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SUMMARY
Computer-aided detection (CADe) and diagnosis (CAD) has been a rapidly growing, active area
of research in medical imaging. Machine leaning (ML) plays an essential role in CAD, because
objects such as lesions and organs may not be represented accurately by a simple equation; thus,
medical pattern recognition essentially require “learning from examples.” One of the most popular
uses of ML is the classification of objects such as lesion candidates into certain classes (e.g.,
abnormal or normal, and lesions or non-lesions) based on input features (e.g., contrast and area)
obtained from segmented lesion candidates. The task of ML is to determine “optimal” boundaries
for separating classes in the multidimensional feature space which is formed by the input features.
ML algorithms for classification include linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), multilayer perceptrons, and support vector machines (SVM).
Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which
uses pixel/voxel values in images directly, instead of features calculated from segmented lesions,
as input information; thus, feature calculation or segmentation is not required. In this paper, ML
techniques used in CAD schemes for detection and diagnosis of lung nodules in thoracic CT and
for detection of polyps in CT colonography (CTC) are surveyed and reviewed.
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1. Introduction
CAD [1, 2] has been a rapidly growing, active area of research in medical imaging. CAD is
defined as detection and/or diagnosis made by a radiologist/physician who takes into
account the computer output as a “second opinion” [2]. Evidence suggests that CAD can
help improve the diagnostic performance of radiologists/physicians in their image
interpretations [3–6]. Consequently, many investigators have participated and developed
CAD schemes such as those for detection of lung nodules in chest radiographs (also known
as chest x-rays; CXRs) [7–10] and in thoracic CT [11–14], those for detection of
microcalcifications/masses in mammography [15], breast MRI [16], and breast US [17], and
those for detection of polyps in CTC [18–21].

A CADe scheme of lesions in medical images generally consists of two major components:
(1) identification of lesion candidates and (2) classification of the identified candidates into
lesions or non-lesions. Segmentation of the organ of interest is the first necessary step before
the identification of lesion candidates. The development of the first component, the
identification of lesion candidates, generally aims at obtaining a high sensitivity level,
because the sensitivity lost in this step cannot be recovered in the later step. The second
component, the classification of the identified candidates, is very important, because it
determines the final performance of a CAD scheme. The development of the second
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component aims at removing as many non-lesions (i.e., false-positive (FP) detections in the
first step) as possible while minimizing the removal of lesions (i.e., true-positive detections
in the first step). Minimizing FPs is very important, because a large number of FPs could
adversely affect the clinical application of CADe. A large number of FPs is likely to
confound the radiologist’s task of image interpretation and thus lower radiologist efficiency.
In addition, radiologists may lose their confidence in CADe as a useful tool. The evaluation
of the standalone performance of a developed CAD scheme is the last step of CAD
development, and the evaluation of radiologists’ performance with the use of the developed
CAD scheme is the important last step in CAD research.

ML plays a very important role in a CAD scheme, because tasks on medical images in a
CAD scheme require “learning from examples (or data).” Objects in medical images such as
lesions and organs may be too complex to be represented accurately by a simple equation.
Modeling of such complex objects often requires a number of parameters that have to be
determined by examples or data. For example, a lung nodule is generally modeled as a solid
sphere, but there are nodules of various shapes and nodules with internal inhomogeneities,
such as spiculated nodules and ground-glass nodules. A polyp in the colon is modeled as a
bulbous object, but there are also polyps which have a flat shape [22, 23]. Thus, CAD
schemes need “learning from examples or data” to determine a number of parameters in a
complex model. ML has been used in the second major step of a CAD scheme, i.e.,
classification of identified lesion candidates into certain classes (e.g., abnormal or normal,
lesions or non-lesions, and malignant or benign) based on input features (e.g., contrast, area,
and circularity) obtained from segmented lesion candidates (This class of ML is referred to
as feature-based ML, or simply as a classifier). The task of ML here is to determine
“optimal” boundaries for separating classes in the multidimensional feature space which is
formed by the input features.

ML algorithms for classification include LDA, QDA, multilayer perceptron (one of the most
popular artificial neural network (ANN) models) [24], and support vector machines [25].
Such ML algorithms have been applied to lung nodule detection in CXR [26] and thoracic
CT [12, 27], classification of lung nodules into benign or malignant in CXR [28] and
thoracic CT [29], and polyp detection in CTC [18, 30]. Recently, as available computational
power has increased dramatically, PML emerged in medical image processing/analysis
which uses pixel/voxel values in images directly, instead of features calculated from
segmented regions, as input information; thus, feature calculation or segmentation is not
required. PML has also been used in the classification of the identified lesion candidates in
CAD schemes.

In this paper, ML techniques used in CAD schemes for detection and diagnosis of lung
nodules in CT and for detection of polyps in CTC are surveyed and reviewed. Survey papers
for CAD in thoracic CT have been published, including one for lung image analysis in CT
with emphasis on a comprehensive survey for computer analysis of the lungs [31], one for
CAD in thin-section CT [32], one for CAD in CT with emphasis on CAD performance [33],
one for CAD in CT with emphasis on performance comparisons with clinical aspects [34],
and one for CAD in both thoracic CT and CTC with emphasis on a methodological
overview of major steps in CAD schemes [35]. This present paper focuses on surveys and
comparisons of ML techniques in CADe and CADx schemes in thoracic CT and CTC.

