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We survey studies which relate abnormal neurogenesis to major depressive disorder. Clinically, descriptive gene and protein
expression analysis and genetic and functional studies revised here show that individual alterations of a complex signaling network,
which includes the hypothalamic-pituitary-adrenal axis; the production of neurotrophins and growth factors; the expression of
miRNAs; the production of proinflammatory cytokines; and, even, the abnormal delivery of gastrointestinal signaling peptides, are
able to induce major mood alterations. Furthermore, all of these factors modulate neurogenesis in brain regions involved in MDD,
and are functionally interconnected in such a fashion that initial alteration in one of them results in abnormalities in the others.
We highlight data of potential diagnostic significance and the relevance of this information to develop new therapeutic approaches.
Controversial issues, such as whether neurogenesis is the basis of the disease or whether it is a response induced by antidepressant
treatments, are also discussed.

1. Introduction

Major depressive disorder (MDD) is one of themost common
psychiatric diseases. MDD is not only characterized by pro-
found dysregulation of affect and mood but is also associated
with other abnormalities including cognitive dysfunction,
sleep and appetite disturbance, fatigue, and many other
metabolic, endocrine, or inflammatory alterations (see [1, 2]).
The existence of MDD as a medical condition has been
recognized with the term melancholia in texts dating up
to the ancient Greece, but the current diagnostic criteria
remain to some degree arbitrary. In addition, accountmust be
taken of the fact that almost all individuals have experienced
a transient depressed mood state at some time in their
life. In fact, there is controversy in whether MDD is best
conceptualized as a disease or as the extreme of a continuum
of increasingly disturbed affective regulation. MDD is often
termed unipolar depressive disorder to be distinguished
from depression which alternates with episodes of mania
which is termed bipolar depression. The latter is potentially
distinguishable by functional neuroimaging approaches [3].

The purpose of this review is to summarize information
accumulated in the last two decades concerning gene and
protein expression changes in MDD [4]. These data suggest
that the pathophysiology of this disease is related to disturbed

adult neurogenesis [5, 6] and, without doubt, will help
develop new therapeutic and diagnostic tools in the near
future [2, 7]. Due to the complexity of the subject, we
will exclude from this review well-established monoamine
neurochemical alterations in MDD which are the basis for
most current treatments [8]. Anatomical identification of
the brain regions altered in MDD has also advanced in
the last decade with the employment of modern functional
neuroimaging techniques (see [9]), but a detailed analysis of
the anatomy and histopathology of the disease is also out of
the scope of the present review.

Adult neurogenesis is a topic of increasing interest in
neuroscience. In the last decadeit has been shown that, rather
than being architecturally stable, the mammalian central
nervous system retains potential to remove neurons and glia,
and to establish new neural circuits. Two major cerebral
zones, the subventricular region of the lateral ventricles,
and the subgranular region of the gyrus dentatus, contain
proliferating neural precursors able to provide neurons to
be functionally integrated into neuronal networks. Neuroge-
nesis in the sub-ventricular region provides neurons to the
olfactory bulbus and is functionally implicated in olfaction.
Adult born neurons produced in the gyrus dentatus are
involved in major hippocampal functions and appear to be
the target of diseases which impairmemory and learning [10].
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The etiology of depression is unknown (see review by
[11]). MDD can be spontaneous but often follows a traumatic
emotional experience or can be a symptom of other diseases,
most often neurological (i.e., stroke, multiple sclerosis, or
Parkinson disease) or endocrine (Cushing’s disease, hypothy-
roidism). MDD can also be triggered or precipitated by
pharmacological agents or drug abuse [12]. The prevalence
is higher in woman (in the range of 1.5 to 2.5) and nearly
50% of the risk for depression is due to genetic factors [13].
These factors may influence both overall risk of illness and
the sensitivity of individuals to the environmental adversi-
ties.

2. Neurotrophins and Depression

Histological and functional neuroimaging studies revealed
synaptic and structural plasticity alterations in different
regions of the brain, including the frontal cortex and hip-
pocampus in MDD patients [14–17]. In pathophysiological
terms, it was proposed that these alterations could prevent
the brain from making appropriate adaptive responses to
environmental stimuli [18]. These facts have directed atten-
tion of neuroscientists to the study of neurotrophins in
depression as they are neuron survival factors of critical
importance for the establishment and maintenance of neu-
ral circuits during development and in adult subjects [19–
21].

