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Abstract
Grouping structures arise naturally in many statistical modeling problems. Several methods have
been proposed for variable selection that respect grouping structure in variables. Examples include
the group LASSO and several concave group selection methods. In this article, we give a selective
review of group selection concerning methodological developments, theoretical properties and
computational algorithms. We pay particular attention to group selection methods involving
concave penalties. We address both group selection and bi-level selection methods. We describe
several applications of these methods in nonparametric additive models, semiparametric
regression, seemingly unrelated regressions, genomic data analysis and genome wide association
studies. We also highlight some issues that require further study.
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1. INTRODUCTION
Consider a linear regression model with p predictors. Suppose the predictors can be
naturally divided into J nonoverlapping groups, and the model is written as

(1.1)

where y is an n×1 vector of response variables, Xj is the n × dj design matrix of the dj
predictors in the jth group, βj = (βj1, …, βjdj)′ ∈ ℝdj is the dj × 1 vector of regression
coefficients of the jth group and ε is the error vector. Without loss of generality, we take
both the predictors and response to be centered around the mean. It is desirable to treat each
group of variables as a unit and take advantage of the grouping structure present in these
models when estimating regression coefficients and selecting important variables.
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Many authors have considered the problem of group selection in various statistical modeling
problems. Bakin (1999) proposed the group LASSO and a computational algorithm. This
method and related group selection methods and algorithms were further developed by Yuan
and Lin (2006). The group LASSO uses an ℓ2 norm of the coefficients associated with a
group of variables in the penalty function and is a natural extension of the LASSO
(Tibshirani, 1996). Antoniadis and Fan (2001) studied a class of block-wise shrinkage
approaches for regularized wavelet estimation in nonparametric regression problems. They
discussed several ways to shrink wavelet coefficients in their natural blocks, which include
the blockwise hard- and soft-threshold rules. Meier, van de Geer and Bühlmann (2008)
studied the group LASSO for logistic regression. Zhao, Rocha and Yu (2009) proposed a
quite general composite absolute penalty for group selection, which includes the group
LASSO as a special case. Huang, Ma, Xie and Zhang (2009) considered the problem of
simultaneous group and individual variable selection, or bi-level selection, and proposed a
group bridge method. Breheny and Huang (2009) proposed a general framework for bi-level
selection in generalized linear models and derived a local coordinate descent algorithm.

Grouping structures can arise for many reasons, and give rise to quite different modeling
goals. Common examples include the representation of multilevel categorical covariates in a
regression model by a group of indicator variables, and the representation of the effect of a
continuous variable by a set of basis functions. Grouping can also be introduced into a
model in the hopes of taking advantage of prior knowledge that is scientifically meaningful.
For example, in gene expression analysis, genes belonging to the same biological pathway
can be considered a group. In genetic association studies, genetic markers from the same
gene can be considered a group. It is desirable to take into account the grouping structure in
the analysis of such data.

Depending on the situation, the individual variables in the groups may or may not be
meaningful scientifically. If they are not, we are typically not interested in selecting
individual variables; our interest is entirely in group selection. However, if individual
variables are meaningful, then we are usually interested in selecting important variables as
well as important groups; we refer to this as bi-level selection. For example, if we represent
a continuous factor by a set of basis functions, the individual variables are an artificial
construct, and selecting the important members of the group is typically not of interest. In
the gene expression and genetic marker examples, however, selection of individual genes/
markers is just as important as selecting important groups. In other examples, such as a
group of indicator functions for a categorical variable, whether we are interested in selecting
individual members depends on the context of the study.

We address both group selection and bi-level selection in this review. The distinction
between these two goals is crucial for several reasons. Not only are different statistical
methods used for each type of problem, but as we will see, the predictors in a group can be
made orthonormal in settings where bi-level selection is not a concern. This has a number of
ramifications for deriving theoretical results and developing algorithms to fit these models.

We give a selective review of group selection concerning methodological developments,
theoretical properties and computational algorithms. We describe several important
applications of group selection and bi-level selection in nonparametric additive models,
semiparametric regression, seemingly unrelated regressions, genomic data analysis and
genome wide association studies. We also highlight some issues that require further study.
For the purposes of simplicity, we focus on penalized versions of least squares regression in
this review. Many authors have extended these models to other loss functions, in particular
those of generalized linear models. We attempt to point out these efforts when relevant.
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2. GROUP SELECTION METHODS
2.1 Group LASSO

For a column vector v ∈ ℝd with d ≥ 1 and a positive definite matrix R, denote ||v||2 = (v

′v)1/2 and ||v||R = (v′Rv)1/2. Let , where βj ∈ ℝdj. The group LASSO solution
β(λ) is defined as a minimizer of

(2.1)

where λ ≥ 0 is the penalty parameter and Rj’s are dj ×dj positive definite matrices. Here the

cj’s in the penalty are used to adjust for the group sizes. A reasonable choice is .
Because (2.1) is convex, any local minimizer of (2.1) is also a global minimizer and is
characterized by the Karush–Kuhn–Tucker conditions as given in Yuan and Lin (2006). It is
possible, however, for multiple solutions to exist, as (2.1) may not be strictly convex in
situations where the ordinary least squares estimator is not uniquely defined.

An important question in the definition of group LASSO is the choice of Rj. For

orthonormal Xj with , j = 1, …, J, Yuan and Lin (2006) suggested taking Rj =
Idj. However, using Rj = Idj may not be appropriate, since the scales of the predictors may
not be the same. In general, a reasonable choice of Rj is to take the Gram matrix based on

Xj, that is, , so that the penalty is proportional to ||Xjβj||2. This is equivalent to

performing standardization at the group level, which can be seen as follows. Write 

for a dj × dj upper triangular matrix Uj via Cholesky decomposition. Let  and bj
= Ujβj. Criterion (2.1) becomes

(2.2)

The solution to the original problem (2.1) can be obtained by using the transformation

. By the definition of Uj, we have . Therefore, by using this choice

of Rj, without loss of generality, we can assume that Xj satisfies , 1 ≤ j ≤ J.
Note that we do not assume Xj and Xk, j ≠ k, are orthogonal.

The above choice of Rj is easily justified in the special case where dj = 1, 1 ≤ j ≤ J. In this
case, the group LASSO simplifies to the standard LASSO and Rj = ||Xj||2/n is proportional to
the sample variance of the jth predictor. Thus, taking Rj to be the Gram matrix is the same as
standardizing the predictors before the analysis, which is often recommended when applying
LASSO for variable selection.

