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Abstract
The speed of computations in neocortical networks critically depends on the ability of populations
of spiking neurons to rapidly detect subtle changes of the input and translate them into firing rate
changes. However, high sensitivity to perturbations may lead to explosion of noise and increased
energy consumption. Can neuronal networks reconcile the requirements for high sensitivity,
operation in low-noise regime and constrained energy consumption? Using intracellular
recordings in slices from rat visual cortex we show that layer 2/3 pyramidal neurons are highly
sensitive to minor input perturbations. They can change their population firing rate in response to
small artificial excitatory postsynaptic currents (EPSCs) immersed in fluctuating noise very
quickly, within 2–2.5 ms. These quick responses were mediated by generation of new, additional
action potentials, but also by shifting spikes into the response peak. In that latter case, the spike
count increase during the peak and the decrease after the peak cancelled each other, thus
producing quick responses without increases of total spike count and associated energy costs. The
contribution of spikes from one or the other source depended on the EPSC timing relative to the
waves of depolarization produced by on-going activity. Neurons responded by shifting spikes to
EPSCs arriving at the beginning of a depolarization wave, but generated additional spikes in
response to EPSCs arriving towards the end of a wave. We conclude that neuronal networks can
combine high sensitivity to perturbations and operation in low-noise regime. Moreover, certain
patterns of on-going activity favor this combination and energy-efficient computations.
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INTRODUCTION
Accumulating evidence suggests that cortical networks use sparse code for representing
sensory stimuli and processing. Sparseness means that information is encoded by activity of
a small sub-population of neurons, and often in a few, temporally precise spikes (Theunissen
2003; Olshausen, Field 2004; Wolfe et al., 2010). Examples of sparse coding in the brain
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range from representation of visual objects and scenes, sounds, and somatosensory
information in respective sensory cortices (e.g. Olshausen, Field 1996; Lewicki 2002;
Brecht, Sakmann 2002) and odors in the olfactory bulb (Spors, Grinvald 2002), to feedback
projections from motor to sensory cortices (Petreanu et al 2012) and decision-making
networks of parietal cortex (Harvey et al 2012). Although occasionally cortical synapses can
be strong (Miles, Wong 1983; Volgushev et al., 1995; Galarreta, Hestrin 2001; Song et al.,
2005; Lefort et al., 2009; Ikegaya et al., 2013), the vast majority of connections between
cortical neurons are weak. To achieve sparse coding using these weak connections, neurons
should be sensitive to subtle changes of their inputs. Indeed, recent studies showed that
neocortical neurons are highly sensitive to even minor perturbations at their inputs (London
et al., 2010; Tchumatchenko et al., 2011; Ilin et al., 2013). Moreover, neurons can change
their firing rate in response to small amplitude current steps embedded in the fluctuating
input very fast, on the scale of 1–2 ms (Tchumatchenko et al., 2011; Ilin et al., 2013).
However, in a system built of highly sensitive elements any perturbation, including noise,
may be amplified, leading to a “noise explosion” (London et al., 2010). High level of noise
would necessitate the use of strong signals for communication between neuronal ensembles
and create unfavorable conditions for temporal coding, thus forcing the use of rate coding
(London et al., 2010). It would also lead to increased energy consumption, which is an
important constraint on processing abilities of the brain (Attwell, Laughlin 2001; Lennie
2003; Harris et al., 2012). It remains unclear, whether high sensitivity to perturbations is
compatible with operation in low-noise regime that favors sparse temporal coding. Here we
show, using intracellular recordings in slices from rat visual cortex that layer 2/3 pyramidal
neurons can respond to small artificial EPSCs by changing their population firing rate very
quickly, within ~2 ms after the EPSC onset. Quick increase of the firing rate was produced
by generation of new, additional action potentials but also by shifting spikes into the
response peak. Neurons typically responded by shifting spikes to EPSCs arriving at the
beginning of a depolarization wave. Because these responses did not lead to an increase of
total spike count, they would not lead to an explosion of firing, an increase of noise and
related energy costs in the system. We conclude, that neuronal networks can combine both,
high sensitivity to perturbations and operation in low-noise regime, and that certain patterns
of on-going activity are especially favorable for this combination and for energy-efficient
computations.