2. Classes of Classification Techniques in CAD
There are three classes of classification techniques that have been developed and used in
CAD schemes: feature-based classifiers (or feature-based ML), PML, and non-ML-based
methods that are defined as methods that do not use ML techniques, such as a procedure that
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uses a geometrical relationship in a non-learning way. Non-ML methods are not surveyed in
this paper.

2.1 Feature-based Classifiers
When an ML algorithm is used for classification, it is generally called a classifier. A
standard classification approach based on a classifier such as a multilayer perceptron is
illustrated in Fig. 1. First, target lesions are segmented by using a segmentation method.
Next, features are extracted from the segmented lesions. Features may include morphologic
(or shape-based), gray-level-based (including histogram-based), and texture features. Then,
extracted features are entered as input to an ML model such as a multilayer perceptron [24].
The ML model is trained with sets of input features and correct class labels. A class label of
1 is assigned to the corresponding output unit when a training sample belongs to a certain
class (e.g., class A), and 0 is assigned to the other output units (e.g., classes B, C, etc.). In
the case of two-class classification, one output unit instead of two output units is often used
with the output value 0 being class A, and 1 being class B. After training, the class of the
unit with the maximum value is determined to be the corresponding class to which an
unknown sample belongs. For details of feature-based classifiers, refer to one of many
textbooks in pattern recognition such as [24, 25, 36, 37].

There are several important issues to be considered in the design of ML techniques:
generalization, over-fitting, curse of dimensionality, training data annotation, and feature
selection.

Generalization in ML is the ability of a trained ML model to perform on unseen cases. The
generalization performance of the ML model is estimated by using cases in a test database,
which is often lower than the performance for training cases. How to design an ML model
with a high generalization performance is an important topic, which is closely related to the
over-fitting issue. If an ML model is trained with only a small number of cases, the
generalization ability will be lower, because the ML model may fit only the training cases.
This is known as over-training (or over-fitting”) [38]. Over-fitting occurs when the number
of training cases is too small to determine parameters in the ML model sufficiently. For
achieving a high generalization performance, a large number of training cases, e.g., 400–800
cases, is generally required for an ANN in a CADs scheme [39]. For detailed information,
please refer to the literature such as [37, 40].

How to estimate the generalization performance with a finite number of testing cases is an
important topic as well. To estimate the generalization performance better, resampling
schemes such as leave-one-out cross validation, N-fold cross validation, and bootstrapping
are often employed [40]. The curse of dimensionality [41] is referred to as the following
phenomenon: As the dimensionality of the input feature space for a ML model increases
subject to the number of input features, the number of training samples required for the ML
model increases exponentially. For detailed information, please refer to the literature such as
[40]. To avoid the curse of dimensionality, feature selection and/or dimensionality reduction
techniques are often utilized.

Annotating training cases is also an important topic, because the annotation is expensive or
time-consuming when the number of training cases is large. There are methods for reducing
the annotation labor or annotation itself in the general ML field, but the quality of annotation
(or determining “gold standard”) is more important in the CAD research area. In order for
the study to be clinically meaningful, “gold standard” annotations (or labels) have to be
determined by using more reliable/accurate examinations, e.g., the “gold standard” for lung
nodule presence in screening CT should be established by using their confirmation in upper-
level follow-up examinations such as diagnostic CT or high-resolution CT (HRCT).
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Feature selection has long been an active research topic in ML, because it is one of the main
factors that determine the performance of a classifier. It avoids the curse of dimensionality
by reducing the input dimension to the classifier. In general, many features are extracted
from segmented lesions as the classifier input. Not all of the features, however, would be
useful for a classifier to distinguish between lesions and non-lesions, because some of them
might be highly correlated with each other or redundant; some of them may not be strongly
associated with the given classification task. For designing a classifier with high
performance, it is crucial to select “effective” features. In the field of CADe research, one of
the most popular feature selection methods is a stepwise feature selection based on Wilks’
lambda. The method has been applied in various CADe schemes because of its simplicity
[12, 29, 42]. The Wilks’ lambda criterion is good for LDA, but not necessarily for nonlinear
classifiers. One of the most widely used deterministic feature selection methods is sequential
forward or backward floating selection (SFFS or SBFS) [43]. SBFS was used for selection
of input features for ANNs [44, 45]. SFFS was used for feature selection combined with
various classifiers such as Naïve Bayes, SVMs, and AdaBoost [46] in different CADe
schemes. Recently, Xu and Suzuki proposed SFFS coupled with an SVM for selection of the
most relevant features that maximize the area under the receiver-operating-characteristic
(ROC) curve (AUC) [47].

