wells of each
mixture dose, and 8 wells of each individual compound at the concentration of that
compound in the highest total dose.

2.1.3. Mixtures of 4 compounds and binary mixtures—Data for the DMSO and
WY14643 present on each plate were excluded as was previously done in the analysis by
Wolf et al. (2008). In addition, as per the methods from Wolf et al. (2008), outliers were
excluded based on an r-student value of + −2.6, which corresponds to a two-sided p-value of
0.01. The residual values were the result of a fixed effects linear model that accounted for
concentration and plate.

2.2. Outcome variable
The outcome of interest was relative luciferase units (RLU), which was calculated by
standardizing the observed luciferase value from the Luciferase reporter assay kit (Promega)
to the average of the control group (water) for each plate (Wolf et al., 2008). This artificially
forced the mean of the control group to have a RLU value of 1. A log10 transformation was
used in the model to accommodate the skewness in the data – i.e., log10(RLU). Through the
transformation, the mean value of the control group is approximately 0 (log10(1) = 0).

2.3. Statistical analysis
Following the single chemical required (SCR) method of Casey et al. (2004), a test of
additivity for each fixed ratio mixture was conducted. Specifically, a nonlinear logistic
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model was fit to the data which allows for a sigmoidal dose-response shape between
log(RLU) and the mixture dosages. The predicted dose response curve for each mixture was
estimated using single chemical data in a nonlinear logistic additivity model. The test of
additivity for each mixture is equivalent to a test of coincidence between the two
corresponding dose-response curves. Details are provided in the appendix. Figures for all
models are given to demonstrate model shape and fit.

3. Results
3.1. Four chemical mixture

Fig. 1 contains the observed single chemical plate means and the plot of the mean predicted
LogRLU at each dose group. The model fit was adequate for the whole concentration range
for PFOS and PFHxS. For the remaining two PFAAs, the model fits well in the active region
and an initial plateau, but there appears to be a slight increase after the plateau. The model
used is restricted to a single active region and single plateau and therefore cannot fully
capture this pattern. Because the primary interest in toxicological research is the lower
concentration range (more relevant exposure ranges), the slight misspecification of the
model in this region was deemed acceptable. Fig. 2 contains the estimated mean curve for
the mixture data along with the observed plate means for the mixture data. The model fit
was adequate for the mixture data and the LogRLU was adequately predicted. A
simultaneous plot of the two curves is given in Fig. 3 for comparison. It is clear from the
plot that the two curves have different slopes, which is confirmed by the test of coincidence
(F3,35 = 123.46, p-value < 0.0001). This test indicates that there is a significant difference in
the slopes and therefore the mixture data violate the assumption of additivity as estimated
from the single chemical data. Looking at Fig. 3, it can be seen that the departure from
additivity is in the less than additive direction. By looking at the binary mixtures we will be
able to determine if this is caused by the combination of carbonates and sulfonates or a more
general competition for PPARα. The parameter estimates are given in Table A1 in
Appendix.

3.2. Binary mixtures results
The binary mixture models were fit simultaneously with the additive data. As described
above, the binary mixture data were used to estimate the slope and plateau parameter for the
binary mixture model; the single chemical data were used to estimate the slope and plateau
parameter for the additive model, and the complete data (binary mixtures and single
chemical data) were used to estimate the intercept and random effect associated with the
plate variation.

Using the same relative mixing ratio present in the four-chemical mixture for pairs of
chemicals, the additive slopes were estimated. Table 2 lists the new mixing ratios.

In each of the four mixtures, a test of coincidence was performed to determine if there was
departure from additivity. The results are given in Table 2. For illustrative purposes, plots of
all four mixtures are given in Fig. 4 (both under the additive assumption and the predicted
mixture model along with the observed mixture data to show model fit). The curves in all
four plots demonstrate a departure from additivity. The departure from additivity is deemed
less than additive since a higher dose of the mixture is needed to reach the same outcome
value as with the additive mixture. For parameter estimates, see Table A2 in Appendix.

