
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2013, Article ID 417491, 23 pages
http://dx.doi.org/10.1155/2013/417491

Research Article
Optical Coherence Tomography Noise Reduction Using
Anisotropic Local Bivariate Gaussian Mixture Prior in 3D
Complex Wavelet Domain

Hossein Rabbani,1,2 Milan Sonka,2 and Michael D. Abramoff2

1 Biomedical Engineering Department, Medical Image & Signal Processing Research Center,
Isfahan University of Medical Sciences, Isfahan 81745, Iran

2The Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA

Correspondence should be addressed to Hossein Rabbani; h rabbani@med.mui.ac.ir

Received 7 January 2013; Revised 1 June 2013; Accepted 21 June 2013

Academic Editor: Michael W. Vannier

Copyright © 2013 Hossein Rabbani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the
proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the
pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets.
We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the
heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT
images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On
this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and
homomorphic/nonhomomorphicmodel. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs
from650× 512× 128OCTdataset in the presence of wet AMDpathology. Our simulations show that the bestMMSE estimator using
local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement
of 7.8 ± 1.7 in CNR.

1. Introduction

Optical coherence tomography (OCT) is an optical signal
acquisition and processing method that captures 3D images
fromwithin optical scatteringmedia such as biological tissues
[1–4]. For example, in ophthalmology, OCT is used to obtain
detailed images from within the retina [4]. Similar to other
optical tomographic techniques, OCT suffers from speckle
noise that reduces the ability of image interpretation [5]. So,
noise reduction is an essential part of OCT image processing
systems. Until now, several techniques for OCT noise reduc-
tion have been reported [6–14]. Initial methods perform in
complex domain [15], that is, before producing magnitude of
OCT interference signal, while most introduced despeckling
methods are applied after an OCT image is formed [6–14].
These methods, which usually suppose multiplicative noise

for speckled data, also can be categorized into image domain
and transform domain methods. As an example for image
domain techniques, in [16] the rotating kernel transform
(RKT) filters are applied on an image with a set of oriented
kernels and keep the largest filter output for each pixel. Other
image domain methods based on enhanced Lee filter [17],
median filter [17], symmetric nearest neighbor filter [17], and
adaptive Wiener filter [17], and I-divergence regularization
[6] and PDE-based nonlinear diffusion methods [14] have
been reported in the literature.

Transform domain techniques typically outperform the
image domain techniques because incorporating speckle
statistics in the despeckling process would be facilitated in
sparse domains. Such techniques apply a sparse transform
(such as wavelet and curvelet transforms) [7–12, 18]
directly on data (viz., nonhomomorphic methods) or on
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log-transformed data (viz., homomorphic methods), and
suppose that in the sparse domain noise is converted to
additive white Gaussian noise (AWGN) [13] or other models
which can be removed using an appropriate shrinkage
function. For example, in [18], a spatially adaptive wavelet
thresholding method is used for speckle suppression in
log-transformed domain. Since actual signal in OCT images
consists of horizontal edges arising from reflections at the
layer boundaries, most of the edge information is in “low-
pass”-“high-pass” (LH) subbands (and some of it in HH
subbands). Therefore, an increased threshold in the vertical
subbands using a constant multiplier (𝐾 = 4) is chosen to
decrease further noise with a minimal effect on the edge
sharpness. Other transform domain methods based on hard
thresholding in 3D curvelet domain [8], soft thresholding
in discrete complex wavelet transform (DCWT) domain [9],
and temporal and spatial wavelet-based filtering [10] have
been reported in other literatures.

In fact denoising is the problem of obtaining the noise-
free data from noisy data observation, which may be solved
in a deterministic or probabilistic framework. In the first
case, each voxel is considered as an unknown deterministic
variable, and non-Bayesian techniques are employed to solve
this problem. In the second case, the data is modeled as a
random field, and Bayesian methods are used for the estima-
tion of clean data from the noisy environment.Therefore, the
proposed prior probability distributions for noise-free data
and noise (i.e., proposed as speckle for OCT data) play a key
role in the noise reduction problem.

1.1. Statistical Properties of Noise-Free Coefficients. Descrip-
tion of the statistical properties of natural signals can be
facilitated in the wavelet domain [19] due to sparseness and
decorrelation properties of wavelets [20]. The sparseness
property states that the marginal pdf of wavelet coefficients
in each subband has a large peak at zero and its tails fall
to zero slower than the Gaussian pdf (leptokurtic). On this
base, some long-tailed pdfs such as generalized Gaussian
distribution (GGD) [21, 22], 𝛼-stable distributions [23],
Bessel K form densities [24, 25], and mixture pdfs [26–31]
have been proposed. Although the decorrelation property
of wavelets states that coefficients at the same positions in
the adjacent scales are uncorrelated, it does not mean that
they are independent. The interscale dependency of wavelet
states that large/small values of wavelet coefficients tend to
propagate across scales [32]. Some researchers have proposed
hidden Markov models (HMMs) [33] and Markov random
fields (MRFs) [34] to model the interscale dependency [35].
Recently, it has been shown that some non-Gaussian bivariate
joint pdfs for each coefficient and its parent, such as circular
symmetric Laplacian pdf [36], bivariate Cauchy distribution
[37], (multivariate) Gaussian scale mixture (GSM) model
[27, 38, 39], and bivariate Laplacian mixture models [40]
are able to capture this property easily and produce better
denoising results with lower computational complexity.

The dependencies between wavelet coefficients are not
restricted to the interscale dependency. There is another
dependency between spatial adjacent coefficients in each

subband, namely, intrascale dependency [42]. This depen-
dency states that if a particular wavelet coefficient is large/
small, then the spatial adjacent coefficients are likely to
be large/small too. Usually this property is captured using
local parameters for pdfs [37], and it has been shown
that denoising algorithms using this property for statistical
modeling of wavelets are able to improve the denoising
results [43–45]. For example, Mihçak [43] employs local
variance for Gaussian pdf to model intrascale dependency.
In [44], a mixture of two Laplace pdf with local parame-
ters is proposed for simultaneously capturing heavy-tailed
nature and intrascale dependency. Reference [45], using
local variance for proposed model in [36], improves the
results for noise reduction application because this local
pdf models both interscale and intrascale dependencies. In
this paper, we extend the proposed pdf in [46] based on a
mixture of bivariate Gaussian pdfs with local parameters for
noise-freewavelet coefficients. Since the empirically observed
distribution ofwavelet coefficient pairs in adjacent scales have
elliptical symmetry, we use different variances for marginal
pdfs that lead to an elliptical symmetric bivariate pdf instead
of circular symmetric pdf. Recently, it has been shown that
using anisotropic window instead of square window can
improve the denoising results [47]. Based on the special
structure of OCT data, we choose an anisotropic windowing
procedure for local parameters estimation that results in
visual quality improvement.

1.2. Discrete Complex Wavelet Transform (DCWT). The
wavelet based image denoising consists of the following steps.

(1) Signal transformation of the noisy observation.
(2) Modification of the noisy wavelet coefficients based

on some criteria.
(3) Inverse signal transformation of modified coeffi-

cients.