Several authors have studied the theoretical properties of the group LASSO, building on the
ideas and approaches for studying the behavior of the LASSO, on which there is an
extensive literature; see Bühlmann and van de Geer (2011) and the references therein. Bach
(2008) showed that the group LASSO is group selection consistent in a random design
model for fixed p under a variant of the irrepresentable condition (Meinshausen and
Bühlmann, 2006; Zhao and Yu, 2006; Zou, 2006). Nardi and Rinaldo (2008) considered
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selection consistency of the group LASSO under an irrepresentable condition and the
bounds on the prediction and estimation errors under a restricted eigenvalue condition
(Bickel, Ritov and Tsybokov, 2009; Koltchinskii, 2009), assuming that the Gram matrices

 are proportional to the identity matrix. Wei and Huang (2010) considered the
sparsity and ℓ2 bounds on the estimation and prediction errors of the group LASSO under
the sparse Riesz condition (Zhang and Huang, 2008). They also studied the selection
property of the adaptive group LASSO using the group LASSO as the initial estimate. The
adaptive group LASSO can be formulated in a way similar to the standard adaptive LASSO
(Zou, 2006). Recently, there has been considerable progress in the studies of the LASSO
based on sharper versions of the restricted eigenvalue condition (van de Geer and
Bühlmann, 2009; Zhang, 2009; Ye and Zhang, 2010). It would be interesting to extend these
results to the group LASSO.

A natural question about the group LASSO is under what conditions it will perform better
than the standard LASSO. This question was addressed by Huang and Zhang (2010), who
introduced the concept of strong group sparsity. They showed that the group LASSO is
superior to the standard LASSO under the strong group sparsity and certain other conditions,
including a group sparse eigenvalue condition. More recently, Lounici et al. (2011)
conducted a detailed analysis of the group LASSO. They established oracle inequalities for
the prediction and ℓ2 estimation errors of group LASSO under a restricted eigenvalue
condition on the design matrix. They also showed that the rate of convergence of their upper
bounds is optimal in a minimax sense, up to a logarithmic factor, for all estimators over a
class of group sparse vectors. Furthermore, by deriving lower bounds for the prediction and
ℓ2 estimation errors of the standard LASSO they demonstrated that the group LASSO can
have smaller prediction and estimation errors than the LASSO.

While the group LASSO enjoys excellent properties in terms of prediction and ℓ2 estimation
errors, its selection consistency hinges on the assumption that the design matrix satisfies the
irrepresentable condition. This condition is, in general, difficult to satisfy, especially in p ≫
n models (Zhang, 2010a). Fan and Li (2001) pointed out that the standard LASSO over-
shrinks large coefficients due to the nature of ℓ1 penalty. As a result, the LASSO tends to
recruit unimportant variables into the model in order to compensate for its overshrinkage of
large coefficients, and consequently, it may not be able to distinguish variables with small to
moderate coefficients from unimportant ones. This can lead to relatively high false positive
selection rates. Leng, Lin and Wahba (2006) showed that the LASSO does not achieve
selection consistency if the penalty parameter is selected by minimizing the prediction error.
The group LASSO is likely to behave similarly. In particular, the group LASSO may also
tend to select a model that is larger than the underlying model with relatively high false
positive group selection rate. Further work is needed to better understand the properties of
the group LASSO in terms of false positive and false negative selection rates.

2.2 Concave 2-Norm Group Selection
The group LASSO can be constructed by applying the ℓ1 penalty to the norms of the groups.
Specifically, for ρ(t; λ) = λ|t|, the group LASSO penalty can be written as λcj||βj||Rj = ρ(||
βj||Rj; cj λ). Other penalty functions could be used instead. Thus a more general class of
group selection methods can be based on the criterion

(2.3)
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where ρ(t;cjλ, γ) is concave in t. Here γ is an additional tuning parameter that may be used to
modify ρ. As in the definition of the group LASSO, we assume without loss of generality

that each Xj is orthonormal with  and ||βj||Rj = ||βj||2.

It is reasonable to use penalty functions that work well for individual variable selection.
Some possible choices include: (a) the bridge penalty with ρ(x; λ, γ) = λ|x|γ, 0 < γ ≤ 1 (Frank
and Friedman, 1993); (b) the SCAD penalty with

, γ > 2 (Fan and Li, 2001; Fan and Peng,
2004), where for any a ∈ ℝ, a+ denotes its positive part, that is, a+ = a1{a≥0}; (c) the

minimax concave penalty (MCP) with , γ > 1 (Zhang,
2010a). All these penalties have the oracle property for individual variables, meaning that
the corresponding penalized estimators are equal to the least squares estimator assuming the
model is known with high probability under appropriate conditions. See Huang, Horowitz
and Ma (2008) for the bridge penalty, Fan and Li (2001) and Fan and Peng (2004) for the
SCAD penalty and Zhang (2010) for the MC penalty. By applying these penalties to (2.3),
we obtain the 2-norm group bridge, 2-norm group SCAD and 2-norm group MCP,
respectively. Another interesting concave penalty is the capped-ℓ1 penalty ρ(t; λ, γ) = min(γ
λ2/2, λ|t|) with γ > 1 (Zhang, 2010b; Shen, Zhu and Pan, 2011). However, this penalty has
not been applied to the group selection problems.

For , the group MCP and capped-ℓ1 penalty satisfy the invariance property

(2.4)

Thus the rescaling of λ can also be interpreted based on the expression on the right-hand

side of (2.4). The multiplier  of ||βj||2 standardizes the group size. This ensures that
smaller groups will not be overwhelmed by larger groups. The multiplier dj for γ makes the
amount of regularization per group proportional to its size. Thus the interpretation of γ
remains the same as that in the case where group sizes are equal to one. Because the MCP is
equivalent to the ℓ1 penalty when γ = ∞, the ℓ1 penalty also satisfies (2.4). However, many
other penalties, including the SCAD and ℓq penalties with q ≠ 1, do not satisfy (2.4).

An interesting question that has not received adequate attention is how to determine the
value of γ. In linear regression models with standardized predictors, Fan and Li (2001)
suggested using γ ≈ 3.7 in the SCAD penalty, and Zhang (2010a) suggested using γ ≈ 2.7 in
the MCP. Note, however, that when γ → ∞, the group MCP converges to the group
LASSO, and when γ → 1, it converges to the group hard threshold penalty (Antoniadis,
1996)

Clearly, the choice of γ has a big impact on the estimate. See Mazumder, Friedman and
Hastie (2011) and Breheny and Huang (2011) for further discussion on the choice of γ.