2.2. Pixel/voxel-Based Machine Learning (PML)
Recently, as available computational power has increased dramatically, pixel/voxel-based
ML (PML) [35] emerged in medical image processing/analysis, which uses pixel/voxel
values in images directly instead of features calculated from segmented regions as input
information; thus, feature calculation or segmentation is not required. Because PML can
avoid errors caused by inaccurate feature calculation and segmentation, the performance of
PML can potentially be better for subtle/complex lesions than that of common feature-based
classifiers.

There are three classes of PMLs: neural filters [48–50] (including neural edge enhancers
[51, 52]), convolution neural networks (NNs) [53–57] (including shift-invariant NNs [58,
59]), and massive-training artificial neural networks (MTANNs) [19, 60–63] (including
multiple MTANNs [12, 49, 50, 60, 64, 65], a mixture of expert MTANNs [20, 66], a multi-
resolution MTANN [61], a Laplacian eigenfunction MTANN (LAP-MTANN) [67], a
massive-training support vector regression (MTSVR), and a massive-training Gaussian
process regression [68]). For details of the architectures and applications of PMLs in
medical imaging, refer to a survey paper on PMLs [35].

By extending the neural filter and the neural edge enhancer, two-dimensional (2D)
MTANNs [11], which are a class of a PML based on an ANN regression model, have been
developed for accommodating the task of distinguishing a specific opacity from other
opacities in medical images. The MTANN learns the relationship between input images and
corresponding “teaching” images (i.e., ideal or desired images) to distinguish lesions from
non-lesions (i.e., FPs). The MTANN is trained with a massive number of subregions/
subvolumes extracted from input images together with teaching pixels; hence the term
“massive training”. The architecture of an MTANN is shown in Fig. 2. A 2D MTANN
consists of a linear-output multilayer ANN regression model, which is capable of operating
on voxel data directly [52],[51]. The MTANN is trained with input images/volumes and the
corresponding “teaching” images/volumes for enhancement of a specific pattern and
suppression of other patterns. The input to the MTANN consists of voxel values in a sub-
region/volume (local window or patch) extracted from an input image/volume. The class of
MTANNs has been used for classification, such as FP reduction in CAD schemes for
detection of lung nodules in CXR [7] and CT [5, 11, 12], distinction between benign and
malignant lung nodules in CT [65], and FP reduction in a CAD scheme for polyp detection
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in CTC [19, 20, 66–68]. The MTANNs have also been applied to pattern enhancement and
suppression such as separation of bones from soft tissue in CXR [61, 62], and enhancement
of lung nodules in CT [63].

3. Classification in CAD of the Thorax
Lung cancer continues to rank as the leading cause of cancer deaths in America and other
nations such as Japan. The number of lung cancer deaths in each year is greater than the
combined number of breast, colon, and prostate cancer deaths in the United States [69].
Because CT is more sensitive than CXR in the detection of small nodules and of lung
carcinoma at an early stage [70–72], lung cancer screening programs are being investigated
in the United States [73], Japan [70, 71], and other countries with low-dose (LD) helical CT
as the screening modality. Evidence suggests that early detection of lung cancer may allow
more timely therapeutic intervention and thus a more favorable prognosis for the patient [71,
74]. Helical CT, however, generates a large number of images that must be read by
radiologists/physicians. This may lead to “information overload” for the radiologists/
physicians. Furthermore, radiologists/physicians may miss some cancers during
interpretation of CT images. Therefore, a CAD scheme for detection of lung nodules in
LDCT images has been investigated as a useful tool for lung cancer screening.

Classification is a major component in CAD schemes for detection and diagnosis of lung
nodules in CT. CAD schemes for detection of lung nodules in thoracic CT (i.e., CADe)
generally consists of two major steps: (1) identification of nodule candidates, followed by
(2) classification of the identified nodule candidates into nodules or non-nodules (i.e.,
normal anatomic structures). The second major step in a CADe scheme aims at classification
of the nodule candidates identified in the first step into nodules or non-nodules, whereas a
CAD scheme for diagnosis (often abbreviated as CADx) aims at classification of the
detected nodules (either by a computer or by a radiologist) into benign or malignant nodules.