As explained earlier, the second step depends on the type
of estimator and for a minimummean square error (MMSE)
estimator, the proposedmodel for signal and noise (which we
propose as amultiplicativemodel), the proposed pdf of noise-
free wavelet coefficients (modeled, in this paper, as a mixture
of bivariate Gaussian pdfs with local parameters), and the
proposed pdf for noise (withwhichwe test bothGaussian and
two-sided Rayleigh distributions) define the performance of
the algorithm. However, for the first and last steps of wavelet-
based denoising algorithm, the type of transformation plays
a key role. In this paper, we use DCWT [48] instead of
ordinary discrete wavelet transform (DWT). Despite DWT
being a sparse representation that outperforms many signal
processing approaches, it does not lead to an optimum
performance in all applications and suffers from several
fundamental shortcomings (especially in high-dimensional
cases), which DCWT avoids them. These shortcomings are
as follows.

(1) In the neighborhood of an edge, the DWT pro-
duces both large and small wavelet coefficients. In
contrast, the magnitudes of DCWT coefficients are
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more directly related to their adjacency to the edge.
The main reason of this phenomenon is using band-
pass filters that produce DWT coefficients which
oscillate positively and negatively around the singu-
larities, and this subject complicates wavelet-based
processing.

(2) DWT is not shift invariant. It means that a small shift
in the input signal of DWT makes the total energy of
wavelet coefficients in subband completely differ.This
shift greatly perturbs oscillation pattern around sin-
gularities of the DWT coefficient which complicates
wavelet-domain processing.

(3) Since the DWT coefficients in each subband are pro-
duced via critical sampling after using nonideal low-
pass and high-pass filters, substantial aliasing would
be produced. If the wavelet coefficients are not chang-
ed, the inverse DWT cancels this aliasing. Applying
any processing method on wavelet coefficients (such
as thresholding) disarranges this balance between
the forward and inverse transforms which leads to
artifacts in the reconstructed signal.

(4) The directional selectivity of 2D DCWT has been
explained in Appendix A. Similar to the 2D case, the
standard 3D data transforms, which are separable
multiplication of 1D tensors, do not provide useful
representations with good energy compaction prop-
erty for 3D data. For example, the multi-dimensional
standard separable DWT mixes orientations and
motions in its subbands and produces the checker-
board artifacts (Figure 1). In contrast, since the spec-
trum of the (approximately) analytic 1D wavelet is
supported on only one side of the frequency axis, the
spectrum of the DCWT in 3D domain is supported
in only 1/27 of the 3D frequency plane. So, instead
of 3D DWT, usually oriented transforms such as 3D
DCWT are proposed for 3D data processing [41, 48–
52]. Figure 1 shows a comparison between subbands
of 3D DWT and 3D DCWT.

1.3. Organization of the Paper. In Section 2, we explain our
proposed pdf for noise-free 3D DCWT coefficients, that is, a
mixture of bivariate Gaussian distributions with local param-
eters. In Section 3, at first we obtain a local thresholding func-
tion supposing a priori distribution as a bivariate Gaussian
pdf with local variance, and then in a Bayesian framework
we produce our new shrinkage functions derived from the
proposed pdf and using Gaussian/two-sided Rayleigh noise
distribution and homomorphic/non-homomorphic model.
In Section 4, we explain the proposed anisotropic window
selection procedure for local parameter estimation based on
special structure of OCT data. In Section 5, we use ourmodel
for wavelet-based denoising of several 3D OCT data. We
compare our methods visually and in terms of PSNR. Also
in this section, we use the proposed method for nonspeckle
noise reduction. Finally, in Section 6, we summarize this
paper and suggest some future work.

2. Bivariate Gaussian Mixture Model with
Local Parameters

One of the primary properties of the wavelet transform
is compression. This property means that the marginal
distributions of wavelet coefficients are highly kurtotic, and
so long-tailed distributions are suitable models for marginal
pdf. A zero-mean mixture model could have a large peak at
zero and would be long tailed. For example, in [22, 26, 29, 31]
a mixture of Gaussian distributions is proposed to model the
heavy-tailed nature of wavelet coefficients. Figure 2 shows
this model that consists of two zero-mean Gaussian distribu-
tions with two different variances.The Gaussian pdf with low
variance can model the large peak at zero and the Gaussian
pdf with high variance can model tails of distribution. The
secondary properties of the wavelet transform are cluster-
ing and persistence. The clustering property, that is called
intrascale dependency, states that if a particular wavelet coef-
ficient is large/small, then adjacent coefficients are very likely
to also be large/small [36], and usually local pdfs are able to
model this property. The persistence property, that is called
the interscale dependency, states that large/small values of
wavelet coefficients tend to propagate across scales [36]. As an
example, Figure 3 illustrates the empirical joint parent-child
histogram of wavelet coefficients computed from the 200,
512 × 512 images from theCorel image database [42]. Usually
this property can be modeled using proper bivariate pdfs.

2.1. Description of the Proposed Model. In this paper, we
assume a pdf as a mixture of two bivariate Gaussian pdfs with
local parameters in order tomodel the distribution of wavelet
coefficients of images as follows:
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where 𝑎(𝑘) ∈ [0, 1], 𝜎
11
(𝑘), 𝜎

12
(𝑘), 𝜎

21
(𝑘), 𝜎

22
(𝑘) are the

mixture model parameters. For each random bivariable, the
second component is the parent of the first component; for
example, 𝑤

2
(𝑘) represent, the parent of 𝑤

1
(𝑘) at the same

spatial position as the 𝑘th wavelet coefficient𝑤
1
(𝑘) and at the

next coarser scale.
Our proposed model in this paper, that is a mixture of

bivariate Gaussian pdfs with local parameters, is mixture,
bivariate and local. Therefore, it is able to simultaneously
capture the heavy-tailed property and inter- and intrascale
dependencies.
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Figure 1: A comparison between the idealized support of the Fourier spectrum of each standard and complex wavelet in the 3D frequency
domain. (a) Isosurfaces of the 7 3D wavelets for a standard 3D wavelet transform.The blue and red colors have the same amplitude, but their
phases are complement. (b) Isosurfaces of 7 of the 28 3Dwavelets for a 3DDCWT. Each subband corresponds tomotion in a specific direction
[41].
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Figure 2: Zero-mean Gaussian mixture model (left image) and empirical histogram of wavelet in a subband together with the Gaussian
mixture model (right image) [26].
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Figure 3: Empirical joint parent-child histogram of wavelet coefficients (computed from the Corel image database) [42].

After substitution of mixture model in the definition
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See Appendix B for more explanation.

2.2. Local EM Algorithm. To characterize the parameters in
(1), it is necessary to have the parameters 𝜎

11
(𝑘), 𝜎

21
(𝑘),

𝜎
12
(𝑘), 𝜎

22
(𝑘), and 𝑎(𝑘). For this mixture model, we use

an iterative numerical algorithm to estimate these parame-
ters. The expectation maximization (EM) algorithm is most
frequently used to estimate such parameters. Usually, the
EM algorithm for mixture models employs all data in each
subband to obtain the parameters. Using this global EM
algorithm, equal parameters are obtained for all data in
each subband. However, to model the intrascale dependency,
we must incorporate the local statistics and need to have
different parameters for each voxel in each subband. So, we
introduce a local version of EM algorithm. This local EM
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algorithm is able to obtain separate parameters for each voxel
by the implementation of EM algorithm in each window
𝑁(𝑘) centered at𝑤(𝑘). This iterative algorithm has two steps.
Assuming that the observed data 𝑤(𝑘) for 𝑘 = 1, . . . , 𝑁, the
𝐸-step calculates the responsibility factors for each data as
follows:
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where𝑀 is the number of coefficients in the square window
𝑁(𝑘) centered at 𝑤(𝑘).
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3. Denoising Using MMSE Estimator

In this section, the denoising of a 3DOCT data is considered.
We assume that dominant noise in OCT data is speckle. In
this case as a common model, we propose multiplicative
model as follows:

𝑥 (𝑖) = 𝑠 (𝑖) 𝑔 (𝑖) , (8)

where 𝑖 is the index of voxel and is between 1 and number of
voxels.