To illustrate this point in the grouped variable setting, we consider a simple example with J
= 20 groups, in which only the first two groups have non-zero coefficients with
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, β2 = (0.5, 1, −0.5)′, so ||β1||2 = 2 and ||β2||2 ≈ 1.22. The sizes of the groups
with zero coefficients are 3. The top panel in Figure 1 shows the paths of the estimated
norms ||β̂1|| and ||β̂2|| for γ = 1.2, 2.5 and ∞, where γ = ∞ corresponds to the group LASSO.
The bottom panel shows the solution paths of the individual coefficients. It can be seen that
the characteristics of the solution paths are quite different for different values of γ. For the 2-
norm group MCP with γ = 1.2 or 2.5, there is a region in the paths where the estimates are
close to the true parameter values. However, for the group LASSO (γ = ∞), the estimates
are always biased toward zero except when λ = 0.

2.3 Orthogonal Groups
To have some understanding of the basic characteristics of the group LASSO and
nonconvex group selection methods, we consider the special case where the groups are

orthonormal with , j ≠ k and . In this case, the problem simplifies to

that of estimation in J single-group models of the form y = Xjθ+ ε. Let  be the
least squares estimator of θ. Without loss of generality, let cj = 1 below in this section. We

have  since . Thus the penalized least

squares criterion is . Denote

(2.5)

This expression is used in Yuan and Lin (2006) for computing the group LASSO solutions
via a group coordinate descent algorithm. It is a multivariate version of the soft-threshold
operator (Donoho and Johnstone, 1994) in which the soft-thresholding is applied to the
length of the vector, while leaving its direction unchanged. By taking ρ to be the ℓ1, MCP
and SCAD penalties, it can be verified that the group LASSO, group MCP and group SCAD
solutions in a single group model have the following expressions:

• Group LASSO:

(2.6)

• 2-norm group MCP: for γ > 1,

(2.7)

• 2-norm group SCAD: for γ > 2,

(2.8)

The group LASSO solution here is simply the multivariate soft-threshold operator. For the
2-norm group MCP solution, in the region ||z||2 > γλ, it is equal to the unbiased estimator z,
and in the remaining region, it is a scaled-up soft threshold operator. The 2-norm group
SCAD is similar to the 2-norm group MCP in that it is equal to the unbiased estimator z in
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the region ||z||2 > γλ. In the region ||z||2 ≤ γλ, the 2-norm group SCAD is also related to the
soft threshold operator, but takes a more complicated form than the 2-norm group MCP.

For the 2-norm group MCP, θ̂gMCP(·; λ, γ) → θ̂gLASSO(·; λ) as γ → ∞ and θ̂gMCP(·; λ, γ) →
H(·; λ) as γ → 1 for any given λ > 0, where H(·; λ) is the hard-threshold operator defined as

(2.9)

Therefore, for a given λ > 0, {θ̂gMCP(·; λ, γ): 1 < γ ≤ ∞} is a family of threshold operators
with the multivariate hard and soft threshold operators at the extremes γ = 1 and ∞.

For the 2-norm group SCAD, we have θ̂gSCAD(·; λ, γ) → θ̂gLASSO(·; λ) as γ → ∞ and
θ̂gSCAD(·; λ, γ) → H*(·; λ) as γ → 2, where

(2.10)

This is different from the hard threshold operator (2.9). For a given λ > 0, {θ̂gSCAD(·; λ, γ): 2
< γ ≥ ∞} is a family of threshold operators with H* and soft threshold operators at the
extremes γ = 2 and ∞. Note that the hard threshold operator is not included in the group
SCAD family.

The closed-form expressions given above illustrate some important differences of the three
group selection methods. They also provide building blocks of the group coordinate descent
algorithm for computing these solutions described below.

2.4 Computation via Group Coordinate Descent
Group coordinate descent (GCD) is an efficient approach for fitting models with grouped
penalties. The first algorithm of this kind was proposed by Yuan and Lin (2006) as a way to
compute the solutions to the group LASSO. Because the solution paths of the group LASSO
are not piecewise linear, they cannot be computed using the LARS algorithm (Efron et al.,
2004).

Coordinate descent algorithms (Fu, 1998; Friedman et al., 2007; Wu and Lange, 2008) have
become widely used in the field of penalized regression. These algorithms were originally
proposed for optimization in problems with convex penalties such as the LASSO, but have
also been used in calculating SCAD and MCP estimates (Breheny and Huang, 2011). We
discuss here the idea behind the algorithm and its extension to the grouped variable case.

Coordinate descent algorithms optimize an objective function with respect to a single
parameter at a time, iteratively cycling through the parameters until convergence is reached;
similarly, group coordinate descent algorithms optimize the target function with respect to a
single group at a time, and cycles through the groups until convergence. These algorithms
are particularly suitable for fitting group LASSO, group SCAD and group MCP models,
since all three have simple closed-form expressions for a single-group model (2.6)–(2.8).

A group coordinate descent step consists of partially optimizing the penalized least squares
criterion (2.1) or (2.3) with respect to the coefficients in group j. Define
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where β̃ denotes the most recently updated value of β. Denote ỹj = Σk≠j Xkβ̃k and

. Note that ỹj represents the fitted values excluding the contribution from
group j, and z̃j represents the corresponding partial residuals. Just as in ordinary least
squares regression, the value βj that optimizes Lj(βj; λ, γ) is equal to the value we obtain
from regressing βj on the partial residuals. In other words, the minimizer of Lj(βj; λ, γ) is
given by F (z̃j; λ, γ), where F is one of the solutions in (2.6) to (2.8), depending on the
penalty used.

Let  be the initial value, and let s denote the iteration. The GCD
algorithm consists of the following steps:

Step 1
Set s = 0. Initialize vector of residuals r = y − ỹ, where .

Step 2 For j = 1, …, J, carry out the following calculations:

a.
calculate ;

b.
update ,

c.
update .

Step 3 Update s ← s + 1.

Step 4 Repeat steps 2–3 until convergence.

The update in Step 2(c) ensures that r always holds the current values of the residuals, and is
therefore ready for Step 2(a) of the next cycle. By taking F(·; λ, γ) to be θ̂gLASSO(·; λ),
θ̂gMCP(·; λ, γ) and θ̂gSCAD(·; λ, γ) in (2.6) to (2.8), we obtain the solutions to the group
LASSO, group MCP and group SCAD, respectively. The algorithm has two attractive
features. First, each step is very fast, as it involves only relatively simple calculations.
Second, the algorithm is stable, as each step is guaranteed to decrease the objective function
(or leave it unchanged).

The above algorithm computes β̂ for a given (λ, γ) pair; to obtain pathwise solutions, we can
use the algorithm repeatedly over a grid of (λ, γ) values. For a given value of γ, we can start
at λmax = maxj{||n−1 Xjy||2/cj}, for which β̂ has the solution 0, and proceed along the grid
using the value of β̂ at the previous point in the λ-grid as the initial value for the current
point in the algorithm. An alternative approach is to use the group LASSO solution
(corresponding to γ = ∞) as the initial value as we decrease γ for each value of λ. See
Mazumder, Friedman and Hastie (2011) for a detailed description of the latter approach in
the nongrouped case.