3.1. Detection of lung nodules
Technical developments of the classification step in CADe schemes for detection of lung
nodules in CT are summarized in Table 1. In 1994, Giger et al. [75] developed a CADe
scheme for detection of lung nodules in CT. In 1999, Armato et al. [13, 27] extended the
method to include 3D feature analysis, a rule-based scheme, and LDA for classification.
They evaluated the performance of their scheme with a leave-one-out cross-validation
(LOO) test. Kanazawa et al. [76] employed a rule-based scheme with features for
classification in their CADe scheme. Gurcan et al. [77] employed a rule-based scheme based
on 2D and 3D features, followed by LDA for classification. Lee et al. [78] employed a
simpler approach which is a rule-based scheme based on 13 features for classification.
Suzuki et al. [60] developed a PML technique called an MTANN for reduction of a single
source of FPs and a multiple MTANN scheme for reduction of multiple sources of FPs that
had not been removed by LDA. This MTANN approach did not require a large number of
training cases: the MTANN was able to be trained with 10 positive and 10 negative cases
[79–81], whereas feature-based classifiers generally require 400–800 training cases [79–81].
Arimura et al. [12] employed a rule-based scheme followed by LDA or by the MTANN [60]
for classification. Farag et al. [82] developed a template-modeling approach that uses level
sets for classification. Ge et al. [83] incorporated 3D gradient field descriptors and ellipsoid
features in LDA for classification. Matsumoto et al. [84] employed LDA with 8 features for
classification. Yuan et al. [85] tested a commercially available CADe system (ImageChecker
CT, R2 Technology, CA). Bi et al. [86] developed an asymmetric cascade of classifiers for
classification. Pu et al. [87] developed a scoring method based on the similarity distance of
medial axis-like shapes for classification. Retico et al. [88] used the MTANN approach (i.e.,
a PML technique) for classification. Ye et al. [89] used a rule-based scheme followed by a
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weighted SVM for classification. Golosio et al. [90] used a fixed-topology ANN for
classification, and they evaluated their CADe scheme with a publicly available database
from the Lung Image Database Consortium (LIDC) [91]. Murphy et al. [92] used a k-
nearest-neighbor classifier for classification. Tan et al. [93] developed a feature-selective
classifier based on a genetic algorithm and ANNs for classification. Messay et al. [94]
developed a sequential forward selection process for selecting the optimum features for
LDA and QDA. Riccard et al. [95] used a heuristic approach based on geometric features,
followed by an SVM for classification. Other than the development of CADe schemes, Rao
et al. [96] performed an observer performance study with a CADe scheme. Thus, various
approaches have been proposed for the classification component in CADe schemes. There
are large variations in the performance of CADe schemes: sensitivities ranged from 70–94%
with 0.7–64.1 FPs per case. It is difficult to say which CADe scheme performs better
because of different databases and testing methods used, without a direct comparison. Some
studies used thick-slice CT, and others used thin-slice CT. Some studies used nodules
missed by radiologists, and some used nodules detected by radiologists. Evaluation of a
CAD scheme with missed cases would be desirable, because the CAD scheme is likely to
help radiologists more with such cases. Some studies used screening CT, some used
diagnostic CT, and some used HRCT. Testing with screening CT cases would be more
appropriate, given the purpose of CADe schemes. Some studies used an LOO test, some
used an independent test, and some used N-fold cross-validation. Each testing method has its
own advantages and limitations. For detailed information, please refer to the literature [39,
40, 97]. Since the current sensitivity and FP rate of CADe schemes are not high enough
compared to radiologists’ performance, further developments of techniques to improve the
performance would be necessary. In addition, more studies on the proof of the usefulness of
CADe such as observer performance studies and clinical trials would be beneficial in the
field.

3.2 Diagnosis of lung nodules
Although CT has been shown to be sensitive to the detection lung nodules, it may be
difficult for radiologists to distinguish between benign and malignant nodules on LDCT
images. In a screening program with LDCT in New York, 88% (206/233) of suspicious
lesions were found to be benign on follow-up examinations [72]. In a screening program in
Japan, only 83 (10%) among 819 scans with suspicious lesions were diagnosed to be cancer
cases [98]. According to recent findings at the Mayo Clinic, 2,792 (98.6%) of 2,832 nodules
detected by a multidetetor CT were benign, and 40 (1.4%) nodules were malignant [99].
Thus, a large number of benign nodules were found with CT; follow-up examinations such
as HRCT and/or biopsy were performed on these patients. Therefore, CADx schemes for
distinction between benign and malignant nodules in LDCT would be useful for reducing
the number of “unnecessary” follow-up examinations.

A number of researchers developed CADx schemes for this task, which distinguish
malignant nodules from benign nodules automatically and/or determine the likelihood of
malignancy for the detected nodules. The performance of the schemes was generally
evaluated by means of ROC analysis [100], because this task is a two-class classification.
The AUC [101] was often used as a performance index. Studies on the development of
CADx schemes for distinction between malignant and benign lung nodules in CT are
summarized in Table 2. In 1998, Kawata et al. [102] described the calculation of nodule
features for the purpose of distinction between malignant and benign nodules. In 1999,
McNitt-Gray et al. [103] developed a classification scheme based on LDA for distinction
between malignant and benign nodules in HRCT. They achieved a correct classification rate
of 90.3% for a database of 17 malignant and 14 benign nodules. Matsuki et al. [104] used an
ANN with subjective features determined by radiologists for classification between 99

