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Abstract
This study investigates the effect of involuntary motor activity of paretic-spastic muscles on
classification of surface electromyography (EMG) signals. Two data collection sessions were
designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected
forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of
involuntary motor activity present in voluntary surface EMG recordings was qualitatively
described from such slow and fast experimental protocols. Myoelectric pattern recognition
analysis was performed using different combinations of voluntary surface EMG data recorded
from slow and fast sessions. Across all tested stroke subjects, our results revealed that when
involuntary surface EMG was absent or present in both training and testing datasets, high
accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in
classification of different movements using surface EMG signals from paretic muscles. When
involuntary surface EMG was solely involved in either training or testing datasets, the
classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if
both training and testing datasets contained EMG signals with presence and absence of
involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this
study can be used to guide appropriate design and implementation of myoelectric pattern
recognition based systems or devices toward promoting robot-aided therapy for stroke
rehabilitation.

INTRODUCTION
Myoelectric signals have been used for over 40 years in prosthesis control for amputees [1].
Myoelectric control of robotic systems has also been used to aid rehabilitation of motor
skills for individuals with neurological injuries, such as stroke and spinal cord injury [2]–[7].
In the latter case, users’ intention of moving can be detected by measurement of surface
electromyography (EMG) signals from paretic or impaired muscles, even though no actual
or sufficient movement is produced. An EMG-controlled robotic system is able to provide
interactive user interface for the system to act according to user’s intention of movement.
The involvement of user’s voluntary input in rehabilitation training can enhance motor
recovery or promote functional restoration [7]–[10].
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Recent development of myoelectric control has been oriented toward accurate decoding of
muscle co-activation patterns, continuous identification of various movements and
simultaneous control of multiple degrees of freedom (DOFs) [11]–[13], [15], [17], [33]–
[35], among which a novel pattern-recognition based control strategy uses a variety of
features derived from EMG signals as control input via surface electrodes placed over a
group of functional muscles. Its effectiveness has been demonstrated in prosthetic control
for upper limb amputees [11] [13] [15]. In previous studies we also found that substantial
motor control information can be extracted from paretic arm or hand muscles of chronic
stroke [18] and spinal cord injury [19] subjects through classification of surface EMG
signals. This demonstrates a possible approach of using the myoelectric pattern recognition
strategy for controlling multiple DOFs, which is expected to facilitate restoration of upper-
limb function for hemiplegic or quadriplegic patients [4]–[7].

EMG signals used for myoelectric prosthesis control are derived from an amputee’s residual
muscles which are neurologically largely intact. In contrast, neurological injuries may
induce changes in intrinsic motoneuron, motor control and muscle properties, giving rise to
muscle spasticity, contracture and associated alterations in muscle internal structure [20].
Such neuromuscular property changes should be considered when implementing a
myoelectric control system. For example, paretic muscles may present a large amount of
involuntary motor activity [23], [24], [25], as a result of spasticity, a common impairment
that interferes with motor function in stroke [20], [21] and SCI [22]. It is very likely that
voluntary EMG from paretic muscles may be contaminated by such involuntary motor
activity.

Involuntary muscle activity may interfere with implementation of a myoelectric control
system. One difficulty imposed by such involuntary surface EMG spikes is onset/offset
detection of voluntary muscle activation. We have recently developed a novel method for
onset/offset detection of voluntary muscle activity using sample entropy (SampEn) analysis
of surface EMG signals [26], taking advantage of the distinct difference in the signal
complexity domain between voluntary and involuntary EMG activity.

It is presently unknown how involuntary motor activity of paretic-spastic muscles may
affect classification of different movement intentions of neurologically impaired individuals.
In the current study, we seek to assess the effect of such involuntary motor activity on
surface EMG classification performance of hemiparetic stroke subjects. The analyses of this
study reveal the classification performance when involuntary EMG signals induced from
paretic-spastic muscles are present under different situations. The findings can help design
and implementation of a pattern recognition based myoelectric control system toward stroke
rehabilitation.

METHODS
A. Subjects

Eight choric stroke subjects participated in this study. The subjects were recruited from the
Clinical Neuroscience Research Registry at the Rehabilitation Institute of Chicago (Chicago,
IL). The study was approved by the Institutional Review Board of Northwestern University
(Chicago, IL). All stroke subjects gave their written consent before the experiment.