The results of Tseng (2001) establish that the algorithm converges to a minimum. For the
group LASSO, which has a convex objective function, the algorithm therefore converges to
the global minimum. For group SCAD and group MCP, convergence to a local minimum is
possible. See also Theorem 4 of Mazumder, Friedman and Hastie (2011) for the nongrouped
case.
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The availability of the explicit expression in step 2(b) of the algorithm depends on the

choice of  in (2.1) or (2.3). If a different norm is used, then the groups are not
orthonormal, and there are no explicit solutions to the problem. Without closed-form
solutions, step 2(b) must be solved using numerical optimization. Algorithms proposed for

computing the group LASSO solutions without using  include Friedman et al.
(2007), Jacob, Obozinski and Vert (2009) and Liu and Ye (2010). For generalized linear
models, the group coordinate descent can be applied based on quadratic approximations to
the log-likelihood in the objective function (Meier, van de Geer and Bühlmann (2008)).

3. BI-LEVEL SELECTION
The methods described in Section 2 produce estimates that are sparse at the group level and
not at the level of individual variables. Within a group, there are only two possibilities for
the selection results based on these methods: either all of the variables are selected, or none
of them are. This is not always appropriate for the data.

For example, consider a genetic association study in which the predictors are indicators for
the presence of genetic variation at different markers. If a genetic variant located in a gene is
associated with the disease, then it is more likely that other variants located in the same gene
will also be associated with the disease—the predictors have a grouping structure. However,
it is not necessarily the case that all variants within that gene are associated with the disease.
In such a study, the goal is to identify important individual variants, but to increase the
power of the search by incorporating grouping information.

In this section, we discuss bi-level selection methods, which are capable of selecting
important groups as well as important individual variables within those groups. The
underlying assumption is that the model is sparse at both the group and individual variable
levels. That is, the nonzero group coefficients βj are also sparse. It should be noted, however,
that less work has been done on bi-level selection than on group LASSO, and there are still
many unanswered questions.

3.1 Concave 1-Norm Group Penalties
As one might suspect, based on analogy with LASSO and ridge regression, it is possible to
construct penalties for bi-level selection by starting with the ℓ1 norm instead of the ℓ2 norm.
This substitution is not trivial, however: a naïve application of the LASSO penalty to the ℓ1
norm of a group results in the original LASSO, which obviously has no grouping properties.

Applying a concave penalty to the ℓ1 norm of a group, however, does produce an estimator
with grouping properties, as suggested by Huang et al. (2009), who proposed the group
bridge penalty. The 1-norm group bridge applies a bridge penalty to the ℓ1 norm of a group,
resulting in the criterion

(3.1)

where λ > 0 is the regularization parameter, γ ∈ (0, 1) is the bridge index and {cj} are
constants that adjust for the dimension of group j. For models with standardized variables, a
reasonable choice is cj = |dj|γ. When dj = 1, 1 ≤ j ≤ J, (3.1) simplifies to the standard bridge
criterion. The method proposed by Zhou and Zhu (2010) can be considered a special case of
group bridge with γ = 0.5. A general composite absolute penalty based on ℓq norms was
proposed by Zhao, Rocha and Yu (2009).
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Huang et al. (2009) showed that the global group bridge solution is group selection
consistent under certain regularity conditions. Their results allow p → ∞ as n → ∞ but
require p < n. In contrast to the group LASSO, the selection consistency of group bridge
does not require an irrepresentable-type condition. However, no results are available for the
group bridge in the J ≫ n settings.

In principle, we could apply other concave penalties to the group ℓ1 norm as well, leading to
the more general penalized criterion

(3.2)

Choosing ρ to be the SCAD or MCP penalty in (3.2) would seem particularly promising, but
to our knowledge, these estimators have not been studied.

3.2 Composite Penalties
An alternative way of thinking about concave 1-norm group penalties is that they represent
the composition of two penalties: a concave group-level penalty and an individual variable-
level 1-norm penalty. It is natural, then, to also consider the composition of concave group-
level penalties with other individual variable-level penalties. This framework was proposed
in Breheny and Huang (2009), who described grouped penalties as consisting of an outer
penalty ρO applied to a sum of inner penalties ρI. The penalty applied to a group of
predictors is therefore written as

(3.3)

where βjk is the kth member of the jth group, and the partial derivative with respect to the
jkth covariate is

(3.4)

Note that the group bridge fits into this framework with an outer bridge penalty and an inner
LASSO penalty, as does the group LASSO with an outer bridge penalty and an inner ridge
penalty.

From (3.3), we can view group penalization as applying a rate of penalization to a predictor
that consists of two terms: the first carries information regarding the group; the second
carries information about the individual predictor. Whether or not a variable enters the
model is affected both by its individual signal and by the collective signal of the group that it
belongs to. Thus, a variable with a moderate individual signal may be included in a model if
it belongs to a group containing other members with strong signals, or may be excluded if
the rest of its group displays little association with the outcome.

An interesting special case of the composite penalty is using the MCP as both the outer and
inner penalties, which we refer to as the composite MCP (this penalty was referred to as
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“group MCP” in Breheny and Huang (2009); we use “composite MCP” both to better reflect
the framework and avoid confusion with the 2-norm group MCP of Section 2.2).

The composite MCP uses the criterion

(3.5)

where ρ is the MCP penalty and γO, the tuning parameter of the outer penalty, is chosen to
be djγIλ/2 in order to ensure that the group level penalty attains its maximum if and only if
each of its components are at their maximum. In other words, the derivative of the outer
penalty reaches 0 if and only if |βjk| ≥ γIλ ∀k ∈ {1, …, dj}.

Figure 2 shows the group LASSO, 2-norm group MCP, 1-norm group Bridge and composite
MCP penalties for a two-predictor group. Note that where the penalty comes to a point or
edge, there is the possibility that the solution will take on a sparse value; all penalties come
to a point at 0, encouraging group-level sparsity, but only group bridge and composite MCP
allow for bi-level selection. In addition, one can see that the MCP penalties are capped,
while the group LASSO and group bridge penalties are not. Furthermore, note that the
individual variable-level penalty for the composite MCP is capped at a level below that of
the group; this limits the extent to which one variable can dominate the penalty of the entire
group. The 2-norm group MCP does not have this property. This illustrates the two
rationales of composite MCP: (1) to avoid overshrinkage by allowing covariates to grow
large, and (2) to allow groups to remain sparse internally. The 1-norm group bridge allows
the presence of a single large predictor to continually lower the entry threshold of the other
variables in its group. This property, whereby a single strong predictor draws others into the
model, prevents the group bridge from achieving consistency for the selection of individual
variables.