SUZUKI Page 6

IEICE Trans Inf Syst. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



malignant and 56 benign nodules in HRCT and achieved an AUC value of 0.951. Aoyama et
al. [42] used LDA for distinction between malignant and benign nodules in thick-slice
screening LDCT. They achieved an AUC value of 0.846 for a database of 73 patients with
76 primary cancers and 342 patients with 413 benign nodules. Mori et al. [105] developed a
classification scheme for distinction between malignant and benign nodules in contrast-
enhanced (CE) CT by using LDA with 3 features (i.e., attenuation, shape index, and
curvedness value). Shah et al. [106] employed different classifiers such as logistic regression
and QDA with features selected from a group of 31 by using stepwise feature selection
based on the Akaike information criterion. Their scheme with logistic regression achieved
an AUC value of 0.92 in the distinction between 19 malignant and 16 benign nodules in
thin-slice CE-CT. Suzuki et al. [65] developed a PML technique called a multiple MTANN
scheme for the classification task. They achieved an AUC value of 0.88 for thick-slice
screening LDCT scans of 73 patients with 76 primary cancers and 342 patients with 413
benign nodules. Iwano et al. [107] achieved a sensitivity of 76.9% and a specificity of 80%
with their scheme based on LDA with 2 features in their evaluation of HRCT images of 52
malignant and 55 benign nodules. Way et al. [108] incorporated nodule surface features into
their classification based on LDA or an SVM, and they achieved an AUC value of 0.857 in
the classification of 124 malignant and 132 benign nodules in 152 patients. Chen et al. [109]
employed an ANN ensemble to classify 19 malignant and 13 benign nodules, and they
achieved an AUC value of 0.915. Lee et al. [110] developed a two-step supervised learning
scheme combining a genetic algorithm with a random subspace method, and they achieved
an AUC value of 0.889 in the classification between 62 malignant and 63 benign nodules.
Other than CADx approaches, Kawata et al. [111] developed a content-based image retrieval
approach to provide radiologists with similar images for improving their diagnostic
performance in distinction between benign and malignant nodules. Kawata et al. [112] also
developed quantitative classification measures that correlate with pathologic characteristics
of lung cancer and patients’ prognosis. Thus, various approaches to CADx schemes have
been proposed. The database size varied in different studies, from 31–489. Generally
achieving high performance for a large database is challenging, because it is likely to
contain more variations of nodules. CT scans in the databases included screening LDCT,
standard diagnostic CT, and HRCT. Diagnosis of lung nodules on LDCT images would be
the most challenging due to a low image quality. Most studies used an LOO test. There are
variations in the performance of CADx schemes: AUC values ranged from 0.846–0.951.
Once again, it is difficult to say which CADx scheme performs better without a direct
comparison. Since the current performance of CADx schemes would be close to or
comparable to radiologists’ performance, more studies on the proof of the usefulness of
CADx such as observer performance studies and clinical trials would be beneficial in the
field.

4. Classification in CADe of the Colon
4.1. CADe for detection of polyps in CTC

Colorectal cancer is the second leading cause of cancer deaths in the United States [114].
Evidence suggests that early detection and removal of polyps (i.e., precursors of colorectal
cancer) can reduce the incidence of colorectal cancer [115]. CTC, also known as virtual
colonoscopy, is a technique for detecting colorectal neoplasms by use of CT scans of the
colon. The diagnostic performance of CTC in detecting polyps, however, remains uncertain
due to a propensity for perceptual errors in detection of polyps. CADe of polyps has been
investigated to address that issue with CTC [116]. CADe has the potential to improve
radiologists’ diagnostic performance in the detection of polyps. A number of investigators
have developed automated or semi-automated CADe schemes for the detection of polyps in
CTC [117–120].
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4.2. Classification component in CADe schemes
Major sources of non-polyps (i.e., FPs) remaining after the first step in CADe schemes
include haustral folds, residual stool, rectal tubes, the ileocecal valve, and extra-colonic
structures such as the small bowel and stomach. Technical developments of the
classification step in CADe schemes for detection of polyps in CTC are summarized in
Table 3. Many investigators employed feature-based classifiers in the second component of
CADe schemes. Gokturk et al. [121] employed an SVM with histogram input that is used as
a shape signature for classification. Näppi et al. developed a classification method based on
volumetric features [122]. Acar et al. [123] used edge-displacement fields to model the
changes in consecutive crosssectional views of CTC data and QDA for classifcation.
Jerebko et al. [30] used a multilayer perceptron to classify polyp candidates in their CADe
scheme and improved the performance by incorporating a committee of multilayer
perceptrons [124] and a committee of SVMs [125]. Wang et al. [126] developed a
classification method based on LDA with internal features (geometric, morphologic, and
textural) of polyps. Suzuki et al. [127] developed a PML technique called a 3D MTANN by
extending the structure of a 2D MTANN [11] to process 3D volume data in CTC. They
removed FPs due to rectal tubes by using a single 3D MTANN [127] and multiple sources
of FPs by developing and using a mixture of expert 3D MTANNs [20]. Li et al. [128]
developed a classification method based on an SVM classifier with wavelet-based features.
Wang et al. [129] improved the SVM performance by using nonlinear dimensionality
reduction (i.e., a diffusion map and locally linear embedding). Yao at al. [130] employed a
topographic height map for calculating features for an SVM classifier.. Suzuki et al. [66]
tested a CADe scheme with MTANNs (i.e., a PML technique) on polyps that had been
“missed” by radiologists [131] in a multicenter clinical trial [132]. Suzuki et al. [67] also
improved the efficiency of the MTANN approach by incorporating principal-component
analysis-based and Laplacian eigenmap-based dimension reduction techniques. Xu and
Suzuki [68] showed that other nonlinear regression models such as support vector and
nonlinear Gaussian process regression models instead of the ANN regression model could
be used as the core model in the MTANN framework. Zhou et al. [133] developed
projection features for an SVM classifier. Wang et al. [134] improved the performance of a
CAD scheme by adding statistical curvature features in multiple-kernel learning. Multiple
kernel learning is a recent topic in SVM research.