For each stroke subject, a screening examination and clinical assessment were performed by
a physical therapist. These scales included the upper-extremity component of the Fugl-
Meyer scale [27] (denoted as UEFM), the hand impairment part of the Chedoke-McMaster
stroke assessment scale [28] (denoted as Ch-M Hand) for the evaluation of arm and hand
motor function, and the modified Ashworth scale [29] (denoted as MAS) for the evaluation
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of muscle tone/spasticity at the wrist joint. The UEFM scale uses ordinal 3-point score (0 =
cannot perform, 1 = can partially perform, and 2 = can fully perform) to quantitatively
assess the movement, sensation and balance functions of a patient’s shoulder, elbow,
forearm, wrist, and hand after a stroke, producing a possible total score of 66 for the upper-
extremity component [27]. The Ch-M Hand is used to determine the presence and severity
of common physical impairments of the hand of a stroke patient, with a 7-grade scale, where
grade 1 indicates the most severe impairment and grade 7 indicates an ability to perform all
of the tested tasks [28]. The MAS is used to score the average resistance to passive
movement for the wrist joint, using 6-grade scale ranging from grade 0 (no increase in
muscle tone) through grade 1, 1+, 2 and 3 to grade 4 (affected part rigid in flexion or
extension) [29]. Demographic and clinical measures for the stroke subjects of this study are
detailed in Table I.

B. Data Acquisition
A Refa128 EMG system (TMS International B.V., The Netherlands) was used to record
multi-channel surface EMG signals from the forearm and hand muscles in the paretic side of
each stroke subject. In total 41 surface electrodes were used as demonstrated in Fig. 1, with
a reference electrode located on the olecranon. From each of the electrodes EMG signals
were recorded with respect to the reference, while each electrode also had a common
feedback subtraction (equivalent to signal average of all the electrodes). The size of each
individual electrode is 10 mm in diameter while the recording surface has a diameter of 5
mm. Among all the 41 electrodes, 32 were placed in a 4 × 8 grid formation over the forearm.
Eight electrodes in each row were equally spaced and embedded in the inner side of a
stretchable arm-band. Four such arm-bands were attached parallel around forearm at
different locations from approximately 15% to 60% (with 15% increments) of the entire
distance from the medial epicondyle of the humerus to the styloid process of the ulna. The
stretch of the arm-bands can facilitate electrode placement around forearms with different
sizes and ensure solid electrode-skin contact. In addition, 9 remaining electrodes were
placed on hand muscles, with every 3 electrodes targeting the first dorsal interosseous (FDI),
the thenar group and the hypothenar group muscles, respectively. The inter-electrode-
distance depends on the size of the arm. Generally, the center-to-center distance between
two consecutive electrodes was approximately 8–15 mm. All surface electrodes produced
41-channel surface EMG signals that were band-pass filtered between 20 and 500 Hz,
amplified with a gain of 60 dB and sampled at 2 kHz per channel.

C. Experimental Protocol
Each stroke subject was comfortably seated upright on a chair and relaxed the affected upper
limb on a height-adjustable side table. The subject was instructed to perform 11 different
functional movements as shown in Fig. 2, including 6 fine hand tasks (cylindrical grip, light
tool grip, power grip, lateral pinch, open pinch and fine pinch), 4 wrist movements (wrist
flexion/extension and wrist pronation/supination) and hand opening. The experiment
protocol comprised of 11 trials, each trial performing 6 repetitions of the same movement
pattern. For each trial, an experimenter first demonstrated the movement pattern to the
subject, and the subject received auditory cues from the experimenter indicating when to
start or terminate each repetition of contraction. For each repetition, the subject was required
to perform (or intent to perform) an isometric muscle contraction for the movement with a
natural or comfortable force, hold the task for approximately 3 seconds and then relax
between repetitions. Additional rest periods were allowed between trials to avoid muscular
and mental fatigue of the subject. To examine the effect of involuntary motor activity on
surface EMG classification performance, two sessions were performed for each trial.
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The first session was considered as a slow session, during which the subject was allowed to
have sufficient relaxation time for duration of approximate 10 s between repetitions of each
movement pattern. For some severely impaired subjects, such relaxation periods were
extended up to 20 s. The long relaxation periods in the slow session were expected to help
the stroke subject decrease muscle spasticity or involuntary EMG activity before performing
the next repetition. Such a protocol was consistent with previous studies [4], [18], [19]. The
second session was considered as a fast session, during which only very brief relaxation
periods of no more than 3 s were allowed between repetitions, thus involuntary motor
activity was routinely present in the surface EMG recordings.