As explained in Introduction, reported transform-based
OCT noise reduction methods in the literatures [7–12, 18]
usually at first transform data into log domain, and suppose
that noise in log domain is AWGN:

𝑊(log𝑥 (𝑖)) = 𝑊 (log 𝑠 (𝑖)) + 𝑊 (log𝑔 (𝑖)) , (9)

where in this paper𝑊 shows 3DDCWT operator. So, we can
write

𝑦 (𝑘) = 𝑤 (𝑘) + 𝑛 (𝑘) , (10)

where 𝑤(𝑘), 𝑦(𝑘), and 𝑛(𝑘) are, respectively, the 𝑘th noise-
free 3D DCWT coefficients, noisy 3D DCWT coefficients,
and noise in the 3D DCWT domain.

Recently, it has been reported [56–59] that non-homo-
morphic techniques that do not use this nonlinear operation
and apply wavelet transform directly on speckled data lead
to unbiased estimation of the data and decrease the compu-
tational complexity. On this base after applying 3D DCWT
(directly) on data, we would have

𝑊(𝑥 (𝑖)) = 𝑊 (𝑠 (𝑖) 𝑔 (𝑖)) = 𝑊 (𝑠 (𝑖) + 𝑠 (𝑖) (𝑔 (𝑖) − 1))
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(11)

Again we can write

𝑦 (𝑘) = 𝑤 (𝑘) + 𝑛 (𝑘) , (12)

where𝑤(𝑘),𝑦(𝑘), and 𝑛(𝑘) are, respectively, the 𝑘th noise-free
3D DCWT coefficients, noisy 3D DCWT coefficients, and
noise in the 3D DCWT domain. Since speckle noise 𝑔 can
be modeled as a unit-mean random process independent of
the noise-free data, we would have 𝐸[𝑊(𝑠(𝑔 − 1))] = 0, and
also it can be easily shown [58] that 𝐸[𝑊(𝑠)𝑊(𝑠(𝑔 − 1))] = 0

which means that 𝑤(𝑘) and 𝑛(𝑘) are zero-mean uncorrelated
random variables. If 𝑤
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Based on the persistence property, we need to have a
bivariate model based on parent-child pairs. So, we can
propose the following bivariate model:

𝑦 (𝑘) = 𝑤 (𝑘) + 𝑛 (𝑘) , (14)

where𝑤(𝑘) = (𝑤(𝑘), 𝑤
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noise-free 3D DCWT coefficients, noisy 3D DCWT coeffi-
cients, and additive noise in the 3D DCWT domain. In the
literature, several models such as 𝐾-distribution, Rayleigh,
Weibull, log-normal, and Nakagami distributions have been
proposed [57, 58, 60–63] for speckle in image domain. In this
paper, we test both AWGN and two-sided Rayleighmodel for
noise in wavelet domain as follows:

𝑝
𝑛
(𝑛 (𝑘)) =

1

2𝜋𝜎
2

𝑛

exp(−
𝑛
2

1
(𝑘) + 𝑛

2

2
(𝑘)

2𝜎
2

𝑛

) , (15)

𝑝
𝑛
(𝑛 (𝑘)) =





𝑛
1
(𝑘) 𝑛
2
(𝑘)






4𝛼
4

exp(−
𝑛
2

1
(𝑘) + 𝑛

2

2
(𝑘)

2𝛼
2

) , (16)

where 𝜎2
𝑛
= 2𝛼
2 shows the noise variance.

Now our goal is the estimation of 𝑤(𝑘) from 𝑦(𝑘) =

𝑤(𝑘) + 𝑛(𝑘), where 𝑛(𝑘) is a Gaussian or two-sided Rayleigh
according to some criteria.

If we employ the MMSE estimator for the estimation
problem, we get the posterior mean as an optimal solution:

𝑤 (𝑘) = ∬𝑤 (𝑘) 𝑝
𝑤(𝑘)|𝑦(𝑘)

(𝑤 (𝑘) | 𝑦 (𝑘)) 𝑑𝑤 (𝑘)

= ∬𝑤 (𝑘)

𝑝
𝑦(𝑘)|𝑤(𝑘)

(𝑦 (𝑘) | 𝑤 (𝑘)) 𝑝
𝑤(𝑘)

(𝑤 (𝑘))

𝑝
𝑦(𝑘)

(𝑦 (𝑘))

𝑑𝑤 (𝑘)

=

∬𝑤 (𝑘) 𝑝
𝑦(𝑘)|𝑤(𝑘)

(𝑦 (𝑘) | 𝑤 (𝑘)) 𝑝
𝑤(𝑘)

(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

𝑝
𝑦(𝑘)

(𝑦 (𝑘))

=

∬𝑤 (𝑘) 𝑝
𝑦(𝑘)|𝑤(𝑘)

(𝑦 (𝑘) | 𝑤 (𝑘)) 𝑝
𝑤(𝑘)

(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

∬𝑝
𝑦(𝑘)|𝑤(𝑘)

(𝑦 (𝑘) | 𝑤 (𝑘)) 𝑝
𝑤(𝑘)

(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

=

∬𝑤 (𝑘) 𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

𝑤(𝑘)
(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

∬𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

𝑤(𝑘)
(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

.

(17)
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3.1. Denoising Based on Modeling Noise-Free Data by Bivari-
ate Gaussian PDF with Local Variance. In order to solve
(17), we must know the prior distribution of 3D DCWT
coefficients, that is, 𝑝

𝑤(𝑘)
(𝑤(𝑘)). Defining Gauss(𝑥, 𝜎) :=

exp(−𝑥2/(2𝜎2))/(𝜎√2𝜋), if we suppose that 𝑤(𝑘), 𝑤
𝑝
(𝑘) are

independentGaussian pdf with variances𝜎
1
(𝑘) and𝜎

2
(𝑘), the

following bivariate Gaussian pdf with local variances can be
proposed for the noise-free wavelet coefficients:

𝑝
𝑤(𝑘)

(𝑤 (𝑘)) = 𝑝
𝑤(𝑘)

(𝑤 (𝑘)) ⋅ 𝑝
𝑤
𝑝
(𝑘)
(𝑤
𝑝
(𝑘))

= Gauss (𝑤 (𝑘) , 𝜎 (𝑘)) ⋅ Gauss (𝑤
𝑝
(𝑘) , 𝜎

𝑝
(𝑘))

⇒ 𝑝
𝑤(𝑘)

(𝑤 (𝑘))

= exp[− 𝑤
2

(𝑘)

2𝜎
2
(𝑘)

−

𝑤
2

𝑝
(𝑘)

2𝜎
2

𝑝
(𝑘)

]

× (2𝜋𝜎 (𝑘) 𝜎
𝑝
(𝑘))

−1

.

(18)

In this case, 𝑤(𝑘) and 𝑤
𝑝
(𝑘) are uncorrelated and inde-

pendent, and therefore the MMSE estimator of 𝑤(𝑘), 𝑤
𝑝
(𝑘)

yields the shrinkage function corresponding to univariate
Gaussian pdf, that is, Wiener filter [21] as follows:

𝑤 (𝑘) =

∬𝑤 (𝑘) 𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

𝑤(𝑘)
(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

∬𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

𝑤(𝑘)
(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

= 𝑦 (𝑘)

𝜎
2

(𝑘)

𝜎
2
(𝑘) + 𝜎

2

𝑛

.