4. Discussion
The results from the binary mixtures indicate that the less than additive responses seen in the
mixture of all four PFAAs may be inherent in PFAAs and not due to the combination of
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carboxylates and sulfonates, as suspected. This could be due to the competition of the 4
PFAAs for the same receptor, PPARα. While the occurrence of less than additive responses
is typically thought of as a change in a slope parameter, in the non-linear setting we are
working in, the plateau parameter is directly related to the slope and vice versa. It seems as
though the plateau parameter is responsible for more of the departure from additivity than
the slope parameter. That is, if the models were fit only in the response region (i.e. before
the plateau), the two mixtures may be deemed additive.

The study of interactions of PFAA mixtures is clearly important for evaluation of risk for
exposed human and wildlife populations. However, there is very little information available
and we could only find two other studies that experimentally evaluated PFAA mixtures. The
first of these studies (Wei et al., 2009) tested the effects of PFAA mixtures on gene
expression in primary cultured hepatocytes of rare minnows using a custom cDNA
microarray. PFOA, PFNA, PFOS, perfluorodecanoic acid (PFDA), perfluorododecanoic
acid (PFDoA), and 8:2 fluorotelomer alcohol (FTOH 8:2) were evaluated individually and in
four mixture formulations. Their mixture ratios were based on reported environmental levels
(15 mg/L combined concentration). PFOA and PFOS were present at equal levels in one
mixture, whereas in two other mixtures PFOA and PFOS represented 50% of the PFAAs,
respectively. Analysis of gene expression in the exposed hepatocytes revealed different
patterns of effects on gene expression for the carboxylates compared to PFOS or 8:2 FTOH.
It was of interest that patterns of effects on gene expression for the PFOA- or PFOS-
dominant mixtures, and in the PFOA:PFOS mixture, were not detected in the responses to
the individual compounds. These data were believed to support an interpretation that co-
exposure to PFOA and PFOS, together or in combination with other PFAAs, trigger
distinctly different functions and activate multiple cellular responses, distinct from those that
may occur following exposure to a single PFAA. This seems to be a reasonable assumption
as the effects of PFAA exposure undoubtedly occur at multiple levels, including effects on
metabolism, signal-transduction, and transcriptional and post-transcriptional regulation of
gene expression. The complexity of the levels of responses complicates the interpretation of
the responses to mixtures of PFAAs, particularly if single exposures and mixtures elicit
different profiles of cellular response. Although this study was conducted in cultured fish
hepatocytes, a differential response to mixtures is similar to the findings of the present study
in which we report an interaction between PFAAs that affects responsiveness to PPARα
activation. The second study that we found dealt with combined toxicity of PFOA and PFOS
and used a bioluminescent cyanobacterial toxicity test to compare interactions of PFOA and
PFOS with other pollutants, using a Combination-Index method to evaluate binary, ternary
and multicomponent mixtures (Rodea-Palomares et al., 2012). A binary mixture of PFOA
and PFOS was reported to have “an antagonistic interaction across the whole range of effect
levels” and this was believed to explain the finding that these compounds also generally
interacted antagonistically with the other pollutants tested.

Although these aquatic models are very different from the mammalian COS-1 transiently
transfected PPARα model used to generate the data for our mixtures, it is very interesting
that both models report antagonistic interaction between PFOA and PFOS. Caveats for
interpreting our data, and limitations that should be noted, include (1) the fact that these data
are based on an in vitro model for activation of PPARα and may not necessarily reflect the
outcomes in an intact animal model; (2) this is a mouse, not human, PPARα reporter; (3) the
NHANES mixing ratio, although appropriate for investigating a particular mixture that
reflects the serum levels of PFAAs in the general population in the US, may not necessarily
reflect the levels or compounds found in all nationalities, in specific highly exposed
populations, or be representative of mixtures found in wildlife. It is also important to
remember that other PFAA compounds can be found in the environment and that the
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pharmacokinetics that affect body burdens differ for the various perfluorinated compounds
and across species (Lau, 2012).