MATERIALS and METHODS
All experimental procedures used in this study were in accordance with National Institutes
of Health regulations. Experimental protocols were approved by the Institutional Animal
Care and Use Committee of University of Connecticut. In vitro intracellular recordings were
made in slices of rat visual cortex. The details of slice preparation and recording were
similar to those previously used (Volgushev et al., 2000; Tchumatchenko et al., 2011; Ilin et
al., 2013). The Wistar rats (P21–P28, Charles River or Harlan, USA) were anaesthetized
with isoflurane (Baxter, USA), decapitated, and the brain was rapidly removed. One
hemisphere was mounted onto an agar block and 350μm thick coronal slices containing the
visual cortex were cut with a vibrotome (Leica, Germany) in ice cooled oxygenated solution.
After cutting, the slices were placed into an incubator where they recovered for at least one
hour at room temperature before transferring them in to the recording chamber. The solution
used during the preparation of the slices had the same ionic composition as the perfusion/
extracellular solution. It contained (in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25
NaH2PO4, 25 NaHCO3, 25 D-glucose and was bubbled with 95% O2 and 5% CO2. In some
experiments synaptic transmission was blocked by adding 25 μM APV, 5 μM DNQX and 80
μM PTX to the extracellular solution. Chemicals were obtained from Sigma-Aldrich or
Tocris.
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Recordings were made with the slices in submerged conditions at 28–32°C. Temperature in
the recording chamber was monitored with a thermocouple positioned close to the slice, 2–
3mm from the recording site. Whole-cell recordings using patch electrodes were made from
layer 2/3 pyramidal neurons, selected under visual control using Nomarski optics and
infrared videomicroscopy. The patch electrodes were filled with K-gluconate based solution
(in mM: 130 K-Gluconate, 20 KCl, 4 Mg-ATP, 0.3 Na2-GTP, 10 Na-Phosphocreatine, 10
HEPES) and had a resistance of 4–6MΩ. Recordings were performed using the bridge mode
of Axoclamp-2A (Axon Instruments, USA) or Dagan BVC-700A (Dagan Corporation,
USA) amplifier. After amplification and low-pass filtering at 10 kHz, data were digitized at
20kHz and fed into a computer (Pentium4; Digidata 1440A interface and pCLAMP
software, Molecular Devices).

Fluctuating current for injection into a neuron ση(t) was synthesized to mimic the effect
produced in the soma by numerous balanced excitatory and inhibitory synaptic inputs
(Destexhe, Pare 2003). η (t) was an Ornstein-Uhlenbeck process with zero mean, unit
variance and correlation time τI=50 ms, and σ was the standard deviation of the resulting
background current noise, scaled to achieve membrane potential fluctuations of ~15–20 mV
amplitude. Membrane potential fluctuations produced by the injected current were similar to
those recorded in neocortical neurons in vivo (Azouz, Gray 2000; Destexhe, Pare 2003;
Volgushev et al., 2003, 2006). Each realization of the noise current was injected either as
“noise only”, or with artificial EPSCs added at a rate 1/s (Fig. 1B,C). aEPSCs were
synthesized with rise time 1ms, decay time 10ms and peak amplitude of 20pA. During
current injection, a DC current was added if necessary to maintain desired firing rate of ~4–5
Hz in most of experiments or ~1 Hz in some experiments as indicated. All currents were
injected into the soma through the whole-cell recording pipette. Current injections lasted
46s, and were separated by a recovery period of 60–100s.

Processing
Data were processed offline in Matlab (The Mathworks, Natick, MA). Spikes were detected
in membrane potential traces as positive zero crossings. Spike timings were used for
constructing PSTH histograms, and for estimating EPSC detection probability.

The probability of EPSC detection was quantified using a theoretical decoder
(Tchumatchenko et al., 2011; Ilin et al., 2013) that reports a change in the input when the
population firing rate exceeds the 95% quantile of the pre-signal distribution. The
probability of detection was estimated as function of time interval T (from 0.4 ms to 10 ms
after the EPSC onset), for populations of N=300, N=1000 and N=3000 neurons using
bootstrap analysis and calculated from theoretical distributions. For bootstrap analysis, we
composed 100 trial sets of N=300 (or 1000, or 3000) randomly selected sweeps. For each
time interval T we first used all 100 trial sets to calculate distribution of spike counts during
pre-signal interval T and defined 95% quantile of this distribution. Next, for each trial set,
we determined whether the spike count in the interval T after the EPSC onset fell outside the
95% quantile of the pre-signal distribution. The number of trial sets, which fulfill this
condition, provides an estimate of the probability for a population of N neurons to detect the
EPSC within time T after its onset. The whole procedure was then repeated 30 times for
N=300 (or 1000 or 3000) neurons to obtain results shown as open circles in Fig. 2D.