5. Summary
In this paper, ML techniques used in CAD schemes for the thorax and colon have been
surveyed. These CAD schemes included CADe and CADx of lung nodules in thoracic CT
and CADe of polyps in CTC. The second of the two major components of most CAD
schemes, i.e., the classification of lesion candidates, used ML techniques. There are three
classes of classification techniques used in CAD schemes: feature-based ML, PML, and
non-ML methods. Feature-based ML is the most popular technique in the classification step.
Various ML models have been used in this class, including LDA, a multilayer perceptron, an
SVM, an ML ensemble, and multiple-kernel learning. Feature selection is an important step
for maximizing the performance of a feature-based ML technique, and thus it was often
used. The most popular feature selection method in CAD is stepwise feature selection with
Wilks’ lambda for linear classifiers such as LDA. Recently, feature selection for nonlinear
classifiers has been studied. The most recent development is SFFS under the maximum
AUC criterion coupled with an SVM. Recently, PML emerged and used for removal of FPs
that had not been removed by feature-based ML. An MTANN is a representative PML
model, and there are variations of the MTANNs, including a mixture of expert MTANNs,
MTSVR, and Lap-MTANNs. Thus, many investigators have been studying ML in CAD,
which indicates the importance of ML in this field. Most CAD schemes employ feature-
based MLs that had originally been developed and established in the pattern recognition
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field. On the other hand, MTANNs were born in the medical imaging field. Evidence
demonstrated that PML including MTANNs was effective for improving the performance of
CAD schemes. It is hoped that this survey will be useful for researchers in understanding the
past studies and the current status of ML in CAD, and in advancing the research area of ML
in CAD. It is also hoped to see more original ML techniques/models created in the CAD
field.
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Fig. 1.
Feature-based ML (feature-based classifier) for classification of a detected and segmented
lesion.
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Fig. 2.
Architecture of an MTANN (a class of PML) consisting of an ML regression model (e.g.,
linear-output ANN regression and support-vector regression) with sub-region (local window
or patch) input and single-pixel output.
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Table 1

Classifications component in CADe schemes for detection of lung nodules in CT.

Study Database Classifier/Method Performance

Giger et al. [75] Thick-slice diagnostic CT scans of 8
patients with 47 nodules

Comparison of geometric features Sensitivity of 94% with 1.25 FPs per
case

Armato et al. [13,
27]

Thick-slice (10 mm) diagnostic CT
scans of 43 patients with 171 nodules

Rule-based scheme and LDA with 9
2D and 3D features

Sensitivity of 70% with 42.2 FPs per
case in an LOO test

Kanaza wa et al.
[76]

Thick-slice (10 mm) screening CT
scans of 450 patients with 230 nodules

Rule-based scheme Sensitivity of 90%

Gurcan et al. [77] Thick-slice (2.5–5 mm) diagnostic CT
scans of 34 patients with 63 nodules

Rule-based scheme and LDA with 6
2D and 3D features

Sensitivity of 84% with 74.4 FPs per
case in an LOO test

Lee et al. [78] Thick-slice (10 mm) diagnostic CT
scans of 20 patients with 98 nodules

Rule-based scheme and LDA with 13
features

Sensitivity of 72% with 30.6 FPs per
case

Suzuki et al. [60] Thick-slice (10 mm) screening LDCT
scans of 63 patients with 71 nodules
with solid, part-solid and non-solid
patterns, including 66 cancers

Multiple MTANNs with pixel values
in a 9×9 subregion (local window or
patch) as input

Sensitivity of 80.3% with 4.8 FPs per
case in a validation test

Arimura et al. [12] 106 thick-slice (10 mm) screening
LDCT scans of 73 patients with 109
cancers with solid, part-solid and non-
solid patterns

Rule-based scheme followed by
multiple MTANNs with pixel values
in a 9×9 subregion as input (or LDA
with Wilks’ lambda stepwise feature
selection)

Sensitivity of 83% with 5.8 FPs per
case in a validation test (or an LOO
test for LDA)

Farag et al. [82] Thin-slice (2.5 mm) screening LDCT
scans of 16 patients with 119 nodules
and 34 normal patients

Template modeling approach using
level sets

Sensitivity of 93.3% with an FP rate
of 3.4%

Ge et al. [83] 82 thin-slice (1.0–2.5 mm) CT scans of
56 patients with 116 solid nodules

LDA with Wilks’ lambda stepwise
feature selection from 44 features

Sensitivity of 80% with 14.7 FPs per
case in an LOO test

Matsumoto et al.
[84]

Thick-slice (5 or 7 mm) diagnostic CT
scans of 5 patients (4 of which used
contrast media) with 50 nodules