D. Data Processing
For surface EMG signals recorded from each trial, the onset and offset of each repetition of
voluntary muscle contraction were first determined. To overcome the difficulty induced by
involuntary muscle activity (usually demonstrated as continuously firing spikes, Figure 3) in
determining onset and offset of voluntary muscle activity, the SampEn analysis of surface
EMG signal developed in [26] was used to distinguish voluntary muscle activity from the
involuntary background interference. This was based on the fact that the EMG burst induced
from voluntary muscle contraction is prone to have larger SampEn values compared with
involuntary spikes or background baseline. For each movement, the SampEn analysis was
applied on a reference surface EMG signal averaged from a limited number (8–10) of
channels that were examined and selected with relatively distinct voluntary surface EMG
activity through a brief visual inspection. The SampEn values were calculated over a 128-ms
analysis window sliding along the reference signal with a window increment of 32 ms. The
voluntary muscle activity was determined when the SampEn value of the reference signal
was detected above the preset threshold in the SampEn domain. The sensitivity analysis for
choosing the threshold was performed in our previous study [26]. The pretests with the
current dataset confirmed that the threshold of 0.4 was appropriate for detecting the onset
and offset of each voluntary muscle contraction in the signal complexity domain.

After onset and offset identification of voluntary surface EMG, the original 41-channel
EMG data within each repetition of voluntary muscle contraction were further segmented
into a series of overlapping analysis windows with a window length of 256 ms and a
window increment of 64 ms. These windows were considered to be elementary units on
which the following feature extraction and pattern recognition analyses were performed.

For each analysis window, the four time-domain (TD) features (known as the TD feature
set) [11–14] and the sixth-order autoregressive (AR) model coefficients combined with the
root mean square (RMS) amplitude of the signal (known as the AR+RMS feature set) [14],
[15] were used to characterize different EMG patterns, respectively. After concatenating the
feature sets of all the channels, the final feature set vector was provided to the classifier. A
linear discriminant analysis (LDA) classifier [30] was used for automatic classification of
different movements, which is simple to implement and fast to train and does not
compromise classification accuracy compared with more complex and potentially more
powerful classifiers [14].

Pattern recognition procedure was performed for each stroke subject. The voluntary EMG
data in the slow session can be considered to be approximately free of involuntary EMG
interference or to be contaminated by a relatively small amount of involuntary EMG
interference, while the voluntary EMG data from the fast session can be considered as being
contaminated by a sufficiently large amount of involuntary EMG interference. The effect of
such involuntary muscle activity on classification performance was investigated using the
following testing schemes:
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Slow-Fast scheme—The EMG data from the slow session for each movement were used
as training dataset, whereas those from the fast session were used as testing dataset. This
scheme was designed to evaluate the classification performance when involuntary EMG
interference was primarily present in the testing dataset. Both training and testing datasets
consisted of EMG data within all 6 repetitions in their corresponding session.

Fast-Slow scheme—The EMG data from the fast session for each movement were used
as training dataset, whereas those from the slow session were used as testing dataset. With
such a scheme, the classification performance was evaluated when involuntary EMG
interference was primarily present in the training dataset. The EMG data within all 6
repetitions in the fast and slow sessions were assigned as training and testing datasets,
respectively.

Slow-Slow scheme—Both training and testing datasets were selected from the slow
session for each movement. In contrast to the previous two schemes, this scheme was
consistent to our previous studies [18], [19], where the classification performance was
evaluated using an experimental to reduce the involuntary EMG interface. To make efficient
use of the collected data, the six-fold cross-validation tests were performed. The EMG data
within any five repetitions in the slow session were selected as training dataset, while the
EMG data of the remaining repetition were used as the testing dataset.

Fast-Fast scheme—Both training and testing datasets were selected from the fast session
for each movement. We used this scheme to evaluate the classification performance when
the involuntary EMG interference was always present in both training and testing datasets.
Similar to the Slow-Slow scheme, the six-fold cross-validation tests were performed with
the six repetitions in the fast session.