In summary, our study of the interactions between PFAAs using an in vitro transiently-
transfected COS-1 PPARα reporter model with an NHANES-based mixing ratio suggested a
less than additive relationship in a mixture of four PFAAs, and an apparent interference
between the PFAAs for activation of PPARα in the binary mixtures. However, if models
were fit only in the low-dose response region the mixtures may be deemed additive. These
findings are generally similar to two other reports of interfering interactions between PFAAs
in mixtures. Availability of information regarding potential for additivity of PFAAs in
mixtures is critically important for risk assessors who are concerned with the ability of the
compounds to affect human health and impact ecological systems. It is clear that exposures
are not to single compounds, but to mixtures of the PFAAs. The most conservative
interpretation for our data would be an assumption of additivity (and lack of a greater than
additive interaction), with a potential for antagonistic interactions.
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Appendix A: Modeling details
The definition of additivity (i.e., zero interaction) used here is given by Berenbaum (1985)
and can be related to the isobologram for a combination of chemicals (e.g., Loewe and
Muischnek, 1926; Loewe, 1953) through the interaction index. That is, in a combination of c
chemicals, let Ei represent the concentration/dose of the ith component alone that yields a
fixed response, y0, and let xi represent the concentration/dose of the ith component in
combination with the c agents that yields the same response. According to this definition of
additivity if the substances combine with zero interaction, then

(1)

If the left-hand side of (1), termed the interaction index, is less than 1, then a greater than
additive relationship can be claimed at the combination of interest. If the left-hand side of
(1) is greater than 1, then a less than additive relationship can be claimed at the combination.
This definition of additivity is a general form for dose-addition. It should be pointed out that
use of the toxic equivalency factor (TEF) approach assumes common dose-response slopes
across the chemicals under study; the general dose-addition definition of (1) does not require
such an assumption.

In short, a nonlinear additivity model that is algebraically equivalent to Berenbaum’s
definition of additivity was used to predict the response from a fixed-ratio mixture. Mixture
data were experimentally generated using an experimental design with statistically important
characteristics: a D-optimal design robust to model (i.e., additivity model) misspecification
(Carr et al., submitted for publication). This report presents the results from testing the
hypothesis of additivity for the specified fixed-ratio mixture of the four PFAAs and four
binary mixtures.

Preliminary analyses indicated the variance of the response log(RLU) (denoted Y) remained
constant with increased mean response. Thus, in subsequent analyses, we assume Var(Y) =
τ. There was indication of a plate effect which was accounted for in two ways – (1) by
standardizing to the mean of the control group and (2) by allowing for correlation between
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observations on the same plate through a random coefficients model. Since there is often
correlation among observations from the same plate, observations within a plate were
assumed to have variance, ω and observations from different plates were assumed to be
independent. Preliminary analyses indicated that the dose-response relationship differed
slightly from plate to plate and therefore suggested the use of a random coefficients model.

There was evidence of a significant correlation between data from the same plate, which was
accounted for with the random plate effect (p-value = 0.0003). The correlation between
observations on the same plate is estimated by the intraclass correlation, ω/(ω + τ).
Individual plates are assumed to be independent from each other.

A.1. Model: four-chemical mixture
The nonlinear logistic function was used to model the mean log(RLU) (μ) and is
algebraically equivalent to the interaction index set to 1, i.e.

(2)

where x1, x2, x3, and x4 are the concentration in (μM) for PFOS, PFOA, PFNA, and PFHxS,
respectively. Through algebraic steps, the model in (2) can be shown to be equivalent to the
equation in (1), i.e., the model in (2) is an additivity model in the sense of the definition of
dose addition used in isobolograms and as described by Berenbaum (1985):

Using this definition of additivity, the form of the joint model for the jth plate is:
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where x1, x2, x3, and x4 are the concentrations (in μM) for PFOS, PFOA, PFNA, and

PFHxS, respectively. For the additive model using a fixed ratio,  where
ai represents the proportion of the ith chemical in the mixture and t represents the total molar
concentration for the mixture. The additive portion of the model can therefore be simplified
by substituting θadd = ∑βi × αi. The weights, ai, were estimated from biomonitoring data
from NHANES (2005–2006). From a previous analysis, the weights were estimated to be:
0.64, 0.19, 0.06 and 0.11 for PFOS, PFOA, PFNA and PFHxS, respectively (Carr et al.,
submitted for publication). The simplified form of the model for the jth plate is:

This joint model includes the random effect for each plate, φj, to take into account the
correlation of the data within each replicate plate. This random effect is assumed to be
normally distributed with a mean of 0 and a variance denoted ω. This model combines the
data to estimate the variance components ω and τ. The single chemical data are used in the
estimation of γadd, β0,add, θadd. The mixture data are used to estimate γmix, β0,mix, θmix.