Neurotrophnis constitute a family of 4 distinct secreted
growth factors (nerve growth factor, NGF; brain-derived
neurotrophic factor, BDNF; neurotrophin-3, NT-3; and
neurotrophin-4, NT-4) which upon binding to membrane
receptors in the target neurons activate an intracellular
cascade which promotes survival and trophic effects. Each
neurotrophin binds with high affinity to specific mem-
bers of the tyrosine kinase receptor family (Trk recep-
tors; NGF binds to TrkA, BDNF and NT-4 bind to TrkB
and, NT-3 binds not only to TrkC but also to the other
Trk receptors with low affinity). In addition, all the neu-
rotrophins bind with low affinity to p75 (NTR), which not
only is a very different receptor, responsible for storing
and transporting neurotrophins, but also promotes neu-
ronal cell death to sculpt neuronal circuits during develop-
ment.

Initial preclinical studies showing that expression of
BDNF was downregulated in the dentate gyrus and hip-
pocampus of rats subjected to chronic stress [22] have
attracted interest of researchers on the potential involvement
of BDNF in depression. Research accumulated in the last
decade indicates that this neurotrophin is a central target
in the pathogenesis of depression and suicidal behaviour
[23, 24]. Expressions of BDNF, BDNF-regulated genes, and
the receptor TrkB are decreased in postmortem brain sam-
ples from depressed humans [25] and in circulating lym-
phocytes of depressed patients during a drug-free period
[26]. Consistent with these findings, serum levels of BDNF
are also decreased in MDD patients [27, 28] and poly-
morphisms in the BDNF gene may be predictive of the
chronicity of the disease [29]. Moreover, expression of BDNF
is upregulated both in human and experimental animals

by antidepressant treatments, including electroconvulsive
therapy and repetitive transcranialmagnetic stimulation [30–
34]. In addition, BDNF (and also NT3) produced antide-
pressant effect on behavioral models of depression [35, 36]
which are abolished in mice deficient in TrkB receptor
[37]. Together these findings support a causal implication
of BDNF in the genesis of MDD. Discrepancies present in
the literature concerning the occasional absence of BDNF
upregulation by different classes of antidepressants have
been attributed to the route of administration, the doses of
drugs employed, or, remarkably, a differential effect of the
different antidepressants on the transcription on the four
different exons present in the BDNF gene [23]. However,
it must be mentioned that BDNF heterozygous knockout
mice do not display anxious or depressive-like behaviors
[38].

The expression of the BDNF receptor TrkB is also upreg-
ulated by chronic electroconvulsive seizure and antidepres-
sant drug treatments [39]. Furthermore, increase of BDNF
signaling by overexpression of the full length TrkB gene in
mice results in an antidepressant-like behavioral response
[40]. However, the implication of TrkB in depression patho-
physiology bears more complexity because the TrkB gene in
addition to the active full length isoform has a truncated
isoform which modulates negatively BDNF signaling [23].
In fact, mutant mice with a forebrain directed deficiency in
TrkB exhibit symptoms of attention-deficit disorder rather
than depressive behaviour [41].

The formation of BDNF takes place by proteolytic cleav-
age of a larger precursor protein termed proBDNF. ProBDNF
is able to bind the low-affinity receptor p75NTR exerting an
opposite effect to that of BDNF/TrkB signaling [42, 43].
Consistent with this finding, it has been found that the serum
levels and the expression of both proBDNF and p75NTR
in circulating lymphocytes are up-regulated in MDD [44].
According to these facts it has been proposed that not
only the expression of BDNF and TrkB but also the ratio
between BDNF-TrkB and proBDNF-p75NTR is dysregulated
in MDD [44]. Evidence from a role of the p75NTR receptor
in depression is also supported by genetic evidence, because
the missense Ser205Leu polymorphism of this gene appears
to have a protective effect against the development of MDD
in women [45].

The involvement of other neurotrophins and receptors in
MDD has received less attention. Expressions of NT-3 and
two members of the related family of glial cell line-derived
neurotrophic factor, GDNF and ARTN, were found down-
regulated in circulating blood cells of patients with MDD but
not in bipolar disorder [46].