(19)

And so we can write

̂
𝑤 (𝑘) = (

𝑦 (𝑘) 𝜎
2

(𝑘)

𝜎
2
(𝑘) + 𝜎

2

𝑛

,

𝑦
𝑝
(𝑘) 𝜎
2

𝑝
(𝑘)

𝜎
2

𝑝
(𝑘) + 𝜎

2

𝑛

) . (20)

Similarly, if we choose two-sided Rayleigh pdf for noise
distribution, the following estimator is obtained [44]:

𝑤 (𝑘) = 2𝑧 (𝑘)√2(2 −

𝜎
2

(𝑘)

𝛼
2

) + √

𝜋

2

(1 − 2

𝜎
2

(𝑘) 𝑧
2

(𝑘)

𝛼
2

)

× (erfc𝑥 (𝑧 (𝑘)) − erfc𝑥 (−𝑧 (𝑘)))

× (√

1

𝛼
2
+

1

𝜎
2
(𝑘)

(2 + 𝑧 (𝑘)√𝜋 erfc𝑥 (−𝑧 (𝑘))

− 𝑧 (𝑘)√𝜋 erfc𝑥 (𝑧 (𝑘))))
−1

,

(21)

where

𝑧 (𝑘) =

𝑦 (𝑘)

𝜎
2
(𝑘)

√

1

2/𝛼
2
+ 2/𝜎

2
(𝑘)

,

erfc𝑥 (𝑢) = 2

√𝜋

∫

∞

0

𝑒
−𝑡
2
−2𝑡𝑢

𝑑𝑡.

(22)

And so we can write

̂
𝑤 (𝑘) = ((2𝑧 (𝑘)√2(2 −

𝜎
2

(𝑘)

𝛼
2

)

+ √

𝜋

2

(1 −

𝜎
2

(𝑘) 𝑧
2

(𝑘)

𝛼
2

)

× (erfc𝑥 (𝑧 (𝑘)) − erfc𝑥 (−𝑧 (𝑘))))

× (√

1

𝛼
2
+

1

𝜎
2
(𝑘)

× (2 + 𝑧 (𝑘)√𝜋 erfc𝑥 (−𝑧 (𝑘))

−𝑧 (𝑘)√𝜋 erfc𝑥 (𝑧 (𝑘))))
−1

,

(2𝑧 (𝑘)√2(2 −

𝜎
2

𝑝
(𝑘)

𝛼
2

)

+ √

𝜋

2

(1 −

𝜎
2

𝑝
(𝑘) 𝑧
2

(𝑘)

𝛼
2

)

× (erfc𝑥 (𝑧
𝑝
(𝑘)) − erfc𝑥 (−𝑧

𝑝
(𝑘))))

× (√

1

𝛼
2
+

1

𝜎
2

𝑝
(𝑘)

× (2 + 𝑧
𝑝
(𝑘)√𝜋 erfc𝑥 (−𝑧

𝑝
(𝑘))

− 𝑧
𝑝
(𝑘)√𝜋 erfc𝑥 (𝑧

𝑝
(𝑘))))

−1

) .

(23)

Suppose that the input noise variance is known. To imple-
ment (20) or (23), we must know the parameter of the prior
𝜎(𝑘) (suppose that 𝜎(𝑘) = 𝜎

𝑝
(𝑘)). Mihçak et al. [43] showed

that using local variance (instead of global variance) for
Wiener filter leads to a substantial improvement in denoising
results (using local variance allows incorporating the local
statistics of image into the proposed prior). It has been shown
in the literature that the correctness of estimation of variance
is an impact factor for denoising [23, 27, 34, 42–46]. Thus,
the proposed criteria for estimation of the variance, such as
the involved data for estimation (e.g., in some approaches
the coarser scales are used as a source of prior), the type of
estimator, and the shape and size of the proposed window
for the local estimation of the variance, play key roles in the
performance of denoising procedure. For example, in [54] a
recurrence equation using a local Gaussian pdf is used for
estimation of 𝜎(𝑘) or in [64] the variable size of the locally
adaptive window is obtained using a region-based approach.
However, for each data point 𝑦(𝑘), a simple estimation of
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𝜎(𝑘) can be formed based on a local neighborhood 𝑁(𝑘). In
simplest case, we can use a square window 𝑁(𝑘) centered
at 𝑦(𝑘) and suppose that in this window the variance is
approximately constant. Then, an empirical estimate for 𝜎(𝑘)
can be obtained as follows:

�̂�
2

(𝑘) =

1

2𝑀

∑

𝑗∈𝑁(𝑘)

(𝑦
2

(𝑗) + 𝑦
2

𝑝
(𝑗)) − 𝜎

2

𝑛
, (24)

where 𝑀 is the number of coefficients in 𝑁(𝑘) and 𝜎
𝑛
can

be estimated by [4] 𝜎
𝑛
= median{|noisy wavelet coefficients

in finest scale|}/0.6745. In this estimation, we propose the
coarser scale as a source of prior, but another estimate can
be obtained using only spatial adjacent in the same scale. It
has been shown [47] that the local features in the edges of
images are not isotropic and so can be better modeled in a
shape-adaptive window selection manner. We explain in this
regard in Section 4 and try to improve the denoising results
by using anisotropic window instead of square window for
the estimation of local parameters (such as variance in (24)).

3.2. Denoising Based on Modeling Noise-Free Data by a
Mixture of Bivariate Gaussian PDFs with Local Parameters.
A nonlinear shrinkage function for wavelet-based denoising,
which is derived by assuming that the noise-free wavelet
coefficients follow a bivariate Gaussian mixture model with
local parameters given by (1), is introduced in this section.
Substituting (1) in (17), we can write

𝑤 (𝑘) = (∬𝑤 (𝑘) 𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘))

× [𝑎 (𝑘) 𝑝
1
(𝑤 (𝑘))

+ (1 − 𝑎 (𝑘)) 𝑝
2
(𝑤 (𝑘))] 𝑑𝑤 (𝑘))

× (∬𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘))

× [𝑎 (𝑘) 𝑝
1
(𝑤 (𝑘))

+ (1 − 𝑎 (𝑘)) 𝑝
2
(𝑤 (𝑘))] 𝑑𝑤 (𝑘))

−1

=

𝑎 (𝑘)∬𝑤 (𝑘) 𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

1
(𝑤 (𝑘)) 𝑑𝑤 (𝑘)

𝑎 (𝑘) 𝑔
1
(𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔

2
(𝑦 (𝑘))

+ ((1 − 𝑎 (𝑘))

× ∬𝑤 (𝑘) 𝑝
𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

2
(𝑤 (𝑘)) 𝑑𝑤 (𝑘))

× (𝑎 (𝑘) 𝑔
1
(𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔

2
(𝑦 (𝑘)))

−1

,

(25)

where

𝑔
𝑖
(𝑦 (𝑘)) = ∬𝑝

𝑛
(𝑦 (𝑘) − 𝑤 (𝑘)) 𝑝

𝑖
(𝑤 (𝑘)) 𝑑𝑤 (𝑘) ,

𝑖 = 1, 2.