Mixture-Mixture scheme—The EMG data from both slow and fast sessions for each
movement were mixed together. Training and testing datasets were selected from the mixed
data pool to evaluate the classification performance when involuntary EMG activity was
randomly present in both training and testing datasets. The twelve-fold cross-validation tests
were performed. The EMG data within any eleven repetitions in both sessions were selected
as training dataset, while the EMG data of the remaining repetition were used as the testing
dataset.

To evaluate the performance of automatic pattern classification, four different statistical
indexes, namely sensitivity (Sen), specificity (Spe), precision (Pre) and accuracy (Acc) for
each pattern defined as following, have been employed by previous studies [36], [37].

where TP represents the number of true positives that are testing windows of pattern x
classified as belonging to pattern x; FP represents the number of false positives that are
windows belonging to any other pattern classified as pattern x; FN is the number of false
negatives that are windows of pattern x classified as belonging to any other pattern; and TN
is the number of true negatives that are windows of any other patterns that are not classified
as belonging to pattern x. Note that a classification error may be even considered as a true
negative [36]. For example, if a window belonging to pattern x is incorrectly classified into
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pattern y (y ≠ x), it is obviously a false negative to pattern x, a false positive to pattern y, but
a true negative to any other pattern z (z ≠ y and z ≠ x). Because of this, Rojas-Martinez et al.
[37] reported that Spe and Acc defined above are not appropriate to be considered in the
classification of multiple patterns since they involve TN which is usually a very high
number and lead to biased estimate of the performance. Thus, the use of Pre and Sen, which
mainly take into account the type I (false positive, false alarm) and type II (false negative,
miss) errors for each pattern, respectively, was suggested [37]. With this regard, another
form of accuracy, an overall accuracy for each test, rather than for each pattern, was defined
as the percentage of correctly classified windows to the number of all the testing windows
including all the investigated movement patterns. With respect to its definition, the overall
accuracy is equivalent to the ratio of the summation of TP for all patterns to the number of
total testing windows covering TP, Fp and FN, without taking into account TN. It was also
found that for classification of multiple patterns, the overall accuracy was just slightly
different from the averaged Pre or Spe over all movement patterns, because of slight
variation in the number of testing windows among movement patterns [17]. This was
confirmed by pretests (see Fig. 5) in our study. Actually, the overall accuracy as well as its
complementary measure, i.e. error rate (1 minus the accuracy), has been widely used as a
standard performance index in a variety of pattern recognition based myoelectric control
studies [4], [11]–[18]. Consequently, the overall accuracy for each test was employed in this
study for evaluating classification performance under different testing schemes. For the
schemes using multiple cross-validation tests (Slow-Slow, Fast-Fast and Mixture-Mixture),
the number of testing windows was summed up over all cross-validation tests to obtain a
global accuracy.

E. Statistical Analysis
The two-way repeated-measure analysis of variance (ANOVA) was applied on the overall
accuracy, with the feature set (TD and AR+RMS) and the testing scheme (Fast-Slow, Slow-
Fast, Slow-Slow, Fast-Fast and Mixture-Mixture) considered as both within-subject factors.
Considering that the overall accuracy was measured as percentage that was upper bounded
to 1 (100%) and thus non-normally distributed, the arcsine transformation was used to
normalize the accuracy prior to the ANOVA. The level of statistical significance was set to
p < 0.05 for all analyses. When necessary, post hoc pairwise multiple comparisons with
Bonferroni correction were used. All statistical analyses were completed using SPSS
software (ver. 16.0, SPSS Inc. Chicago, IL).

RESULTS
Fig. 4 shows the efficiency of performing SampEn analysis of surface EMG signal for
detection of voluntary muscle activation when involuntary EMG interference was present.
The root mean square amplitude of the EMG signal was also calculated for comparison.
Both surface EMG amplitude and SampEn measurements were calculated over 128-ms
sliding windows. It was observed from Fig. 4 that the resultant SampEn curve was able to
highlight voluntary muscle contractions, whereas the filtered amplitude curve did not reflect
such a distinct separation between the voluntary EMG activity and the involuntary EMG
interference.