Theoretical curves of detection probability were calculated as follows. The distribution of
the number of spikes in a window of length T after the signal onset Dpost and the distribution
of the number of spikes in a window of the same length before signal onset Dpre were
modeled as two independent binomial distributions with N equal to the number of neurons
(N=300 or N=1000 or N=3000), and success probabilities Ppost (after EPSC onset) and Ppre
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(before EPSC onset), respectively. The success probabilities Ppost and Ppre were estimated
using data from all recordings as average probabilities of spikes, that is

The theoretical detection probabilities were then computed as the probability that a Binomial
distribution B(N,Ppost) exceeds the 95% quantile of a Binomial distribution B(N,Ppre), that is

with FB(N,Ppost) and F−1
B(N,Ppre) denoting the distribution and quantile function of a

Binomial random variable with parameters N and P, respectively. Distributions and
quantiles were computed using the Matlab programs binoinv and binocdf.

Significance of an increase or decrease of spike count in responses to injection of fluctuating
currents with immersed aEPSCs as compared to responses to currents without EPSCs was
calculated based on a one-sided version Welch’s t-test. Spike count was considered
significantly (p<0.05) increased (decreased) if the lower (upper) bound of the one-sided
confidence interval for the difference of the mean spiking rate was above (below) zero.

RESULTS
We used an established approach to study firing rate responses of neuronal populations
(Silberberg et al., 2004; Tchumatchenko et al., 2011; Ilin 2013). Consider a population of
independent neurons receiving input from one common fiber (Fig. 1A). Each neuron of the
population has a unique pattern of background activity (“noise”) which is different from
other neurons, but also receives an input from a common fiber, which is the same for all
neurons in the population (Fig. 1B). Background activity in each neuron is mimicked by
injecting fluctuating noise current, which is different for different cells, and common input is
mimicked by introducing a common signal, an artificial EPSC (aEPSC) injected in all
neurons. Recording from all neurons of the population simultaneously (Fig 1B) is
mathematically equivalent to successive recording of responses of several cells to the signal
immersed in different realizations of the fluctuating noise (Fig. 1C). Averaging the
successively recorded responses provides an estimate of the population response, whereby
the number of repetitions is equivalent to the number of neurons in the population
(Silberberg et al., 2004).

Figure 2A shows membrane potential responses to the injection of two different realizations
of fluctuating noise with immersed aEPSC. PSTH constructed using spikes from N=2959
such responses exhibits a clear peak at the aEPSC onset (Fig. 2B,C). The firing rate changes
sharply, within ~2 ms after the aEPSC onset. A theoretical decoder that reports a change in
the input if the population firing rate exceeds 95% quantile of the pre-signal distribution
(Ilin et al., 2013), can report the change of firing rate of a population of N=1000 or N=3000
neurons very quickly, within 2–2.5 ms (Fig. 2D). With decreasing the size the population to
N=300, the time required for detection increases to about 5–6 ms (Fig. 2D, green). The high
sensitivity of neocortical neurons to aEPSCs described above is consistent with recent in
vivo (London et al., 2010) and in vitro (Tchumatchenko et al., 2011) results. Also the
quantification of the detection speed of aEPSCs and its dependence on the size of neuronal
population are in agreement with recent reports on quick detection of small DC current steps
by populations of neocortical neurons in vitro (Tchumatchenko et al., 2011; Ilin et al., 2013).
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However, high sensitivity of neurons to input perturbations and high speed of firing rate
responses to subtle changes of the input may have undesirable effects on operation of
neuronal networks. Generation of new spikes in response to any additional EPSC may lead
to amplification of random perturbations and thus to “noise explosion” in the system
(London et al., 2010) and respective increase of energy consumption. It remains unclear how
these undesirable effects are counteracted in neuronal networks. One possibility here is to
change timing of spikes, so that APs that are about to be generated sometime during the next
few dozens of ms, will be actually generated earlier, upon arrival of an additional EPSC. In
this scenario, EPSC would still produce a peak in the population firing rate, but it will not
lead to additional spikes and related undesirable network effects. This “redistribution”
hypothesis predicts that (i) after the EPSC-produced peak the firing rate will decrease below
the average, and (ii) number of spikes in the histogram peak will be higher than total
increase of the spike count.