Figure 3 shows the coefficient paths from λmax down to 0 for group LASSO, 1-norm group
bridge, and composite MCP for a simulated data set featuring two groups, each with three
covariates. In the underlying model, the group represented by solid lines has two covariates
with coefficients equal to 1 and the other equal to 0; the group represented by dashed lines
has two coefficients equal to 0 and the other equal to −1. The figure reveals much about the
behavior of grouped penalties. In particular, we note the following: (1) Even though each of
the nonzero coefficients is of the same magnitude, the coefficients from the more significant
solid group enter the model more easily than the lone nonzero coefficient from the dashed
group. (2) This phenomenon is less pronounced for composite MCP, which makes weaker
assumptions about grouping. (3) For composite MCP at λ ≈ 0.3, all of the variables with
true zero coefficients have been eliminated while the remaining coefficients are unpenalized.
In this region, the composite MCP approach is performing as well as the oracle model. (4) In
general, the coefficient paths for these group penalization methods are continuous, but are
not piecewise linear, unlike those for the LASSO.

Although composite penalties do not, in general, have closed-form solutions in single-group
models like the penalties in Section 2, the idea of group coordinate descent can still be used.
The main complication is in step 2(b) for the algorithm described in Section 2.4, where the
single-group solutions need to be solved numerically. Another approach is based on a local
coordinate descent algorithm (Breheny and Huang, 2009). This algorithm first uses a local
linear approximation to the penalty function (Zou and Li, 2008). After applying this
approximation, in any given coordinate direction the optimization problem is equivalent to
the one-dimensional LASSO, which has the soft-threshold operator as its solution. The
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thresholding parameter λ in each update is given by expression (3.4). Because the penalties
involved are concave on [0, ∞), the linear approximation is a majorizing function, and the
algorithm thus enjoys the descent property of MM algorithms (Lange, Hunter and Yang
(2000)) whereby the objective function is guaranteed to decrease at every iteration. Further
details may be found in Breheny and Huang (2009). These algorithms have been
implemented in the R package grpreg, available at http://cran.r-project.org. The package
computes the group LASSO, group bridge and composite MCP solutions for linear
regression and logistic regression models.

3.3 Additive Penalties
Another approach to achieving bi-level selection is to add an ℓ1 penalty to the group LASSO
(Wu and Lange, 2008; Friedman, Hastie and Tibshirani, 2010).

(3.6)

where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters. The above objective function has the
benefit of being convex, eliminating the possibility of convergence to a local minimum
during model fitting. The group coordinate descent algorithm can no longer be applied,
however, as the orthonormalization procedure described in Section 2 will not preserve the
sparsity achieved by the ℓ1 penalty once the solution is transformed back to the original
variables. Puig, Wiesel and Hero (2011), Friedman, Hastie and Tibshirani (2010) and Zhou
et al. (2010) have proposed algorithms for solving this problem without requiring
orthonormalization.

In principle, the group LASSO portion of the penalty could be replaced with any of the
convex 2-norm group penalties of Section 2.2; likewise the ℓ1 penalty could be replaced by,
say, MCP or SCAD. These possibilities, to the best of our knowledge, have not been
explored. Further work is needed to study the properties of this class of estimators and
compare their performance with other methods.

3.4 Example: Genetic Association
We now give an example from a genetic association study where bi-level selection is an
important goal of the study. The example involves data from a case-control study of age-
related macular degeneration consisting of 400 cases and 400 controls, and was analyzed in
Breheny and Huang (2009). The analysis is confined to 30 genes containing 532 markers
that previous biological studies have suggested may be related to the disease.

We analyze the data with the group LASSO, 1-norm group bridge and composite MCP
methods by considering markers to be grouped by the gene they belong to. Penalized logistic
regression models were fit assuming an additive effect for all markers (homozygous
dominant = 2, heterozygous = 1, homozygous recessive = 0). In addition to the group
penalization methods, we analyzed these data using a traditional one-at-a-time approach
(single-marker analysis), in which univariate logistic regression models were fit and marker
effects screened using a p < 0.05 cutoff. Ten-fold cross-validation was used to select λ, and
to assess accuracy (for the one-at-a-time approach, predictions were made from an
unpenalized logistic regression model fit to the training data using all the markers selected
by individual testing). The results are presented in Table 1.

Table 1 suggests the benefits of using group penalization regression approaches as opposed
to one-at-a-time approaches: the three group penalization methods achieve lower test error
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rates and do so while selecting fewer genes (groups). Although the error rates of ≈40%
indicate that these 30 genes likely do not include SNPs that exert a large effect on an
individual’s chances of developing age-related macular degeneration, the fact that they are
well below the 50% that would be expected by random chance demonstrates that these genes
do contain SNPs related to the disease. The very different nature of the selection properties
of the three group penalization methods are also clearly seen. Although group LASSO
achieves low misclassification error, it selects 17 genes out of 30 and 435 markers out of
532, failing to shed light on the most important genetic markers. The bi-level selection
methods achieve comparable error rates with a much more sparse set of predictors: group
bridge identifies 3 promising genes out of 30 candidates, and composite MCP identifies 11
promising SNPs out of 532.

4. ORACLE PROPERTY OF THE 2-NORM GROUP MCP
In this section, we look at the selection properties of the 2-norm group MCP estimator β̂(λ,

γ), defined as the global minimizer of (2.3) with , when ρ is taken to be the MCP
penalty. We provide sufficient conditions under which the 2-norm group MCP estimator is
equal to the oracle least squares estimator defined at (4.1) below. Our intention is to give
some preliminary theoretical justification for this concave group selection method under
reasonable conditions, not necessarily to obtain the best possible theoretical results or to
provide a systematic treatment of the properties of the concave group selection methods
discussed in this review.

Let X = (X1, …, XJ) and Σ = X′X/n. For any A ⊆ {1, …, J}, denote

Let the true value of the regression coefficients be . Let

, which is the set of indices of the groups with nonzero

coefficients in the underlying model. Let  and set  if S is
empty. Define

(4.1)

This is the oracle least squares estimator. Of course, it is not a real estimator, since the
oracle set is unknown.

Let dmax = max{dj: 1 ≤ j ≤ J} and dmin = min{dj: 1 ≤ j ≤ J}. For any A ⊆ {1, …, J}, denote
dmin(A) = min{dj: j ∈ A} and dmax(A) = max{dj: j ∈ A}. Here dmin(A) = ∞ if A is empty.
Let cmin be the smallest eigenvalue of Σ, and let c1 and c2 be the smallest and largest
eigenvalues of ΣS, respectively.