(26)

In fact, 𝑔
𝑖
(𝑦(𝑘)) is the 2D convolution of the pdf of 𝑝

𝑛

(defined in (15) or (16)) and 𝑝
𝑖
(defined in (1)). Using (15)

as proposed model for noise, both 𝑝
𝑛
and 𝑝

𝑖
are bivariate

Gaussian pdfs. So, we obtain

𝑔
𝑖
(𝑦 (𝑘)) = exp ( − (1/2)

× (𝑦
2

(𝑘) / (𝜎
2

𝑛
+ 𝜎
2

𝑖1
(𝑘))

+𝑦
2

𝑝
(𝑘) / (𝜎

2

𝑛
+ 𝜎
2

𝑖2
(𝑘))))

× (2𝜋√(𝜎
2

𝑛
+ 𝜎
2

𝑖1
(𝑘)) (𝜎

2

𝑛
+ 𝜎
2

𝑖2
(𝑘)))

−1

𝑖 = 1, 2.

(27)

For two-sidedRayleigh noise (16),more computations are
needed. After some simplifications, the final formula would
be

𝑔
𝑖
(𝑦 (𝑘))

=

exp (−𝑦2 (𝑘) /2𝜎2
𝑖1
(𝑘) − 𝑦

2

𝑝
(𝑘) /2𝜎

2

𝑖2
(𝑘))

8𝜋 (1 + 𝜎
2

𝑖1
(𝑘) /𝛼

2
) (1 + 𝜎

2

𝑖2
(𝑘) /𝛼

2
) 𝜎
𝑖1
(𝑘) 𝜎
𝑖2
(𝑘)

× (2 + 𝑧
𝑖
(𝑘)√𝜋 erfc𝑥 (−𝑧

𝑖
(𝑘))

− 𝑧
𝑖
(𝑘)√𝜋 erfc𝑥 (𝑧

𝑖
(𝑘)))

× (2 + 𝑧
𝑖𝑝
(𝑘)√𝜋 erfc𝑥 (−𝑧

𝑖𝑝
(𝑘))

− 𝑧
𝑖𝑝
(𝑘)√𝜋 erfc𝑥 (𝑧

𝑖𝑝
(𝑘))) ,

𝑖 = 1, 2,

(28)

where

𝑧
𝑖
(𝑘) =

𝑦 (𝑘)

𝜎
2

𝑖1
(𝑘)

√

1

2/𝛼
2
+ (2/𝜎

2

𝑖1
(𝑘))

, 𝑖 = 1, 2,

𝑧
𝑖𝑝
(𝑘) =

𝑦
𝑝
(𝑘)

𝜎
2

𝑖2
(𝑘)

√

1

2/𝛼
2
+ (2/𝜎

2

𝑖2
(𝑘))

, 𝑖 = 1, 2.

(29)

Using (19), we can obtain numerators of (25), and finally
(25) for AWGN can be written as

𝑤 (𝑘) = (𝜎
2

11
(𝑘) / (𝜎

2

11
(𝑘) + 𝜎

2

𝑛
)

+𝑅 (𝑦 (𝑘)) (𝜎
2

21
(𝑘) / (𝜎

2

21
(𝑘) + 𝜎

2

𝑛
)))

× (1 + 𝑅 (𝑦 (𝑘)))
−1

𝑦 (𝑘) ,

(30)
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Figure 4: A shrinkage function produced from BiGaussMixShrink
for sample parameters.

where

𝑅 (𝑦 (𝑘)) = (( (1 − 𝑎 (𝑘))

× exp(− 1

2

× (

𝑦
2

(𝑘)

𝜎
2

𝑛
+ 𝜎
2

21
(𝑘)

+

𝑦
2

𝑝
(𝑘)

𝜎
2

𝑛
+ 𝜎
2

22
(𝑘)

)))

×(√(𝜎
2

𝑛
+ 𝜎
2

21
(𝑘)) (𝜎

2

𝑛
+ 𝜎
2

22
(𝑘)))

−1

)

× ((𝑎 (𝑘) exp (−1
2

(

𝑦
2

(𝑘)

𝜎
2

𝑛
+ 𝜎
2

11
(𝑘)

+

𝑦
2

𝑝
(𝑘)

𝜎
2

𝑛
+ 𝜎
2

12
(𝑘)

)))

×(√(𝜎
2

𝑛
+ 𝜎
2

11
(𝑘)) (𝜎

2

𝑛
+ 𝜎
2

12
(𝑘)))

−1

)

−1

.

(31)

We call the new obtained bivariate local shrinkage func-
tion as BiGaussMixShrinkL. Figure 4 shows this shrinkage
function with sample constant parameters.

Similarly, using (21), we can obtain numerators of (25),
and finally (25) for two-sided Rayleigh noise is obtained as

𝑤 (𝑘) =

1

1 + 𝑅 (𝑦 (𝑘))

× (2𝑧
1
(𝑘)√2(2 −

𝜎
2

11
(𝑘)

𝛼
2

)

+ √

𝜋

2

(1 −

𝜎
2

11
(𝑘) 𝑧
2

1
(𝑘)

𝛼
2

)

× (erfc𝑥 (𝑧
1
(𝑘)) − erfc𝑥 (−𝑧

1
(𝑘))))

× (√

1

𝛼
2
+

1

𝜎
2

11
(𝑘)

× (2 + 𝑧
1
(𝑘)√𝜋 erfc𝑥 (−𝑧

1
(𝑘))

−𝑧
1
(𝑘)√𝜋 erfc𝑥 (𝑧

1
(𝑘))))

−1

+

𝑅 (𝑦 (𝑘))

1 + 𝑅 (𝑦 (𝑘))

× (2𝑧
2
(𝑘)√2(2 −

𝜎
2

21
(𝑘)

𝛼
2

)

+ √

𝜋

2

(1 −

𝜎
2

21
(𝑘) 𝑧
2

2
(𝑘)

𝛼
2

)

× (erfc𝑥 (𝑧
2
(𝑘)) − erfc𝑥 (−𝑧

2
(𝑘))))

× (√

1

𝛼
2
+

1

𝜎
2

21
(𝑘)

× (2 + 𝑧
2
(𝑘)√𝜋 erfc𝑥 (−𝑧

2
(𝑘))

−𝑧
2
(𝑘)√𝜋 erfc𝑥 (𝑧

2
(𝑘))))

−1

,

(32)

where

𝑅 (𝑦 (𝑘))

=

1 − 𝑎 (𝑘)

𝑎 (𝑘)

×

(1 + 𝜎
2

11
(𝑘) /𝛼

2

) (1 + 𝜎
2

12
(𝑘) /𝛼

2

) 𝜎
11
(𝑘) 𝜎
12
(𝑘)

(1 + 𝜎
2

21
(𝑘) /𝛼

2
) (1 + 𝜎

2

22
(𝑘) /𝛼

2
) 𝜎
2𝑖1
(𝑘) 𝜎
22
(𝑘)

×

exp (−𝑦2 (𝑘) /2𝜎2
21
(𝑘) − 𝑦

2

𝑝
(𝑘) /2𝜎

2

22
(𝑘))

exp (−𝑦2 (𝑘) /2𝜎2
11
(𝑘) − 𝑦

2

𝑝
(𝑘) /2𝜎

2

12
(𝑘))

× ( (2 + 𝑧
2
(𝑘)√𝜋 erfc𝑥 (−𝑧

2
(𝑘))

−𝑧
2
(𝑘)√𝜋 erfc𝑥 (𝑧

2
(𝑘)))

× (2 + 𝑧
2𝑝
(𝑘)√𝜋 erfc𝑥 (−𝑧

2𝑝
(𝑘))

−𝑧
2𝑝
(𝑘)√𝜋 erfc𝑥 (𝑧

2𝑝
(𝑘))))

× ((2 + 𝑧
1
(𝑘)√𝜋 erfc𝑥 (−𝑧

1
(𝑘))

− 𝑧
1
(𝑘)√𝜋 erfc𝑥 (𝑧

1
(𝑘)))
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× (2 + 𝑧
1𝑝
(𝑘)√𝜋 erfc𝑥 (−𝑧

1𝑝
(𝑘))

−𝑧
1𝑝
(𝑘)√𝜋 erfc𝑥 (𝑧

1𝑝
(𝑘))))

−1

.