Unknown model parameters in the model were estimated using an Adaptive Gaussian
Quadrature criterion in PROC NLMIXED with the Dual Quasi-Newton algorithm in SAS
(version 9.2).

Table A1

Parameter estimates for joint four chemical mixture with and without assumption of
additivity.

Parameter Estimate Standard error t value p-value 95% confidence interval

γadd 0.825 0.045 18.2 <0.0001 0.733 0.917

β0,add −2.672 0.088 −30.4 <0.0001 −2.851 −2.493

θadd 0.096

 β1 (PFOS) 0.019 0.002 12.5 <0.0001 0.016 0.022

 β2 (PFOA) 0.324 0.015 22.0 <0.0001 0.294 0.354

 β3 (PFNA) 0.326 0.018 18.1 <0.0001 0.289 0.362

 β4 (PFHxS) 0.022 0.002 11.1 <0.0001 0.018 0.026

γmix 0.917 0.073 12.6 <0.0001 0.769 1.066

β0,mix −2.253 0.099 −22.8 <0.0001 −2.453 −2.053

θmix 0.030 0.002 16.9 <0.0001 0.026 0.033

τ 0.028 0.001 34.9 <0.0001 0.027 0.030

ω 0.042 0.011 4.0 0.0003 0.021 0.064

The assumption of additivity was assessed using a three parameter test of coincidence:
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An F-test with 3 numerator degrees of freedom was used to evaluate departures from
additivity.

A.2. Model: binary mixtures
In order to further assess the relationship among the PFAAs, four binary mixtures were
experimentally evaluated and analyzed. The binary mixtures included a set of carboxylates
(PFOA with PFNA), a set of sulfonates (PFOS with PFHxS) and two mixtures of the two
subclasses (PFOS with PFOA and PFOS with PFNA). These experiments were performed in
order to determine if any interactions that are detected could result from the combination of
the carboxylates and the sulfonates, with a possible less than additive relationship between
carboxylates and sulfonates in the same mixture, and a potentially additive relationship
among the carboxylates and among the sulfonates. The binary mixtures maintained the
original relative ratio and are described further in Table 1. A joint model was fit to estimate
the model under additivity and to estimate the dose-response relationship among the binary
mixtures. The random effect for the plate and the intercept parameter were estimated using
the entire dataset, whereas the additive parameters only used the single chemical data and
the binary mixture parameters were estimated using the corresponding binary mixture data.
The form of the model for a given plate (j) is given by:

This joint model includes the random effect for each plate, φj to take into account the
correlation of the data within each replicate plate. This random effect is assumed to be
normally distributed with a mean of 0 and a variance denoted ω. This model combines the
data to estimate β0 and the variance components ω and τ. The single chemical data are used
in the estimation of γadd and θadd. The binary mixture data are used to estimate their
corresponding slope and plateau parameters (γ and θ). In order to assess the interaction
among the binary mixtures, four 2-degree-of-freedom tests of coincidence will be calculated
(i.e., coincidence of the slope and plateau parameter between the additivity models and the
corresponding mixture model). Each will be of the form:

For each of the binary mixtures: θadd = ∑βi × αi.
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Table A2

Binary mixtures results.

Parameter Estimate Standard error t value p-value

β0 −2.50 0.051 −49.28 <0.0001

γadd 0.81 0.037 22.05 <0.0001

γpfoa,pfna 0.73 0.059 12.26 <0.0001

γpfos,pfhxs 0.53 0.059 8.9 <0.0001

γpfos,pfoa 0.65 0.056 11.44 <0.0001

γpfos,pfna 0.72 0.058 12.54 <0.0001

β1 (PFOS) 0.02 0.001 14.82 <0.0001

β2 (PFOA) 0.30 0.011 28.18 <0.0001

β3 (PFNA) 0.30 0.014 21.33 <0.0001

β4 (PFHxS) 0.02 0.002 12.04 <0.0001

θpfoa,pfna 0.20 0.009 22.43 <0.0001

θpfos,pfhxs 0.02 0.001 14.75 <0.0001

θpfos,pfoa 0.10 0.004 23.86 <0.0001

θpfos,pfna 0.03 0.002 21.73 <0.0001

τ 0.02 0.0005 47.37 <0.0001

ω 0.03 0.005 5.25 <0.0001

Table A3

Binary mixture ratios, parameter estimates and test results.