We first consider the case where the 2-norm group MCP objective function is convex. This
necessarily requires cmin > 0. Define the function

(4.2)
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This function arises from an upper bound for the tail probabilities of chi-square distributions
given in Lemma A.1 in the Appendix, which is based on an exponential inequality for chi-
square random variables of Laurent and Massart (2000). Let

(4.3)

and

(4.4)

Theorem 4.1—Suppose ε1, …, εn are independent and identically distributed as N(0, σ2).
Then for any (λ, γ) satisfying γ > 1/cmin,  and nλ2 > σ2, we have

The proof of this theorem is given in the Appendix. It provides an upper bound on the
probability that β̂(λ, γ) is not equal to the oracle least squares estimator. The condition γ > 1/
cmin ensures that the 2-norm group MCP criterion is strictly convex. This implies β̂(λ, γ) is
uniquely characterized by the Karush–Kuhn–Tucker conditions. The condition nλ2 > σ2

requires that λ cannot be too small.

Let

(4.5)

The following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.1—Suppose that the conditions of Theorem 4.1 are satisfied. Also suppose that
 for an → ∞ as n → ∞. If λ ≥ anλn, then

By Corollary 4.1, the 2-norm group MCP estimator behaves like the oracle least squares
estimator with high probability. This of course implies it is group selection consistent. For
the standard LASSO estimator, a sufficient condition for its sign consistency is the strong
irrepresentable condition (Zhao and Yu, 2006). Here a similar condition holds automatically

due to the form of the MCP. Specifically, let . Then an extension of the
irrepresentable condition to the present setting is, for some 0 < δ < 1,

(4.6)
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where  with

Since it is assumed that , we have  for all j ∈
S. Therefore, (4.6) always holds.

We now consider the high-dimensional case where J > n. We require the sparse Riesz
condition, or SRC (Zhang and Huang, 2008), which is a form of sparse eigenvalue
condition. We say that X satisfies the SRC with rank d* and spectrum bounds {c*, c*} if

(4.7)

We refer to this condition as SRC(d*, c*, c*).

Let K* = (c*/c*) − (1/2), m* = K*|S| and ξ = 1/(4c*ds), where ds = max{dmax(S), 1}. Define

(4.8)

Let η1n and η2n be as in (4.3) and (4.4).

Theorem 4.2—Suppose ε1, …, εn are independent and identically distributed as N(0, σ2),
and X satisfies the SRC(d*, c*, c*) in (4.7) with d* ≥ (K* + 1) |S|ds. Then for any (λ, γ)

satisfying , nλ2ξ > σ2 dmax and , we have

Letting

and τn be as in (4.5), Theorem 4.2 has the following corollary.

Corollary 4.2—Suppose the conditions of Theorem 4.2 are satisfied. Also suppose

 for an → ∞ as n → ∞. Then if ,

Theorem 4.2 and Corollary 4.2 provide sufficient conditions for the selection consistency of
the global 2-norm group MCP estimator in the J ≫ n situations. For example, we can have J
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− |S| = exp{o(n/(c* ds))}. The condition nλ2ξ > σ2dmax is stronger than the corresponding

condition nλ2 > σ2 in Theorem 4.1. The condition  ensures that the
group MCP criterion is convex in any d*-dimensional subspace. It is stronger than the
minimal sufficient condition γ > 1/c* for convexity in d*-dimensional subspaces. These
reflect the difficulty and extra efforts needed in reducing a p-dimensional problem to a d*-
dimensional problem. The SRC in (4.7) guarantees that the model is identifiable in a lower
d*-dimensional space.

The results presented above are concerned with the global solutions. The properties of the
local solutions, such as those produced by the group coordinate descent algorithm, to
concave 2-norm or 1-norm penalties remain largely unknown in models with J ≫ n. An
interesting question is under what conditions the local solutions are equal to or sufficiently
close to the global solutions so that they are still selection consistent. In addition, the
estimation and prediction properties of these solutions have not been studied. We expect that
the methods of Zhang and Zhang (2011) in studying the properties of concave regularization
will be helpful in group and bi-level selection problems.

5. APPLICATIONS
We now give a review of some applications of the group selection methods in several
statistical modeling and analysis problems, including nonparametric additive models,
semiparametric partially linear models, seemingly unrelated regressions and multitask
learning and genetic and genomic data analysis.

5.1 Nonparametric Additive Models
Let (yi, xi), i = 1, …, n be random vectors that are independently and identically distributed
as (y, x), where y is a response variable, and x = (x1, …, xp)′ is a p-dimensional covariate
vector. The nonparametric additive model (Hastie and Tibshirani, 1990) posits that

(5.1)

where μ is an intercept term, xij is the jth component of xi, the fj’s are unknown functions
and εi is an unobserved random variable with mean zero and finite variance σ2. Suppose that
some of the additive components fj are zero. The problem is to select the nonzero
components and estimate them. Lin and Zhang (2006) proposed the component selection
and smoothing operator (COSSO) method that can be used for selection and estimation in
(5.1). The COSSO can be viewed as a group LASSO procedure in a reproducing kernel
Hilbert space. For fixed p, they studied the rate of convergence of the COSSO estimator in
the additive model. They also showed that, in the special case of a tensor product design, the
COSSO correctly selects the non-zero additive components with high probability. Zhang
and Lin (2006) considered the COSSO for nonparametric regression in exponential families.
Meier, van de Geer and Bühlmann (2009) proposed a variable selection method in (5.1) with
p ≫ n that is closely related to the group LASSO. They give conditions under which, with
high probability, their procedure selects a set of the nonparametric components whose
distance from zero in a certain metric exceeds a specified threshold under a compatibility
condition. Ravikumar et al. (2009) proposed a penalized approach for variable selection in
(5.1). In their theoretical results on selection consistency, they assume that the eigenvalues
of a “design matrix” be bounded away from zero and infinity, where the “design matrix” is
formed from the basis functions for the nonzero components. Another critical condition
required in their paper is similar to the irrepresentable condition of Zhao and Yu (2006).
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Huang, Horowitz and Wei (2010) studied the group LASSO and adaptive group LASSO for
variable selection in (5.1) based on a spline approximation to the nonparametric
components. With this approximation, each nonparametric component is represented by a
linear combination of spline basis functions. Consequently, the problem of component
selection becomes that of selecting the groups of coefficients in the linear combinations.
They provided conditions under which the group LASSO selects a model whose number of
components is comparable with the underlying model, and the adaptive group LASSO
selects the nonzero components correctly with high probability and achieves the optimal rate
of convergence.