(33)

We call this bivariate local shrinkage function as BiGauss-
RayMixShrinkL. Figure 5 shows this shrinkage function with
sample constant parameters.

For implementation of our denoising algorithm, we must
estimate the parameters 𝜎

𝑖𝑗
(𝑘) for 𝑖, 𝑗 = 1, 2, and 𝑎(𝑘) (that are

for noise-free data) from noisy observation. For AWGN, the
noisy observation would be a Gaussian mixture model with
parameters 𝑎(𝑘),√𝜎2

𝑛
+ 𝜎
2

𝑖𝑗
(𝑘) for 𝑖, 𝑗 = 1, 2. So, the following

local EM algorithm is used to obtain the parameters.
E-step

𝑟
1
(𝑘) ←

𝑎 (𝑘) 𝑔
1
(𝑦 (𝑘))

𝑎 (𝑘) 𝑔
1
(𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔

2
(𝑦 (𝑘))

,

𝑟
2
(𝑘) ← 1 − 𝑟

1
(𝑘) .

(34)

M-step

𝑎 (𝑘) ←

1

𝑀

∑

𝑗∈𝑁(𝐾)

𝑟
1
(𝑗) , (35)

𝜎
2

1𝑚
(𝑘) ←

∑
𝑗∈𝑁(𝐾)

𝑟
𝑖
(𝑗) 𝑦
2

(𝑘)

∑
𝑗∈𝑁(𝐾)

𝑟
𝑖
(𝑗)

− 𝜎
2

𝑛
, 𝑚 = 1, 2, (36)

𝜎
2

2𝑚
(𝑘) ←

∑
𝑗∈𝑁(𝐾)

𝑟
𝑖
(𝑗) 𝑦
2

𝑝
(𝑘)

∑
𝑗∈𝑁(𝐾)

𝑟
𝑖
(𝑗)

− 𝜎
2

𝑛
, 𝑚 = 1, 2, (37)

where 𝑀 is the number of coefficients in the window 𝑁(𝐾)

centered at 𝑦(𝑘). As discussed in the literatures [40], for
non-Gaussian mixture models, which is a case for two-sided
Rayleigh noise, using (34)–(36) finally converge to the final
results.

Our denoising algorithm is summarized in Algorithm 1.

4. Shape Adaptive Windows Selection

It has been shown that using anisotropic and shape adap-
tive window for local parameter estimation can extremely
improve the modeling and processing results. For example,
in [47] a new image denoising is introduced that proposes
an anisotropic window around each pixel of image and
obtains the denoised pixel just by using the located data in
the window. Comparing with the denoising methods that
are based on proposing isotropic window around each pixel
(e.g., [23, 27, 34, 42–46]), the proposed method in [47]
is able to segment the image to rather smoothed regions
before denoising due to anisotropic window selection that
leads to improvement of denoising results. As explained
before, the mixture model parameters in each subbands are
estimated locally using an isotropic window around each
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Figure 5: A shrinkage function produced from BiGaussRayMixSh-
rink for sample parameters.

voxel. In this section at first we explain the structure of
macular OCT then we introduce 3D “linear polynomial
approximation-intersection confidence interval” (LPA-ICI)
method for applying shape adaptivewindow selection around
each voxel in 3D DCWT domain. So we will try the despeck-
ling results in 3D DCWT domain by choosing an anisotropic
window (instead of isotropic) for estimating the parameters
of mixture model in each subband locally.

4.1. OCT Structure. To select the shape-adaptive window, we
must take a look at the special structure of OCT data. In oph-
thalmology, theOCT data shows detailed images fromwithin
the retina.The automated analysis ofOCT images can be used
for the image-guided retinal therapy. Every year, many people
become blind as a result of age-related macular degeneration
(AMD) due to affecting the central retina where our central
vision is perceived.Themost sight-threatening form of AMD
is called exudative or wet AMD. Choroidal neovascular-
ization (CNV) is a common symptom of the degenerative
maculopathywet AMD.Awealth of powerful new treatments
for CNV, especially anti-VEGF agents, have become available
very recently to restore normal visual function. The risk of
ocular adverse events, including the devastating intraocular
infection, endophthalmitis, increases with repeated intravit-
real treatment injections, and the effects of chronic treatment
with anti-VEGF agents on the retina are unknown. Ideally
a more cost-effective, patient-specific dosing strategy with
the minimally necessary number of anti-VEGF injections
is required. With all the promise, these novel treatments
will only reach their full potential when objective and early
indices of treatment response are developed. Prior to the
introduction of retinal OCT imaging, clinical assessment of
whether the preservation or restoration of visual function
is successful, which indeed is the ultimate goal of treat-
ment, could only be obtained by measuring visual function.
Unfortunately, visual function lags structural response and
is cumbersome and noisy, and its reproducibility is limited.
Two-dimensional OCT imaging of the retina was introduced
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Summarization of the proposed denoising algorithm
Step 1. Complex Wavelet Transformation of Noisy Image to Find 𝑦(𝑘) and 𝜎

𝑛
.

Step 2. Estimation of the Prior (Finding Mixture Model Parameters in Each Subband).
2.1. Initialization for a(k) and 𝜎

11
(𝑘), 𝜎
12
(𝑘), 𝜎
21
(𝑘), 𝜎
22
(𝑘).

2.2. Using (34) to find 𝑟
1
(𝑘), 𝑟
2
(𝑘).

2.3. Using (37) to update a(k) by substituting 𝑟
1
(𝑘), 𝑟
2
(𝑘) from Step 2.2.

2.4. Updating the parameters of prior, 𝜎
11
(𝑘), 𝜎
12
(𝑘), 𝜎
21
(𝑘), 𝜎
22
(𝑘), using (36) and (37).

2.5. Finding 𝑔
𝑖
(𝑦(𝑘)) from (27) for AWGN and (28) for two-sided Rayleigh noise using updated

value in Step 2.3.
2.6. Iteration Step 2.2 to 2.4 until parameter convergence.

Step 3. Substituting the Final Parameters in Step 2 in Shrinkage Function (30) for AWGN
(after obtaining 𝑅(𝑦(𝑘)) using (31)) and Shrinkage Function (32) for two-sided Rayleigh
noise (after obtaining 𝑅(𝑦(𝑘)) using (33)).

Step 4. Inverse Complex Wavelet Transformation.

Algorithm 1: Outline of the proposed denoising algorithm.

Figure 6: Macular OCTs and detected SEADs by an expert.
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Figure 7: The red line shows the detected SEAD by an expert. The
yellow circles show the isotropic windows with various radii. The
green line illustrates the obtained anisotropic based on LPA-ICI rule.

several years ago, and was rapidly adopted, among others,
to qualitatively measure macular structure as an indicator of
AMD treatment response and for guidance of retreatment
in CNV recurrence. It is now becoming clear that these
simplified structural measures though leading indicators of
visual function are inadequate, as they are based on simplified
interpretation of single transverse slices of the macula, some
patients do not recover visual function even though their total
macular thickness has become normally thin after treatment,
and others paradoxically gain visual acuitywhile theirmacula
is still thickened.