To test these predictions, we injected neurons with pairs of fluctuating currents: one sweep
consisting of fluctuating noise with aEPSCs immersed in it, as in the experiments described
above, and the other sweep in a pair containing the same fluctuating noise only, without
aEPSCs. Figure 3A shows firing rate changes of a large population of neurons (N=12105,
mean firing rate 4.2 Hz) in response to injection of fluctuating noise with (black) and
without (gray) an immersed aEPSCs. Because injections of fluctuating current induce
reliable and reproducible spike responses in neocortical neurons (Mainen, Sejnowski 1995),
the difference between the two histograms (Fig. 3B) provides an estimate of the firing rate
change caused by the addition of aEPSCs relative to control. The difference histogram
demonstrates that, first, the shape of the histogram peak (0–35 ms after the aEPSC onset)
reproduces precisely the shape of the injected aEPSC. Second, it reveals a decrease of the
firing rate after the peak during 35–100 ms after the aEPSC onset (oblique arrows in Fig. 3,
B1–B2). The decrease of population firing rate stands out clearly in the zoom-in of the
response and with a bigger bin size (Fig. 3, B2). It indicates that some of the spikes
generated in noise-only condition did not appear during 35–100 ms of responses to aEPSCs
immersed in noise. Moreover, increase of total spike count in responses to injection of noise
with aEPSCs as compared to noise-only (Nnew=781 spikes) was less than number of spikes
in the peak (0–35 ms, Npeak=1146 spikes). Thus, response peak was composed of action
potentials originating from two sources. Out of 1146 spikes in the response peak, about two
thirds were “new”, or “additional” spikes, which would not be generated in response to
injection of noise current without an aEPSC (Nnew=781, or 68% of Npeak=1146). The
remaining one third of the response peak was composed of “shifted” spikes, i.e. those that
would be generated in response to noise-only injection, but an addition of an aEPSC
changed their timing shifting them into the response peak (Nshifted= Npeak − Nnew =365, or
32% of Npeak=1146). The effect of shifting spikes into the response peak by an addition of
aEPSC was also clearly present in experiments with a lower rate of background firing (1.1
Hz, Nshifted=229, or 22% of Npeak=1065). These results are consistent with the above
predictions of the redistribution hypothesis.

What determines whether response to an EPSC is composed of added or shifted spikes? To
address this question we exploited the fact that the peak of the population response
reproduces precisely the shape of aEPSC (Fig. 3). This allowed us to specify for the
following analysis two intervals: one that included the peak (0–35 ms after aEPSC onset),
and another one that included the trough of the firing rate response (35–100 ms). Generation
of additional action potentials in response to EPSC would produce a histogram peak that is
not followed by a decrease of the firing rate below the mean. In contrast, shifting spikes into
the peak would lead to firing rate decrease after the peak. In the next series of experiments,
we have repeatedly injected in 5 neurons 45 pairs of episodes of fluctuating noise with or
without immersed aEPSC (Fig. 4A). Each pair of episodes was injected 110 times. For each
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pair we computed difference histograms (Fig. 4B). Note that histograms in each column are
computed using responses to multiple injections of the same realization of the fluctuating
current. For this reason, noise-only histograms are not flat and difference histograms in Fig.
4B do not reproduce the aEPSC shape. However, because the firing rate response of a
population of neurons receiving independent fluctuating input reproduces reliably the
aEPSC shape (Fig. 3), we have used the defined above windows to calculate changes in
spike count during the response peak (0–35 ms, dark blue bar in Fig. 4B, bottom) and during
the trough (35–100 ms, magenta bar in Fig. 4B, bottom). Figure 4B illustrates 4 types of
difference histograms. Histograms of the first type expressed an increase of the firing rate
during 0–35 ms after the aEPSC onset (p<0.05), followed by a comparable decrease of the
firing rate below the mean level during 35–100 ms interval (Fig. 4B, left column). The
histogram peak was thus produced by shifting the spikes that would occur later in responses
to noise-only current injection. In histograms of the second type, increase of the firing rate
during 0–35 ms was not followed by a significant decrease during the 35–100 ms interval,
indicating that aEPSC led to generation of additional spikes, not present in responses to
noise-only injection (Fig. 4B, second column). In histograms of the third type the peak was
followed by firing rate decrease, but the decrease was of a smaller magnitude than the peak.
We interpreted this as an indication that both additional and shifted spikes contributed to the
peak (Fig. 4B, third column). Finally, type four histograms show little EPSC-related firing
rate changes. In fact, on most of such occasions neither injection of noise-only current nor
injection of noise with aEPSCs evoked spikes during the specified intervals (Fig. 4B, right
column).