5.2 Structure Estimation in Semiparametric Regression Models
Consider the semiparametric partially linear model (Engle et al., 1986)

(5.2)

where S1 and S2 are mutually exclusive and complementary subsets of {1, …, p}, {βj: j ∈
S1} are regression coefficients of the covariates with indices in S1 and (fj: j ∈ S2) are
unknown functions. The most important assumption in the existing methods for the
estimation in partially linear models is that S1 and S2 are known a priori. This assumption
underlies the construction of the estimators and investigation of their theoretical properties
in the existing methods (Härdle, Liang and Gao, 2000; Bickel et al., 1993). However, in
applied work, it is rarely known in advance which covariates have linear effects and which
have nonlinear effects. Recently, Zhang, Cheng and Liu (2011) proposed a method for
determining the zero, linear and nonlinear components in partially linear models. Their
method is a regularization method in the smoothing spline ANOVA framework that is
closely related to the COSSO. They obtained the rate of convergence of their proposed
estimator. They also showed that their method is selection consistent in the special case of
tensor product design. But their approach requires tuning of four penalty parameters, which
may be difficult to implement in practice. Huang, Wei and Ma (2011) proposed a
semiparametric regression pursuit method for estimating S1 and S2. They embedded
partially linear models into model (5.1). By approximating the nonparametric components
using spline series expansions, they transformed the problem of model specification into a
group variable selection problem. They then used the 2-norm group MCP to determine the
linear and nonlinear components. They showed that, under suitable conditions, the proposed
approach is consistent in estimating the structure of (5.2), meaning that it can correctly
determine which covariates have a linear effect and which do not with high probability.

5.3 Varying Coefficient Models
Consider the linear varying coefficient model

where yi(t) is the response variable for the ith subject at time point t ∈ T with T being the
time interval on which the measurements are taken, εi(t) is the error term, xik(t)’s are time-
varying covariates, βk(t) is the corresponding smooth coefficient function. Such a model is
useful in investigating the time-dependent effects of covariates on responses measured
repeatedly. One well-known example is longitudinal data analysis (Hoover et al., 1998)
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where the response for the ith experimental subject in the study is observed ni occasions, the
set of observations at times {tij: j = 1, …, ni} tends to be correlated. Another important
example is the functional response models (Rice, 2004), where the response yi(t) is a smooth
real function, although only yi(tij), j = 1, …, ni are observed in practice. Wang, Chen and Li
(2007) and Wang and Xia (2009) considered the use of group LASSO and SCAD methods
for model selection and estimation in (5.3). Xue, Qu and Zhu (2010) applied the 2-norm
SCAD method for variable selection in generalized linear varying-coefficient models and
considered its selection and estimation properties. These authors obtained their results in the
models with fixed dimensions. Wei, Huang and Li (2011) studied the properties of the group
LASSO and adaptive group LASSO for (5.3) in the p ≫ n settings. They showed that, under
the sparse Riesz condition and other regularity conditions, the group LASSO selects a model
of the right order of dimensionality, selects all variables with co-efficient functions whose ℓ2
norm is greater than a certain threshold level and is estimation consistent. They also proved
that the adaptive group LASSO can correctly select important variables with high
probability based on an initial consistent estimator.

5.4 Seemingly Unrelated Regressions and Multi-Task Learning
Consider T linear regression models

where yt is an n × 1 response vector, Xt is an n × p design matrix, βt is a p × 1 vector of
regression co-efficients and εt is an n × 1 error vector. Assume that ε1, …, εT are
independent and identically distributed with mean zero and covariance matrix Σ. This model
is referred to as the seemingly unrelated regressions (SUR) model (Zellner, 1962). Although
each model can be estimated separately based on least squares method, it is possible to
improve on the estimation efficiency of this approach. Zellner (1962) proposed a method for
estimating all the coefficients simultaneously that is more efficient than the single-equation
least squares estimators. This model is also called a multi-task learning model in machine
learning (Caruana, 1997; Argyriou, Evgeniou and Pontil, 2008).

Several authors have considered the problem of variable selection based on the criterion

This is a special case of the general group LASSO criterion. Here the groups are formed by
the co-efficients corresponding to the jth variable across the regressions. The assumption
here is that the jth variable plays a similar role across the tasks and should be selected or
dropped at the same time. Several authors have studied the selection, estimation and
prediction properties of the group LASSO in this model; see, for example, Bach (2008),
Lounici et al. (2009), Lounici et al. (2011) and Obozinski, Wainwright and Jordan (2011)
under various conditions on the design matrices and other regularity conditions.

5.5 Analysis of Genomic Data
Group selection methods have important applications in the analysis of high throughput
genomic data—for example, to find genes and genetic pathways that affect a clinical
phenotype such as disease status or survival using gene expression data. Most phenotypes
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are the result of alterations in a limited number of pathways, and there is coordination
among the genes in these pathways. The genes in the same pathway or functional group can
be treated as a group. Efficiency may be improved upon by incorporating pathway
information into the analysis, thereby selecting pathways and genes simultaneously. Another
example is integrative analysis of multiple genomic datasets. In gene profiling studies,
markers identified from analysis of single datasets often suffer from a lack of
reproducibility. Among the many possible causes, the most important one is perhaps the
relatively small sample sizes and hence lack of power of individual studies. A cost-effective
remedy to the small sample size problem is to pool and analyze data from multiple studies of
the same disease. A generalized seemingly unrelated regressions model can be used in this
context, where a group structure arises naturally for the multiple measurements for the same
gene across the studies. Some examples of using group selection methods in these
applications include Wei and Li (2007), Jacob, Obozinski and Vert (2009), Ma and Huang
(2009), Ma, Huang and Moran (2009), Ma, Huang and Song (2010), Ma et al. (2011), Pan,
Xie and Shen (2010) and Peng et al. (2010), among others.

5.6 Genome Wide Association Studies
Genome wide association studies (GWAS) are an important method for identifying disease
susceptibility genes for common and complex diseases. GWAS involve scanning hundreds
to thousands of samples, often as case-control samples, utilizing hundreds of thousands of
single nucleotide polymorphism (SNP) markers located throughout the human genome. The
SNPs from the same gene can be naturally considered as a group. It is more powerful to
select both SNPs and genes simultaneously than to select them separately. Applications of
group selection methods to genetic association analysis are discussed in Breheny and Huang
(2009) and Zhou et al. (2010).

6. DISCUSSION
In this article, we provide a selective review of several group selection and bi-level selection
methods. While considerable progress has been made in this area, much work remains to be
done on a number of important issues. Here we highlight some of them that require further
study in order to better apply these methods in practice.