True 3D spectral OCT imaging, that became available in
2007 is fast (1.5 s per volume scan), allows full 3D retinal
coverage at a much higher resolution and offers improved
imaging of subtle differences in retinal structure. In the
recent years [65, 66], 3D analysis of 3D OCT as an improved
measure of subtle macular structure has been proposed
motivated by various hypotheses as follows:Amodel of retinal
response to initial anti-VEGF treatment for CNV, based on
quantitative 3D OCT-derived measures, can predict the timing
of retreatment.

On this base, developing analysis methods and approach-
es for 3D spectral OCT image analysis in the presence
of wet AMD pathology (Symptomatic Exudate Associated
Derangements or SEADs, also known as AMD-related cysts,
vessel leakages, etc.) and assessing their performance by
comparison to expert analyses are of utmost interest. Another
interesting subject is determining how well the quantitative
SEAD- and layer-derivedmeasures from 3DOCT predict the
patient-specific outcome parameters in response to postin-
duction anti-VEGF treatment in patients with CNV in order
to predict the timing of retreatment.

Figure 6 shows several sample macular OCTs and detect-
ed SEADs by an expert as the region of interest (ROI). As

20
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120

Figure 8: From left to right: imaginary LL subband of one slice
of OCT data, the oriented (imaginary) subband around 45∘ (225∘),
ℎ
+

(⋅, 45
∘

) for LL subband, and ℎ+(⋅, 225∘) for LL subband extracted
by applying LPA-ICI to the LL subband of imaginary part of DCWT.
As indicated in the second image for 𝑝

1
= (46, 20), 𝑝

2
= (47, 21),

and 𝑝
3
= (46, 22) we would have ℎ+(𝑝

1
, 45
∘

) = 2, ℎ+(𝑝
1
, 225
∘

) = 3

(green dash), ℎ+(𝑝
2
, 45
∘

) = 1, ℎ+(𝑝
2
, 225
∘

) = 3 (orange dash), and
ℎ
+

(𝑝
3
, 45
∘

) = 3, ℎ+(𝑝
3
, 225
∘

) = 3 (red dash).

we can see in this figure, the most important information of
OCTdata (about retina layers) is located in the center of OCT
images.

4.2. 3D LPA-ICI for Data between the First and Last Layers.
In [47], a new image denoising based on using an anisotropic
window around each pixel of image is introduced. To select
the anisotropic window, the linear directional filters 𝑔

ℎ,𝜃
that

are obtained using local polynomial approximation (LPA)
are employed. The 𝜃 indicates the direction of filter that is
a member of countable set {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝐿
}, where 𝐿 is the

number of directions. A common choice for 𝐿 is 𝐿 = 8

that results in the set {0∘, 45∘, 90∘, 135∘, 180∘, 225∘, 270∘,
315∘}. For each 𝜃, the length of proposed window is selected
from the countable and increasing set {ℎ

1
, ℎ
2
, . . . , ℎ

𝐽
}. So,

for the noisy observation 𝑦(𝑘), we would have the following
estimate:

𝑥
est
ℎ,𝜃
(𝑘) = 𝑔

ℎ,𝜃
(𝑘) ∗ 𝑦 (𝑘) . (38)
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𝜃

𝜑

(a)

𝜃

(b)

Figure 9: Comparison between a circular sector for direction 𝜃 in 2D case (b) with a conical body produced for direction (𝜃, 𝜑) in 3D case
(a).

Noise ROI

SEAD ROI

Intralayer ROI

Figure 10: One slice from a sample OCT image and proposed ROIs
for computation of MSNR and CNR reported in Table 1.

For each 𝜃 and 𝑘, an appropriate value of ℎ called ℎ
+

is estimated using the nonlinear intersection of confidence
intervals (ICI) rule. ℎ+ is the largest ℎ from the ℎ

1
< ℎ
2
<

⋅ ⋅ ⋅ < ℎ
𝐽
provided that the estimated data using ℎ

+ does
not have noticeable difference with the estimated data with
smaller ℎ’s. For this reason, the following confidence intervals
are defined:

𝐶
𝑠
= [𝑥

est
ℎ
𝑠,𝜃

(𝑘) − 𝑅𝜎
𝑥
est
ℎ
𝑠,𝜃

(𝑘)
, 𝑥

est
ℎ
𝑠,𝜃

(𝑘) + 𝑅𝜎
𝑥
est
ℎ
𝑠,𝜃

(𝑘)
] , (39)

where 𝑅 is the smoothing parameter and 𝜎
𝑥
est
ℎ
𝑠,𝜃

(𝑘)
shows the

variance of 𝑥est
ℎ
𝑠,𝜃

(𝑘) and is obtained as follows:

𝜎
2

𝑥
est
ℎ
𝑠,𝜃

(𝑘)
= ∫𝑃
𝑥
est
ℎ
𝑠,𝜃

(𝑘)
∫ (𝑓) 𝑑𝑓 = ∫𝑃

𝑦
(𝑓)𝐺

ℎ,𝜃
(𝑓) 𝑑𝑓, (40)

where 𝑃(⋅) shows the power spectral density function and
𝐺
ℎ,𝜃
(𝑓) is the Fourier transform of 𝑔

ℎ,𝜃
, and for a white

random process, (40) is simplified to

𝜎
2

𝑥
est
ℎ
𝑠,𝜃

(𝑘)
= ∫𝜎

2

𝑛
𝐺
ℎ,𝜃
(𝑓) 𝑑𝑓 = 𝜎

2

𝑛
∑𝑔
ℎ,𝜃
(𝑘) . (41)

According to the ICI rule,𝐷
𝑠
is defined using the follow-

ing formula:

𝐷
𝑠
=

𝑠

⋂

𝑖=1

𝐶
𝑖
. (42)

The largest 𝑠 that leads to a nonempty value is called 𝑠+,
and finally ℎ+(𝑘, 𝜃) is obtained using ℎ+(𝑘, 𝜃) = ℎ

𝑠
+ .

Figure 7 shows an example of mentioned anisotropic
window selection for a SEAD.

Since applying LPA-ICI in each subband is a time con-
suming process, a fast version of the mentioned algorithm
can be based on only applying LPA-ICI to low-pass subbands
using 𝐿 = 12 with an offset of 15∘ that results in the set
{15∘, 45∘, 75∘, 105∘, 135∘, 165∘, 195∘, 225∘, 255∘, 285∘, 315∘,
345∘} in a 2D case. Since, in this case, each subband is
extracting the information concentrated in a specific direc-
tion corresponding to {15∘ (195∘), 45∘ (225∘), 75∘ (255∘), 105∘
(285∘), 135∘ (315∘), 165∘ (345∘)}, the extracted ℎ

+

(𝑘, 𝜃) = ℎ
𝑠
+

that results from applying LPA-ICI to corresponding low-
pass subband is used for obtaining the local parameters of
𝑘th pixel. For example, suppose that DCWT is used for 3
scales and we want to calculate the local parameters of
coarsest scale for the oriented real subband around 45∘ (225∘).
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Table 1: The results of MSNR and CNR using several ROIs, shown in Figure 12.

Methods
MSNRROI1 MSNRROI2 CNRLocal (L)

Nonlocal (NL)
Homomorphic (H)

Nonhomomorphic (NH)

Gaussian noise (G)
Two-sided Rayleigh

noise (R)
L H G 7.00 15.76 8.76
NL H G 7.56 17.03 9.47
L NH G 12.27 27.76 13.49
NL NH G 10.77 22.73 11.95
L H R 5.89 13.11 7.22
NL H R 8.63 19.59 10.95
L NH R 10.75 22.55 11.81
NL NH R 10.88 23.05 12.17

Original image 2.56 5.30 2.74

Table 2: PSNR (in dB) values of test images for different nonstationary noise levels.