For every stroke subject, surface EMG pattern recognition analysis was performed for each
of the 5 different testing schemes, using the TD and the AR+RMS feature sets respectively.
Fig. 5 exhibits patter-to-pattern classification results in the form of confusion matrices
derived from two specific subjects (Subjects 3 and 6) under Slow-Fast and Slow-Slow
testing schemes, respectively, when the TD feature set was used. This figure also illustrates
the computational principle of three performance indexes, namely Pre, Sen and overall
accuracy, based on the confusion matrix for a test. From these representative examples
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shown in Fig. 5, we found that the presence of sufficient involuntary motor activity
degraded the classification performance by comparing the performance indexes under the
Slow-Fast scheme with those under the Slow-Slow scheme. In addition, the resulting overall
accuracy for all movement patterns appeared to be very close to the mean of the Pre or Sen
measures for all individual movement patterns, indicating that they were equivalent
performance indexes in classification of multiple patterns. Consequently, Table II displays
the performance for classification of 11 functional movements under different situations, as
evaluated by the overall accuracy for each situation. The ANOVA showed an overall
significant effect of both feature set (F = 16.640, p = 0.005) and testing scheme (F = 26.632,
p < 0.001) on the classification performance. However, no significant interaction (F = 0.161,
p = 0.956) was observed between both within-subject factors. When the data derived from
the slow session and the fast session were separately used to form the training and testing
datasets (i.e., Slow-Fast or Fast-Slow testing scheme), the average overall classification
accuracies across all subjects (ranging from 83.15% to 88.43%) were much lower than those
under the Slow-Slow testing scheme (above 96%). This was true for both the TD and AR
+RMS feature sets. Among all the subjects, we observed that three subjects (Subjects 3, 5
and 6) yielded classification accuracies of less than 85%, and Subject 6 had the lowest
classification accuracy under either Slow-Fast or Fast-Slow scheme, regardless of the
feature set. By contrast, with the Fast-Fast scheme where the involuntary EMG interference
was consistently involved in both training and testing datasets, high overall classification
accuracies of above 98% were achieved across all tested subjects, which were comparable to
the performance under the Slow-Slow scheme.

Our experimental results also indicated that when the pooled data from both slow and fast
sessions were used to form the training and testing datasets under the Mixture-Mixture
scheme, high classification accuracies of above 97% was still able to be achieved. Across all
tested subjects, the average overall classification accuracy was 97.05 ± 2.65% and 97.94 ±
2.01% using TD and AR+RMS feature sets, respectively.

Pairwise comparisons in the ANOVA indicated that there was a significant difference (p <
0.02) in overall classification accuracy when either the Fast-Slow or Slow-Fast scheme was
compared with any of the Slow-Slow, Fast-Fast and Mixture-Mixture schemes. However, no
significant difference was observed for all the other possible pairs or comparisons between
two testing schemes (p values close to 1). In examination of feature set, it was found that the
AR+RMS feature set yielded a slight improvement in the overall classification accuracy
over the TD feature set (p = 0.005). Such an improvement was most evident (approximately
2.7%, p = 0.002) under the Slow-Fast scheme.

DISCUSSION
Stroke has a detrimental effect on health-related quality of life. Following a hemispheric
stroke, many patients suffer a variety of disabling physical symptoms on the contralesional
side of the body. Spasticity is considered to be a major determinant of motor impairments
after stroke, which is measured as an excessive response to passive muscle stretch [20]. It is
believed that the mechanisms underlying spasticity vary in different types of neurological
disorders, including alterations in both motoneuron and muscle contractile properties [20]–
[22]. As a result of spasticity, involuntary motor activity can be seen in paretic-spastic
muscles when a stroke subject is instructed to fully relax [23], [24]. Such involuntary
activity is more often observed to accompany active muscle contractions and likely presents
in voluntary surface EMG signals.

The aim of current study was to examine the influence of involuntary motor activity of
paretic-spastic muscles on the classification of surface EMG signals recorded from stroke
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subjects. This was examined by designing different experimental protocols for performance
of the selected movements. In particular, a fast session was used during which the stroke
subject was asked to repeat each movement in a relatively fast speed. Thus distinct
involuntary motor activity was induced and may present within voluntary surface EMG
recordings. In contrast, a slow session was designed to allow sufficient relaxation time
between repetitions of each movement to reduce involuntary motor activity. The
classification performance was then assessed using different combinations of training and
testing datasets selected from slow and fast sessions. High accuracy in classification of
different movements is a prerequisite for implementation of a myoelectric pattern
recognition control system. Thus, understanding the effects of involuntary motor activity on
surface EMG classification is important to implement such a system or device for stroke
rehabilitation.