Mixture
components Ratio Additive model Mixture model Test

β γ β γ F2,62 p-value

PFOA, PFNA 76:24 0.303 0.81 0.208 0.73 46.9 <0.0001

PFOS, PFHxS 85:15 0.018 0.81 0.017 0.53 11.57 <0.0001

PFOS, PFOA 77:23 0.083 0.81 0.100 0.65 8.92 0.0004

PFOS, PFNA 92:8 0.040 0.81 0.033 0.72 10.86 <0.0001

A.3. Results: four-chemical mixture
There was a significant intraclass correlation among observations from the same plate,
which was estimated to be 0.6. The rest of the parameter estimates for the additive model are
given in Table A1. As state before, this model combines the data to estimate the variance
components ω and τ. The single chemical data are used in the estimation of γadd, β0,add, θadd.
The mixture data are used to estimate γmix, β0,mix, θmix (Table A3)

A.4. Results: four-chemical mixture
The results for the four-chemical mixture are given in Table A2. The complete data are used
to estimate β0 and the variance components ω and τ. The single chemical data are used in the
estimation of γadd and θadd. The binary mixture data are used to estimate their corresponding
slope and plateau parameters (γ and θ).
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Recall that the additive portion of the model fit five parameters (four slope parameters and a
new plateau parameter). So, while the slope parameter may be greater than the additive
model slope, it does not necessarily indicate a “greater than additive” relationship. Both the
slope and the plateau need to be considered to determine if there is a greater than or less than
additive relationship. For example, the mixture of PFOS and PFOA, the additive slope
parameter is estimated to be 0.083 while the binary mixture model has an estimated slope of
0.1, which is greater than the additive slope. However, the plateau parameters for these two
models are also very different: the plateau for the mixture is much lower than the additive
mixture. This is an indication of a less than additive relationship, which can be seen more
clearly in Fig. 4.
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Fig. 1.
Single chemical model fit from additivity model.
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Fig. 2.
Mixture model fit under additivity assumption.
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Fig. 3.
Simultaneous plot of models with and without additivity assumption.
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Fig. 4.
Binary mixture plots.
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Table 1

Concentration of each compound and total dose (μM) in the binary mixture medium.

1

PFOA 1.9 3.8 5.7 7.6 9.5 11.4 15.2 22.8

PFNA 0.6 1.2 1.8 2.4 3.0 3.6 4.8 7.2

Total dose 2.5 5.0 7.5 10.0 12.5 15.0 20.0 30.0

2

PFOS 8.5 42.7 85.3 128.0 170.7 213.3 255.9 341.4

PFHxS 1.5 7.3 14.7 22.0 29.3 36.7 44.1 58.6

Total dose 10.0 50.0 100.0 150.0 200.0 250.0 300.0 400.0

3

PFOS 7.7 15.4 23.1 30.8 38.6 46.2 61.7 77.1

PFOA 2.3 4.6 6.9 9.2 11.4 13.8 18.3 22.9

Total dose 10.0 20.0 30.0 40.0 50.0 60.0 80.0 100.0

4

PFOS 22.9 45.7 68.6 91.4 114.3 137.1 160.0 182.9

PFNA 2.2 4.3 6.5 8.6 10.8 12.9 15.1 17.1

Total dose 25 50 75 100 125 150 175 200
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Table 2

Binary mixtures ratios and test results.

Mixture components Ratio Test

F 2,62 p-value

PFOA, PFNA 76:24 46.9 <0.0001

PFOS, PFHxS 85:15 11.57 <0.0001

PFOS, PFOA 77:23 8.92 0.0004

PFOS, PFNA 92:8 10.86 <0.0001
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