6.1 Penalty Parameter Selection
In any penalization approach for variable selection, a difficult question is how to determine
the penalty parameters. This question is even more difficult in group selection methods.
Widely used criterions, including the AIC (Akaike, 1973) and BIC (Schwarz, 1978), require
the estimation of the error variance and degrees of freedom. For the group LASSO, Yuan
and Lin (2006) proposed an estimate of the degrees of freedom, but it involves the least
squares estimator of the coefficients, which is not feasible in p ≫ n models. The problem of
variance estimation has not been studied systematically in group selection models. It is
possible to use K-fold cross validation, which does not require estimating the variance or the
degrees of freedom. However, to our knowledge, there have been no rigorous analyses of
this procedure in group selection settings. Recently, Meinshausen and Bühlmann (2010)
proposed stability selection for choosing penalty parameters based on resampling. This is a
general approach and is applicable to the group selection methods discussed here.
Furthermore, it does not require estimating the variance or the degrees of freedom. It would
be interesting to apply this method to group selection and compare it with the existing
methods in group selection problems.
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6.2 Theoretical Properties
Currently, most theoretical results concerning selection, estimation and prediction on group
selection methods in p ≫ n settings are derived for the group LASSO in the context of
linear regression. These results provide important insights into the behavior of the group
LASSO. However, they are obtained for a given range of the penalty parameter. It is not
clear whether, if the penalty parameter is selected using a data-driven procedure, such as
cross validation, these results still hold. It is clearly of practical interest to confirm the
estimation and prediction properties of group LASSO if the penalty parameter is selected
using such a procedure. For concave selection methods, we considered the selection
property of the global 2-norm group MCP solutions. Although global results shed some light
on the properties of these methods, it is more relevant to investigate the properties of the
local solutions, such as those obtained based on the group coordinate descent algorithm.
Therefore, much work is needed to understand the theoretical properties of various concave
group selection methods and compare their performance with the group LASSO.

6.3 Overlapping Groups
In this article, we only considered the case where there is no overlapping among the groups.
However, in many applied problems, overlapped groups arise naturally. For example, in
genomic data analysis involving genes and pathways, many important genes belong to
multiple pathways. Jacob, Obozinski and Vert (2009) proposed an extended group LASSO
method for selection with overlapping groups. With their method, it is possible to select one
variable without selecting all the groups containing it. Percival (2011) studied the theoretical
properties of the method of Jacob, Obozinski and Vert (2009). Liu and Ye (2010) proposed
an algorithm for solving the overlapping group LASSO problem. Zhao, Rocha and Yu
(2009) considered the problem of overlapping groups in the context of composite absolute
penalties. The results of Huang et al. (2009) on the selection consistency of the 1-norm
group bridge allow overlapping among groups under the assumption that the extent of
overlapping is not large. However, in general, especially for concave group selection
methods, this question has not been addressed.
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APPENDIX

Lemma A.1

Let  be a random variable with chi-square distribution with k degrees of freedom. For t >

1, , where h(t, k) is defined in (4.2).

This lemma is a restatement of the exponential inequality for chi-square distributions of
Laurent and Massart (2000).
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Proof of Theorem 4.1

Since β̂o is the oracle least squares estimator, we have  for j ∉ S and

(A.1)

If , then by the definition of the MCP, . Since cmin >
1/γ, the criterion (2.3) is strictly convex. By the KKT conditions, the equality β̂(λ, γ) = β̂o

holds in the intersection of the events

(A.2)

We first bound 1 − P(Ω1(λ)). Let β̂S = (β̂j, j ∈ S)′. By (A.1) and using ,

(A.3)

It follows that , where . Because

 is distributed as a χ2 distribution with dj degrees of
freedom. We have, for nλ2/σ2 ≥ 1,

(A.4)

where we used Lemma A.1 in the third line.

Now consider Ω2. Recall . If  for all j ∈ S,

then . This implies

Let Aj be a dj × dS matrix with a dj × dj identity matrix Idj in the jth block and 0’s elsewhere.

Then . Note that
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and  is distributed as a χ2 distribution with |S| degrees of freedom.

Therefore, similar to (A.4), we have, for ,

(A.5)

Combining (A.4) and (A.5), we have

This completes the proof.

For any B ⊂ {1, …, J} and m ≥ 1, define

(A.6)

for υ ∈ ℝn, where  is the orthogonal projection from ℝn to the span
of XA.

Lemma A.2
Suppose ξnλ2 > σ2dmax. We have

Proof
For any A ⊇ S, we have (PA − PS) XSβS = 0. Thus

Therefore,
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Since PA − PS is a projection matrix, , where mA = Σj∈A−S,A⊇S dj ≤

mdmax. Since there are  ways to choose A from {1, …, J}, we have

This and Lemma A.1 imply that

Here we used the inequality . This completes the proof.

Define T as any set that satisfies

Lemma A.3

Suppose that X satisfies the SRC(d*, c*, c*), d* ≥ (K* + 1)|S|ds, and .

Let m* = K*|S|. Then for any y ∈ ℝn with , we have

Proof
This lemma can be proved along the line of the proof of Lemma 1 of Zhang (2010a) and is
omitted.

Proof of Theorem 4.2
By Lemma A.3, in the event

Huang et al. Page 26

Stat Sci. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A.7)

we have |T| ≤ (K* + 1)|S|. Thus in event (A.7), the original model with J groups reduces to a
model with at most (K* + 1)|S| groups. In this reduced model, the conditions of Theorem 4.2
imply that the conditions of Theorem 4.1 are satisfied. By Lemma A.2,

(A.8)

Therefore, combining (A.8) and Theorem 4.1, we have

This proves Theorem 4.2.
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Fig. 1.
The solution paths of the 2-norm group MCP for γ = 1.2, 2.7 and ∞, where γ = ∞
corresponds to the group LASSO. The top panel shows the paths of the ℓ2 norms of βj; the
bottom shows the paths of the individual coefficients. The solid lines and dashed lines in the
plots indicate the paths of the coefficients in the nonzero groups 1 and 2, respectively. The
dotted lines represent the zero groups.
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Fig. 2.
The group LASSO, group bridge and composite mcp penalties for a two-predictor group.
Note that where the penalty comes to a point or edge, there is the possibility that the solution
will take on a sparse value; all penalties come to a point at 0, encouraging group-level
sparsity, but only group bridge and composite MCP allow for bi-level selection.
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Fig. 3.
Coefficient paths from 0 to λMAX for group LASSO, 2-norm group MCP, 1-norm group
bridge, and composite MCP for a simulated data set featuring two groups, each with three
covariates. In the underlying data-generating mechanism, the group represented by solid
lines has two covariates with coefficients equal to 1 and the other equal to 0; the group
represented by dashed lines has two coefficients equal to 0 and the other equal to −1.
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Table 1

Application of the three group penalization methods and a one-at-a-time method to a genetic association data
set. CV error is the average number of misclassification errors over the ten validation folds

Genes selected Markers selected Cross-validation error

One-at-a-time 19 49 0.441

Group LASSO 17 g 0.390

Group bridge 3 20 0.400

Composite MCP 8 11 0.391
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