Across all the tested stroke subjects, high classification accuracies were achieved under the
Slow-Slow scheme. This was consistent to our previous studies [18], [19] where the protocol
was designed to allow sufficient relaxation time for subjects to reduce involuntary EMG
activity before performing the next task. The classification performance under the Slow-
Slow scheme can be used as a reference for evaluating different schemes. Under the Slow-
Fast or the Fast-Slow scheme, the significant decrease in classification accuracy was
observed in comparison with the Slow-Slow scheme. This suggests that involuntary EMG
interference solely involved in either training or testing datasets does contribute to
compromise the classification of surface EMG signals.

Furthermore, under the Slow-Fast and Fast-Slow schemes, the decrease of classification
performance was correlated to clinical assessment of muscle spasticity. Among all stroke
subjects, the lowest classification accuracy was found in Subject 6 (with TD feature set:
67.89% for the Slow-Fast scheme and 62.22% for the Fast-Slow scheme; with AR+RMS
feature set: 72.53% for the Slow-Fast scheme and 63.98% for the Fast-Slow scheme), who
demonstrated severe spasticity in hand muscles (MAS=4 for both wrist flexors and
extensors). Thus a large amount of involuntary motor activity was likely to present in
voluntary surface EMG signals recorded from the fast session (See Fig. 3b), which may
compromise the classification performance.

It is noted that under the Fast-Fast testing scheme, sufficiently high classification accuracies
were achieved comparable to those under the Slow-Slow scheme. This suggests that
involuntary EMG interference, if present in both training and testing datasets, has little
effect on the classification performance. Such an observation is consistent to previous
findings that the classification performance might not be compromised as long as the
interference was consistently present through the entire dataset [16]. It is worth noting that
the interference investigated in [16] was electrocardiography (ECG) artifacts contaminating
EMG signals. ECG artifacts have relatively low frequency components, stable firing patterns
and constant action potential waveforms. Taking this advantage, different methods have
been developed to remove ECG artifacts from EMG signals for myoelectric control [38]. In
contrast, the involuntary motor activity examined in this study may be originated from
multiple motor units with different firing patterns and action potentials waveforms. Their
power spectrum of involuntary and voluntary EMG can overlap. As a result, compared with
ECG artifacts it is more challenging to remove such involuntary motor activity from
voluntary EMG signals.

Another interesting finding of the present study is that under the Mixture-Mixture testing
scheme, the classification accuracies across all subjects tended to maintain similarly high
values, as compared with those achieved under the Slow-Slow scheme. This indicates that if
involuntary EMG interference is occasionally distributed in both training and testing
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datasets, its influence on the classification performance can be neglected, due to some
certain degree of adaptability of the used statistical classifier (i.e., LDA) to data variation.

Across all subjects, we observed the AR+RMS feature set achieved slightly superior
classification performance to the TD feature set under all the testing schemes. Statistical
analysis demonstrated significant difference (p = 0.005) in average classification accuracy
between both feature sets, especially under the Slow-Fast scheme. The slight performance
improvement of the AR+RMS feature set in this study may be due to the less sensitive
character of the AR coefficients to addictive involuntary interference compared with the TD
feature set.

One limitation of the study is that it is difficult to quantitatively describe or predict the
amount of involuntary motor activity in voluntary surface EMG signals. It is not clear
whether or how the involuntary muscle activity that occurs after stroke is correlated to the
assessment of spasticity using different methods (such as clinical examination scales,
manual and isokinetic dynamometry and pendulum-test methods, or the documentation of
spasm frequency [20], [21]). Thus the design of our study was oriented toward qualitative
differentiation of voluntary surface EMG with relative presence or absence of involuntary
motor activity.

In this study, up to 41 EMG channels were used for classification analysis. Our previous
studies have demonstrated that it is possible to dramatically reduce the number of electrodes
while maintaining the similar level of high classification accuracies. Thus it is important to
determine the most appropriate channels for implementation of a practical myoelectric
control system. Furthermore, multiple features extracted from each channel or analysis
window have been used for the classification. It is also necessary to perform statistical
feature selection to determine the most appropriate features for classification. Feature
dependent channel selection will further reduce the complexity of signal processing and
make the method suitable for online application.