Scatter plot in Fig. 4C shows results of this analysis for all 45 episodes. Each point
represents data for one pair of noise episode, with the spike count change in the peak (0–35
ms after the aEPSC onset) plotted against spike count change during 35–100 ms interval.
Note that calculations were made using the difference histograms, so spike count values can
be negative. When the histogram peak was produced by shifting spikes, i.e. the increase in
spike count during the peak was compensated by the decrease in spike count in 35–100 ms
interval (type 1 histogram), data points are located at or around the negative-slope diagonal
(red dashed line in Fig. 4C). When the peak was produced by added spikes (type 2
histogram), respective data points are located around the ordinate (green dashed line in Fig.
4C). Data points located between the negative-slope diagonal and the ordinate represent
cases in which the histogram peak was composed of both added and shifted spikes
(histogram type 3).

We argued that the reason why an EPSC leaded to additional spikes in some cases but
shifted spikes into the peak in the other cases may lay in the difference between patterns of
the ongoing membrane potential fluctuations at which EPSCs arrived. To test this
conjecture, we have selected N=7 cases in which the histogram peak was produced by
shifted spikes, N=7 cases in which the peak was formed by additional spikes, and N=4 cases
in which both added and shifted spikes contributed to the peak (red, green and blue points,
delineated within ellipses of respective color in Fig. 4C). For each of the three groups, we
computed the PSTHs and averaged traces of the membrane potential (Fig. 5). The pattern of
background activity was clearly different for the three groups. When aEPSCs arrived at the
beginning of a depolarizing wave and associated increase in population firing, they shifted
the spikes into the response peak (Fig. 5, left column). When arrived towards the end of a
depolarizing wave, aEPSCs evoked additional spikes (Fig. 5, middle column). Arriving in
the middle of the activity wave, aEPSCs shifted spikes and evoked additional ones (Fig. 5,
right column). Thus, the pattern of on-going activity determines whether additional spikes
will be generated in response to an EPSC, or whether a neuron will respond by shifting the
spikes, without net increase of the firing rate.
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DISCUSSION
Results of the present study show that populations of cortical neurons are highly sensitive to
even minor perturbations of their input, and can change their firing rate very quickly, within
2–2.5 ms in response to small EPSCs. Quick firing rate responses to EPSCs were mediated
by (1) generation of new, additional action potentials, and (2) shifting spikes into the peak,
so that increased spike count during the response peak was compensated by the decrease of
the number spikes that occur after the peak. The contribution of spikes from one or the other
source to the response peak depended on the EPSC timing relative to the pattern of on-going
activity.

The high sensitivity of neocortical neurons to small aEPSCs is consistent with recent results
reported for neurons of other types and/or from other cortical regions (London et al., 2010;
Tchumatchenko et al., 2011). In pyramidal neurons from layer 5 of rat barrel cortex in vivo,
injection of subtle artificial EPSCs (~25 pA amplitude) led to detectable change of neurons’
firing. Moreover, action potentials induced in a single neuron by depolarizing pulses, led to
a measurable change of the population firing of neighboring neurons (London et al., 2010).
In layer 3 pyramidal neurons from rat visual cortex in vitro, injection of small current steps
immersed in fluctuating noise led to clear changes in population firing which could be
detected quickly, on a ms time scale (Tchumatchenko et al., 2011; Ilin et al., 2013). Prior
data also showed that neocortical neurons connected via strong synapses (~180 pA
amplitude) can communicate fast (Galarreta, Hestrin 2001), and that few strong connections
may define preferred pathways for transmission of sensory information in neocortical
networks (Lefort et al., 2009; Teramae et al 2012; Ikegaya et al., 2013). Our results extend
these findings, showing that populations of neocortical neurons can respond to small EPSC-
shaped signals immersed in fluctuating noise by changing their firing rate quickly, within ~2
ms after the aEPSC onset. This demonstrates that weak synaptic connections can effectively
influence neuronal firing and thus propagation of signals in neocortical networks. Moreover,
neocortical neuronal ensembles are able to communicate fast, on a ms-time scale, using
weak signals. High sensitivity for subtle changes of the input and the ability to communicate
fast using weak signals are vital features for sparse encoding in cortical networks
(Olshausen, Field 1996; Theunissen 2003; Olshausen, Field 2004; Wolfe et al., 2010).