LDA with 8 features Sensitivity of 90% with 64.1 FPs per
case in an LOO test

Yuan et al. [85] Thin-slice (1.25 mm) CT scans of 150
patients with 628 nodules

ImageChecker CT LN-1000 by R2
Technology

Sensitivity of 73% with 3.2 FPs per
case in an independent test

Bi et al. [86] HRCT scans of 86 patients with 48
nodules

Asymmetric cascade of classifiers
with column generation boosting
feature selection

Sensitivity of 88% with 0.7 FPs per
case in a validation test

Pu et al. [87] Thin-slice (2.5 mm) screening CT
scans of 52 patients with 184 nodules
including 16 non-solid nodules

Scoring method based on the
similarity distance combined with a
marching cube algorithm

Sensitivity of 81.5% with 6.5 FPs per
case

Retico et al. [88] Thin-slice (1 mm) screening CT scans
of 39 patients with 102 nodules

Voxel-based neural approach
(MTANN) with pixel values in a
subvolume as input

Sensitivities of 80–85% with 10–13
FPs per case

Ye et al. [89] Thin-slice (1 mm) screening CT scans
of 54 patients with 118 nodules
including 17 non-solid nodules

Rule-based scheme followed by a
weighted SVM with 15 features

Sensitivity of 90.2% with 8.2 FPs per
case in an independent test

Golosio et al. [90] Thin-slice (1.5–3.0 mm) CT scans of
83 patients with 148 nodules that one
radiologist detected from LIDC
database

Fixed-topology ANN with 42
features from multithreshold ROI

Sensitivity of 79% with 4 FPs per case
in an independent test

Murphy et al. [92] Thin-slice screening CT scans of 813
patients with 1,525 nodules

k-nearest-neighbor classifier with
features selected from 135 features

Sensitivity of 80 with 4.2 FPs per case
in an independent test

Tan et al. [93] Thin-slice CT scans of 125 patients
with 80 nodules that 4 radiologists
agreed from LIDC database

Feature-selective classifier based on
a genetic algorithm and ANNs with
45 initial features

Sensitivity of 87.5% with 4 FPs per
case in an independent test

Messay et al. [94] Thin-slice CT scans of 84 patients with
143 nodules from LIDC database

LDA and QDA with feature selection
from 245 features

Sensitivity of 83% with 3 FPs per case
in a 7-fold cross-validation test
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Study Database Classifier/Method Performance

Riccardi et al. [95] Thin-slice CT scans of 154 patients
with 117 nodules that 4 radiologists
agreed on from LIDC database

Heuristic approach and SVM with
maximum-intensity projection data
from a volume of interest

Sensitivity of 71% with 6.5 FPs per
case in a 2-fold cross-validation test
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Table 2

Classification between malignant and benign nodules (CADx) for thoracic CT.

Study Database Classifier/Method Performance

McNitt-Gray et al.
[103]

HRCT scans of 17 malignant and 14
benign nodules

LDA with stepwise feature selection Correct classification rate of
90.3%

Matsuki et al.
[104]

HRCT scans of 99 malignant and 56
benign nodules

ANN with 16 radiologists’ subjective
features and 7 clinical data

AUC value of 0.951 in an LOO
test

Aoyama et al.
[113]

Thick-slice (10 mm) screening LDCT
scans of 76 malignant and 413 benign
nodules

LDA with Wilks’ lambda stepwise
feature selection

AUC of 0.846 in an LOO test

Mori et al. [105] Thin-slice (2 mm) CE-CT scans of 35
malignant and 27 benign nodules

LDA with 3 features AUC of 0.91 and 1.0 with non-CE
CT and CE-CT, respectively, in an
LOO test

Shah et al. [106] Thin-slice (≤ 3 mm) CE-CT scans of 19
malignant and 16 benign nodules

Logistic regression or QDA with
stepwise feature selection from 31
features

AUC of 0.92 with QDA in an
LOO test

Suzuki et al. [65] Thick-slice (10 mm) screening LDCT
scans of 76 malignant and 413 benign
nodules

Multiple MTANNs with pixel values
in a 9×9 subregion as input

AUC of 0.88 in an LOO test

Iwano et al. [107] HRCT (0.5–1 mm slice) scans of 52
malignant and 55 benign nodules

LDA with 2 features Sensitivity of 76.9% and a
specificity of 80%

Way et al. [108] CT scans of 124 malignant and 132
benign nodules in 152 patients

LDA or SVM with stepwise feature
selection

AUC of 0.857 in an LOO test

Chen et al. [109] CT (slice thickness of 2.5 or 5 mm) scans
of 19 malignant and 13 benign nodules

ANN ensemble with selected features AUC of 0.915 in an LOO test

Lee et al. [110] Thick-slice (5 mm) CT scans of 62
malignant and 63 benign nodules

GA-based feature selection and a
random subspace method

AUC value of 0.889 in an LOO
test
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Table 3

Classification components in CADe schemes for detection of polyps in CT colonography

Study Database Classifier/Met hod Performance

Gokturk et al.
[121]

CTC data (2.5–3.0 mm collimation) of 48
patients in either supine or prone,
containing 40 polyps (2–15 mm)

SVM with high-dimensional
histograms used as shape signature

Sensitivity of 100% (95%) with a
specificity of 0.69 (0.74) [14.3 FPs/
patient (12.0 FPs/patient)]

Näppi et al.
[122].