This study examined the influence of involuntary EMG activity on myoelectric pattern
recognition performance of hemiparetic stroke patients. Recently, attempts have been made
toward simultaneous and proportional control of multi-DOFs, using artificial neural
networks to learn and predict associations between surface EMG features and force levels
produced by individual patterns and their combinations [33]–[35]. Such an approach, if
applied in stroke patients, may be similarly affected by involuntary motor activity present in
surface EMG signals. Further studies are needed to quantitatively assess how involuntary
motor activity may affect control performance.

Finally, this study focused on the effect of involuntary motor activity on surface EMG
classification performance by testing a group of stroke subjects with mild to severe
spasticity in wrist and hand muscles. It is acknowledged that the involuntary motor activity
may be present in different degrees for each specific subject. The variability of the recorded
involuntary motor activity across subjects can be illustrated by examples in Fig. 3, where
three subjects exhibited involuntary motor activity presented at different timings and
intensity levels with respect to the EMG bursts during voluntary muscle contractions. Thus
the design of myoelectric control system should be subject-specific according to each
subject’s impairment characteristics. Furthermore, involuntary motor activity was also
reported in other neurological disorders such as spinal cord injury [31] and cereal palsy [32].
The findings of the current study can provide helpful reference to predict or assess the
influence of involuntary motor activity from other neurologic disorders on surface EMG
classification performance.
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In summary, this study for the first time investigates the effect of involuntary motor activity
of paretic-spastic muscles on classification of surface EMG signals. For each stroke subject,
the degree of involuntary motor activity present in voluntary surface EMG recordings was
qualitatively described from different experimental protocols for performing the movements
(i.e. a slow session and a fast session). Across all tested stroke subjects, our results revealed
that when involuntary surface EMG was absent or present in both training and testing
datasets, high accuracies can be achieved in classification of different movements using
surface EMG signals from paretic muscles. When involuntary surface EMG was solely
involved in either training or testing datasets, the classification accuracies would be
dramatically reduced. However, if both training and testing datasets contained EMG signals
with presence and absence of involuntary EMG interference, high accuracies can still be
achieved. The findings of this study can be used to guide appropriate design and
implementation of myoelectric pattern recognition based systems or devices toward
promoting robot-aided therapy for stroke survivors.
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Figure 1.
Schematic description of the electrode placement for 41-channel surface EMG recordings.
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Figure 2.
Illustration of the 11 different wrist and hand functional movements used in this study.
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Figure 3.
Illustration of representative signal segments of a single surface EMG channel recorded
from (a) Subject 3, (b) Subject 6, and (c) Subject 8, within (1) the slow session and (2) the
fast session, respectively, when the subject was performing cylindrical grip. The gray
rectangles under every signal segment mark voluntary muscle contractions. Each of the top
two signal segments, (a1) and (a2), is also shown with an overview (top) and two expanded
views (bottom) of voluntary and involuntary EMG activity, respectively.
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Figure 4.
Illustration of surface EMG onset/offset detection using sample entropy analysis, with signal
segments recorded within (a) the slow session and (b) the fast session, respectively (the
same as shown in Fig. 3a). The vertical arrows represent the detected onset/offset timing of
voluntary contractions based on the sample entropy results in the bottom panel. The filtered
EMG signal amplitude is also shown in the middle panel for comparison purpose.
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Figure 5.
Pattern-to-pattern confusion matrices derived from both two subjects using TD feature set
under the Slow-Fast and Slow-Slow testing schemes, respectively. In each confusion matrix,
an element at the x-th row and y-th column represents the number of testing windows for
pattern x classified to pattern y. The main diagonal elements (shaded in dark) correspond to
the numbers of correctly classified windows (i.e., TP) for each pattern, whereas other non-
zero elements off the main diagonal are errors (FP or FN). Based on a confusion matrix, the
Pre for each pattern is computed as the ratio of the diagonal element to the summation of all
elements in the corresponding column, the Sen is computed as the ratio of diagonal element
to the summation of all elements in the corresponding row, and the overall accuracy is
computed as the ratio of the summation of all diagonal elements to the summation of all
elements in the entire matrix.
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