Downside of the high sensitivity is that any perturbation, including noise, can lead to firing
rate changes. In multilayer networks consisting of highly sensitive elements this may lead to
amplification of signal-irrelevant events leading to “noise explosion” (London et al., 2010),
runaway firing and eventually to an over-excitation in the system. These effects would have
devastating consequences for operation of neural networks. Increased noise would lead to a
degradation of signal-to-noise ratio, demanding stronger signals for processing. Increased
firing rate and demand for stronger signals would lead to dramatic increase of energy
consumption. Generation of each action potential is associated with a chain of energy
demanding processes, such as restoration of ionic gradients disturbed by currents involved in
initiation and propagation of the action potential, transmitter release and postsynaptic
currents, that totally account for about ~50% to ~70% of energy consumption in the cortex
(Attwell, Laughlin 2001; Lennie 2003; Harris et al., 2012; Howarth et al., 2012). These
undesirable consequences may take place when neurons respond to changing inputs by
generation of additional action potentials. Explosion of activity can be prevented by
inhibition: ample evidence indicates that cortical neuronal networks operate in a balanced
regime (van Vreeswijk, Sompolinsky, 1996; Okun, Lampl 2008; Ozeki et al., 2009). Our
results indicate an additional mechanism that helps to prevent explosion of noise and
metabolic costs of computations in neuronal networks. When firing rate responses to EPSCs
are mediated by shifting spikes into the response peak, these problems do not occur at all.
Because net number of spikes generated by a population of neurons does not change, neither
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the noise in the system, nor energy consumption would increase. Rather, the response will
be manifested as redistribution of the neuronal activity, so that refined firing pattern will
incorporate information about the EPSC and its timing.

In our experiments, ~1/3 of the response peak in the PSTH was due to shifted spikes. How
does spike timing can be shifted? We argued that when neuron is about to generate a spike
in response to injection of fluctuating noise, addition of an EPSP may advance the timing of
the spike initiation, thus “shifting” it into the response peak. Once spike is generated, it
raises the threshold for generation of further spikes, thus leading to a trough in the histogram
after the response peak. This interpretation is consistent with in vivo data showing that
action potential threshold is influenced by the history of membrane potential changes during
few dozens of ms, and cell firing during ~1 s preceding the spike (Azouz, Gray 1999;
Henze, Buzsaki 2001).

The contribution of shifted vs. added spikes to the response peak depended on the pattern of
ongoing activity. Activities of neuronal ensembles across various brain regions and states
express distinct temporal structure, examples ranging from hippocampal theta-rhythm
during active exploration (Buzsaki 2006) or responses to sensory stimuli (e.g. Volgushev et
al., 2003) to slow sleep waves (Steriade, Timofeev, 2003; Chauvette et al., 2011). Activation
of a single inhibitory neuron can completely shunt action potential generation or shift its
timing in pyramidal neurons in the hippocampus (Cobb et al., 1995; Miles et al., 1996). Our
present results show that excitatory inputs, activated at certain phases of on-going rhythm,
can also produce a clear, detectable change of the firing rate mediated by changing the
timing of action potentials, without generation of additional spikes. In this regime, despite
high sensitivity of neurons to input perturbations (Galarreta, Hestrin 2001; London et al.,
2010; Tchumatchenko et al., 2011), noise level would remain low, as would the metabolic
costs of neuronal computations (Attwell, Laughlin 2001; Lennie 2003; Harris et al., 2012).
Redistribution of discharges of neuronal populations rather than generation of additional
spikes may be one mechanism of refinement of firing pattern of neuronal ensembles – a
desirable feature for a multitude of neural functions that rely on precise timing of spikes,
such as spike timing dependent synaptic plasticity (Caporale, Dan 2008), or effective
temporal coding in sensory processing (Gray, Singer 1989; Singer 1999).
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AP action potential