3. MicroRNAs and Depression

From the beginning of the present century, it was recognized
that the genome, in addition to produced mRNA destined
to form proteins which regulate cell function, generates
also small units of noncoding RNA, termed microRNA
(miRNA). miRNAs are regulatory molecules which control
gene function by cleaving or repressing the translation of
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target mRNAs. miRNAs are very conserved among the
different species and participate critically in most biological
processes. Three aspects of miRNA is particularly relevant in
medicine: (1) dysregulation of specificmiRNAs are associated
to many diseases; (2) levels of miRNAs can be identified and
quantified by RT-PCR in the serum serving as biomarkers
of different diseases; and (3) they can be silenced in vivo
by administration of miRNAs inhibitors (antagomir) or
employed as exogenous therapeutic agents to influence gene
transcription and protein synthesis.

miRNAs, as neurotrophnis, are involved in neuron sur-
vival, synaptogenesis, and neural plasticity, and their impli-
cation in psychiatric diseases is beginning to be explored (see
[47]). Alterations of various miRNAs, including miR-30e,
miR-182, and miR-132 have been implicated in MDD [47–
50]. Remarkably, miR-132, and miR-182 regulate negatively
the expression of BDNF and were found to show increased
serum levels in MDD patients [50]. In preclinical studies,
miR-212, which also regulates the expression of BDNF,
was overexpressed in the dentate gyrus and serum after
electroconvulsive stimulation [51]. Together these findings
suggest that future functional studies of miRNA will provide
significative advances in the understanding of psychiatric
diseases including the design of novel treatments (see review
[6]).

4. Stress Hormones and Depression

A large number of clinical and basic researches indicate that
MDD is associated with a maladaptive response to stress,
due to dysfunction of the hypothalamic-pituitary-adrenal
axis (HPA axis) [52–54]. Abnormal hormone dynamics is a
constant feature inmood disorders and can precede the onset
of MDD [55] supporting the involvement of the HPA axis
in this disease [56]. Stress hormonal alterations observed in
MDD include impaired inhibition of cortisol release by dex-
amethasone, elevated cortisol values, increased excretion of
cortisol and an overactive response to psychological stressors.
Assays to evaluate HPA dysfunction, such as the dexametha-
sone suppression test or the dexamethasone/corticotropin
releasing hormone test, have been useful to establish objective
parameters in the diagnosis of endogenous mood disorders
and to predict response to antidepressant treatment [57–
59].

Regardless of whether these alterations are at the origin
(i.e., Cushing disease) or are a consequence of MDD, it is
important to remark that the elevated levels of stress and
glucocorticoid hormones interfere with normal hippocampal
neurogenesis [60] contributing to the development of the
disease. Consistent with this interpretation, a glucocorti-
coid receptor target gene, the serum- and glucocorticoid-
inducible kinase 1 (SGK1) which inhibits hippocampal neu-
rogenesis, is upregulated in depressed patients and in animal
models of depressive behavior [60]. In addition, there is
evidence for a role of corticosteroids modifying the function
of BDNF, suggesting a functional crosstalk between stress
hormones and BDNF signaling of potential implication in the
pathogenesis of MDD [61].

5. Inflammation and Depression

Evidence for immune system involvement in the patho-
physiology of major depressive disorder is abundant and
solid (see reviews [62–64]). As mentioned above, a charac-
teristic feature observed in MDD patients is the elevation
of glucocorticoids. However, in spite of the potent anti-
inflammatory effect of glucocorticoids,MDDpatients exhibit
elevated levels of circulating proinflammatory cytokines,
including interleukin-1, interleukin-6, tumor necrosis fac-
tor alpha, and some soluble interleukin receptors [28, 65–
67]. The proinflammatory cytokines not only participate
in the innate immune response and inflammation but also
have important metabolic and endocrine effects including
neurotransmitter metabolism, neuroendocrine function, and
neural plasticity. Remarkably, administration of interleukin-
6 induces depressive-like behaviors and neutralizes the
antidepressant effect of fluoxetine in experimental animals
[68]. In a similar fashion, people treated with inflammatory
cytokines such as interferon alpha develop depression that
is indistinguishable from depression in nonmedically ill
populations (see [69]). Furthermore, expression of different
cytokines and genes implicated in cell death is up-regulated
in postmortem brain tissue of MDD patients suggesting local
inflammatory, apoptotic, and oxidative stress in brain regions
involved in reward-related behaviors [70]. The involvement
of cytokines in behavior and in different functions of the
nervous system is also sustained by the presence of spe-
cific receptors in hippocampus and hypothalamic nuclei
[71]. Remarkably, proinflammatory cytokines stimulate the
hypothalamic-pituitary-adrenal axis, activate the secretion of
growth hormone, and inhibit thyroid-stimulating hormone
secretion [72]. All these endocrine effects are associated with
MDD.