CTC data (5 mm collimation) of 40 patients
in both supine and prone, including 12
polyps in 11 patients

LDA or QDA with 54 volumetric
features (9 statistics of 6 features)

By-patient (by-polyp) sensitivity of
100% (95%) with 2.4 FPs/patient

Acar et al.
[123]

CTC data (2.5–3.0 mm collimation) of 48
patients in either supine or prone,
containing 40 polyps (2–15 mm)

QDA with edge-displacement
fields

Sensitivity of 100% (95%) with a
specificity of 0.47 (0.56)

Jerebko et al.
[30]

CTC data (5 mm collimation) of 40 patients
in both supine and prone, including 29
polyps (3–25 mm) in 20 patients

A multilayer perceptron with 4
features selected from 17 features

Sensitivity of 90% with a specificity of
95% with 32 FPs/patient

Jerebko et al.
[124]

CTC data (5 mm collimation) of 40 patients
in both supine and prone, including 21
polyps (5–25 mm)

A committee of multilayer
perceptrons with 12 features

Sensitivity of 82.9% with a specificity
of 95.3% with 5.4 FPs/patient

Jerebko et al.
[125]

CTC data (5 mm collimation) of 40 patients
in both supine and prone, including 21
polyps (5–25 mm)

A committee of SVMs with 9
selected features

Sensitivity of 86.7% for larger polyps
(≥10mm) and 75% for other polyps
with 3 FPs/patient in a independent test

Wang et al.
[126]

CTC data (5 mm collimation) of 153
patients in both supine and prone, including
61 polyps (4–30 mm) in 45 patients

LDA with internal features of
polyps

Sensitivity of 100% and 100% for
larger polyps (≥10mm) and other
polyps with 4 and 6.9 FPs/patient,
respectively

Suzuki et al.
[127]

CTC data (1.25–5 mm collimation) of 73
patients in both supine and prone, including
28 polyps (5–25 mm) in 15 patients

Bayesian ANN and a single 3D
MTANN with voxel values in a
7×7×7 subvolume as input

By-polyp (by-patient) sensitivity of
96.4% (100%) with 2.1 FPs/patient in
an LOO test of the classification part

Suzuki et al.
[20]

CTC data (1.25–5 mm collimation) of 73
patients in both supine and prone, including
28 polyps (5–25 mm) in 15 patients

Bayesian ANN and a mixture of
expert 3D MTANNs with voxel
values in a 7×7×7 subvolume as
input

By-polyp (by-patient) sensitivity of
96.4% (100%) with 1.1 FPs/patient in
an LOO test of the classification part

Li et al. [128] CTC data of 44 patients containing 45
polyps (6–9 mm)

SVM classifier with wavelet-based
features

Sensitivity of 71% with 5.4 FPs/patient
in a 4-fold cross-validation test of the
classification part

Wang et al.
[129]

CTC data (1.25–2.5 mm collimation) of 791
patients in both supine and prone, including
123 polyps (6–9 mm) and 25 polyps
(≥10mm)

SVM with nonlinear
dimensionality reduction (i.e.,
diffusion map and locally linear
embedding)

Sensitivity of 83% for polyps (6–9 mm)
with 9 FPs/patient

Yao at al.
[130]

CTC data (1.25–2.5 mm collimation) of 792
patients in both supine and prone, including
226 polyps (> 6 mm)

SVM classifier with features from
a topographic height map

Sensitivity of 93% and 76% for larger
polyps (≥10 mm) and other polyps with
1.2 and 3.1 FPs/patient, respectively, in
a 10-fold cross-validation test of the
classification part

Suzuki et al.
[66]

CTC data (1.25–5 mm collimation) of 24
patients in both supine and prone, including
23 polyps (6–25 mm) and a mass (35 mm),
that had been “missed” by radiologists in a
multicenter clinical trial [132]

Bayesian ANN and a mixture of
expert 3D MTANNs with voxel
values in a 7×7×7 subvolume as
input

By-polyp (by-patient) sensitivity of
96.4% (100%) with 1.1 FPs/patient in
an LOO test of the classification part

Zhou et al.
[133]

CTC data (1.25–5.0 mm collimation) of 325
patients in supine and/or prone, including
347 polyps and masses (5–60 mm)

SVM classifier with projection
features

By-polyp sensitivity of 93.1% and
80.6% for larger polyps (≥10mm) and
other polyps with 1.9 and 5.2 FPs/
patient, respectively

Wang et al.
[134]

CTC data (1.25–2.5 mm collimation) of 66
patients in supine and/or prone, including
96 polyps

Multiple-kernel learning with
statistical curvature and 18
geometric features

Sensitivity of 83% with 5 FPs/patient in
an LOO test of the classification part
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