EPSC excitatory postsynaptic current
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Figure 1. Experimental paradigm: How to study population encoding in slices
A: A scheme of three-layer network of neurons. Green arrows show divergent connections
from one first-layer neuron (“source neuron”) onto neurons of the second layer which
converge on a third-layer neuron (“decoder”). Other neurons and connections are shown in
gray.
B: Input to each second-layer neuron consists of individual fluctuating noise and a common
EPSCs produced by an action potential in the source neuron. Population firing of these
neurons provides synaptic input to the decoder neuron in layer three.
C: In experiment, artificial EPSCs (aEPSCs) immersed in different episodes of fluctuating
noise are injected in a cell sequentially. This mimics population encoding from B.
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Figure 2. Rapid detection of small EPSCs in population firing
A: Responses of a neocortical neuron to injection of two episodes of fluctuating noise
current (gray traces) with immersed small aEPSCs (red).
B: Firing rate changes of a neuronal population in response to injection of fluctuating
current with immersed aEPSCs (red trace). Data from 11 neurons; total of N=2959
repetitions. Bin 1 ms. Dashed gray line shows averaged firing rate (4.84 imp/sec).
C: Zoom in of response peak, a portion the histogram indicated by gray bar on top of B.
Green vertical dashed lines in A–C show EPSC onset.
D: Probability of EPSC detection by populations of 300, 1000 and 3000 neurons vs. time.
Results of bootstrapping (circles) and theoretical curves (diamonds, solid lines).
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Figure 3. Transient firing rate response to small aEPSCs is produced both by generation of
additional APs and shifting the „existing“ spikes
A: Firing rate changes of a large neuronal population (data from 17 neurons, N=12105
repetitions; bin 2 ms) in response to injection of fluctuating current with immersed aEPSCs
(top), and responses to the same fluctuating current but without EPSCs (gray histogram,
bottom).
B: Difference between population firing induced by injection of fluctuating current with and
without aEPSCs, calculated using data from A. Red line shows aEPSC, scaled to match the
amplitude of histogram peak. Bottom panels show zoom-in of the peak region (left) and
histogram with 10ms bin (right). In all three histograms, dark blue bars show duration of
aEPSC and the histogram peak (0–35ms), magenta bars show period of decreased firing
(arrows, 35–100ms).
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Figure 4. Differential contribution of added and shifted spikes to the histogram peak
A: Experimental paradigm. A set of 45 different episodes of fluctuating noise with or
without immersed aEPSCs were injected in neurons repeatedly (N=110 repetitions).
B: Examples of 4 (out of 45) episodes of the injected currents and firing rate responses. Gray
traces of noise without aEPSCs are superimposed on black traces with immersed aEPSCs,
vertical dashed lines show aEPSC onset. Horizontal dashed line shows DC current (0.255
nA) used to achieve target firing rate of 4 to 6 imp/sec.
Histograms show firing rate responses to the injected currents with (black) or without (gray)
immersed EPSCs, and their difference (colored histograms). Horizontal bars on the bottom
show measuring windows corresponding to the duration of aEPSC/histogram peak (dark
blue, 0–35 ms), and the period of decreased firing (magenta, 35–100 ms), same as in Fig.
3B. For each of the 45 difference histograms, number of spikes was measured in these
windows.
C: Spike count in the peak (0–35 ms) vs. spike count after the peak (35–100 ms) of 45
difference histograms. Red symbols (n=7) show cases when spikes were “shifted” to
produce histogram peak: spike number increase in the histogram peak was balanced by the
decrease after the peak. Green symbols (n=7) show cases in which the histogram peak was
produced by additional, “new” spikes: spike count was increased in the peak but did not
change after the peak. Blue symbols (n=4) show cases with both added and shifted spikes.
Open symbols show remaining (n=27) cases. Arrows indicate data for 4 episodes from B.
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Figure 5. Relative contribution of added and shifted spikes to response peak depends on the
pattern of background activity
Firing rate changes in episodes in which response peak was composed of shifted spikes
(n=7, left column), added spikes (n=7, middle column) and a combination of shifted and
added spikes (n=4, right column). Responses to injection of fluctuating noise with aEPSCs,
noise only, and their difference. Averaged membrane potential traces are superimposed on
the respective histograms. Dashed vertical lines show onset of aEPSCs.
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