A striking finding about the role of proinflammatory
cytokines in MDD is that, in contrast with the elevated levels
in the blood, the level of interleukin-6 in cerebrospinal fluid is
reduced inMDDpatients and the decreased level is predictive
of future depression in old women [73].

6. Gut Microbiota and Depression

There is growing evidence for the occurrence of a functional
interplay between gut microbiota and brain function (brain-
gut axis). According to this view themicrobiota can influence
brain chemistry and consequently behavior. Consistent with
this idea, it has been found that the composition of gut
microbiota in animalmodels of depression and chronic stress
shows differences with that of healthy animals [74]. Leptin
[75], ghrelin [76], cholecystokinin [77], and other various
factors are signaling peptides produced in the gastrointestinal
system with a direct influence on the central nervous sys-
tem, including modulation of neurogenesis, which might be
implicated in MDD. However, at the present, we are still far
from assigning a role for disbalances in the gut microbiota in
the pathophysiology of depression and alterations in gut flora
may be secondary to abnormal gastrointestinal dynamics in
MDD patients.
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7. Concluding Remarks:
Adult Neurogenesis and MDD

The evidence surveyed in this review supports a primary
involvement of disturbed adult neurogenesis and altered
synaptic connectivity in the origin of MDD (see reviews
[11, 78]). In adult mammals, neurogenesis is sustained by two
specialized niches of neural progenitors, the subventricular
zone of the lateral ventricles and the subgranular zone of
the hippocampal dentate gyrus [79]. Preclinical studies have
shown that hippocampal neurogenesis is altered in chronic
stress which is considered as an animal model of clinical
depression [80]. In addition,most studies point to hippocam-
pal neurogenesis as the target for antidepressant treatments
[80–83]. As listed in this review, deficient neurogenesis
may be caused by distinct primary alterations of a complex
signaling network which includes, at least, the following
players: dysfunction of the hypothalamic-pituitary-adrenal
axis; deficient production of neurotrophins; abnormalities in
the expression ofMiRNAs; dysregulation of proinflammatory
cytokines; and, even, the abnormal delivery of gastrointesti-
nal signaling peptides. Any of these alterations appear to
promote a similar phenotype characterized by major mood
alteration. In addition, all of those factors are functionally
interconnected in such a fashion that initial alteration in
one of them results in abnormalities in the others. However,
whether the reduced neurogenesis is the cause of MDD or
whether neurogenesis is only necessary to ameliorate the
disease needs to be clarified. Postmortem studies in humans
have found no change in cell proliferation between major
depression patients and control samples [84]. Furthermore,
no depressive-like behavior was induced by experimental
inhibition of cell proliferation in the hippocampus of animal
models [85]. And, most striking, increased neurogenesis has
been implicated in the induction of anxious behavior in mice
questioning the simplistic view that more newborn neurons
are always better formental health [86]. A further explanation
is that changes in adhesion molecules, like neural cell adhe-
sionmolecule (NCAN) associatedwith neurogenesis and also
with synaptic plasticity, may play a central role in MOD [11].

Regardless of whether the role of hippocampal neuroge-
nesis in MDD concerns the etiology or the antidepressant
treatment, it is likely that future treatments of MDD will be
designed to target neurogenesis and neural plasticity as a
central factor in the pathogenesis of this disorder. Potential
candidates for this purpose are different families of secreted
factors with positive influence in neurogenesis. Remarkably,
FGFs, which are a family of growth factors involved in
the control of proliferation and neuroplasticity, have been
recently implicated in the pathophysiology ofMDD[87]. Sev-
eral ligands of the FGF family, such as FGF-2, are expressed
in the adult brain and become downregulated in individuals
suffering from MDD [88]. In addition, exogenous FGF-2
has antidepressant effect on animal models of depressed
behavior [89]. Vascular endothelial growth factor (VEGF) is
an angiogenic growth factor which promotes hippocampal
neurogenesis [90] implicated also in the pathophysiology of
MDD [91]. SB100B is a protein associated withMDDwhich is
expressed and secreted by glial cells and other nonneural cell

lineages implicated in synaptogenesis and neuronal survival
[92]. A number of recent studies have observed that SB100B is
increased in the hippocampus, serum, and cerebrospinal fluid
ofMDDpatients,most likely reflecting a response of glial cells
to neural damage (see [93] and references therein) and also
that the basal levels of serum may predict the outcome of the
therapeutic response to antidepressants [94].
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