Noise parameters
𝜎
𝑔
(𝑖) = 𝑘

0
𝑠(𝑖) + 𝑘

1

Lena Boat Barbara

Noisy
Image

Soft
thresh.
[54]

Proposed
method
in [55]

Our method Noisy
image

Soft
thresh.
[54]

Proposed
method
in [55]

Our
method

Noisy
image

Soft
thresh.
[54]

Proposed
method
in [55]

Our
method

𝑘
0
= 0.05, 𝑘

1
= 4 27.72 34.13 34.61 35.60 27.51 32.44 32.59 33.26 27.94 31.99 32.20 33.56

𝑘
0
= 0.1, 𝑘

1
= 4 23.48 31.62 32.49 33.31 23.22 29.95 30.23 30.75 23.69 29.05 25.81 30.91

𝑘
0
= 0.2, 𝑘

1
= 4 18.49 27.50 29.65 30.52 18.20 26.77 27.60 28.13 18.71 25.81 25.94 27.91

Table 3: Comparison between PSNRs (in dB) of denoised images with Fast TI Haar algorithm [55] and BiGaussMixShrinkL.

Lena Boat Barbara Confocal Phantom Shep Logan Phantom Bowl
Noisy image 27.22 27.05 27.49 35.74 47.68 28.21
Fast TI Haar 32.11 29.30 26.59 44.49 60.63 46.79
BiGaussMixShrinL 39.88 37.57 37.78 47.36 64.65 47.09

For this reason, ℎ+(𝑘, 45∘) and ℎ+(𝑘, 225∘) are extracted from
the results of applying LPA-ICI on the LL subband of real
part (or imaginary part) of DCWT. Then, if we are in the
𝑗th scale, only 2

𝑗−1

ℎ
+

(𝑘, 45
∘

) pixel in direction of 45∘ and
2
𝑗−1

ℎ
+

(𝑘, 225
∘

) pixel in direction of 225∘ are used to extract
the local parameters of 𝑘th pixel in this subband (Figure 8).

A similar manner can be proposed in 3D case [67]. How-
ever, instead of using 2D direction 𝜃

𝑖
, we use 3D direction

(𝜃
𝑖
, 𝜑
𝑖
). As shown in Figure 9, in 2D case we use a circular

sector for each direction while for 3D case a conical body
is produced for direction (𝜃

𝑖
, 𝜑
𝑖
), and the sphere is covered

(partly) using these cones. Similar to 2D case 𝑔
ℎ,𝜃,𝜑

, is defined
and for each (𝜃

𝑖
, 𝜑
𝑖
) the best ℎ called ℎ+(𝑘, 𝜃

𝑖
, 𝜑
𝑖
) is obtained

using ICI rule.
Note that in order to incorporate the anisotropic window

selection for each DCWT coefficient in our OCT denoising
algorithm explained in Algorithm 1, instead of using a square
window for parameter estimation, an anisotropic window is
obtained for each coefficient 𝑘 using the explained LPA-ICI
method in this section, and only available data in this window
are used for estimating 𝑎(𝑘) and 𝜎

11
(𝑘),𝜎
12
(𝑘),𝜎
21
(𝑘), and

𝜎
22
(𝑘).

5. Experimental Results

In this section, we apply the proposed despeckling algorithm
to OCT image noise reduction. For this reason, we use
20 three-dimensional OCT datasets in the presence of wet
AMD pathology (SEAD) and use mean signal-to-noise ratio
(MSNR) and contrast-to-noise ratio (CNR) as two quality
measurements for OCT data. To calculate these measure-
ments, we must define the region of interest (ROI). In this
paper, we propose this region within the SEAD as illustrated
in Figure 10.The baseMSNR and CNR are defined as follows:

MSNRROI =
𝜇ROI
𝜎

,

CNR =




MSNRROI1 −MSNRROI2





,

(43)

where 𝜇ROI shows the mean of ROI and 𝜎 indicates the stan-
dard deviation of a large region outside the ROI (noise ROI
in Figure 10).

Table 1 shows the results of MSNR and CNR for pro-
posed ROIs in OCT data using our algorithm. As discussed
in Section 3, various shrinkage functions can be obtained
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(a) (b)

(c) (d)

Figure 11: The results of applying homomorphic methods on proposed image in Figure 10. From top-left clockwise: despeckled data using
BiGaussMixShrinkL, nonlocal BiGaussMixShrinkL, nonlocal BiGaussRayMixShrinkL, and BiGaussRayMixShrinkL.

using our algorithm based on applying log transformation
before applying 3D DCWT (we use homomorphic prefix
for this method and non-homomorphic when we do not
use log transformation) and proposing AWGN or two-sided
Rayleigh pdf for modeling noise in 3D DCWT domain (we
name them BiGaussMixShrinkL and BiGaussRayMixShrinkL,
resp.). Figures 11 and 12, respectively, show the results of
applying non-homomorphic and homomorphic methods
for (a slice of) depicted OCT image in Figure 10. In this
figure, also in Table 1, we compare the results of nonlocal
version of methods to show the effect of using anisotropic
window selection technique. In order to show the SNR
improvements, CNR curves for 156 selected ROIs have been
depicted in Figure 13. It is clear that non-homomorphic
BiGaussMixShrinkLmethod outperforms the others.

Another way for evaluating the effect of our despeckling
algorithm is the investigation of the intralayer segmentation
results. Figure 14 shows a comparison between the segmented
layers of a 650 × 512 × 128 Topcon 3D OCT-1000 imaging
system using proposedmethod in [53]. It is clear that the first
layer is detected truly after despeckling.

6. Conclusion and Future Work

In this paper, we introduced a new noise reduction algo-
rithm for 3D OCT data. We found new shrinkage functions
employing a mixture of bivariate Gaussian for modeling
wavelet coefficients in each subband of complex wavelets.The
parameters of this mixture model are estimated locally using
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(a) (b)

(c) (d)

Figure 12: The results of applying non-homomorphic methods on proposed image in Figure 10. From top-left clockwise: despeckled data
using BiGaussMixShrinkL, nonlocal BiGaussMixShrinkL, nonlocal BiGaussRayMixShrinkL, and BiGaussRayMixShrinkL.

a shape-adaptive manner based on the special structure of
OCT data. We also used this model for denoising of other
kinds of noise. Experiments show that our model has better
results than other methods visually and in terms of PSNR
especially for the crowded images. In this paper, we suppose
that the parameters of EM algorithm, in extracted windows
are constant. It is possible to improve the EM algorithm, for
example, by using recurrence equations. It is possible that
we only propose the main section of data (between the first
and last layers) containing retina layer information and apply
our algorithm on the selected data to improve the speed and
performance of denoising process.

Using 3D DCWT instead of other transforms such as 3D
DWT is a main reason for improvement of the denoising

results [30]. In [27], it has been shown that other kinds of ori-
ented transforms such as steerable pyramid decomposition
can produce better denoising results. However, for 3D case,
3D transforms that are applied on whole 3D data (not slice by
slice) such as surfacelet [68] and 3D discrete curvelet [69] can
be investigated.

Appendices

A. Directional Selectivity Property
of 2D DCWT

Since DWT in 2D domain is produced using separable (row-
column) implementation, it has a poor directional selectivity.
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Figure 13: A comparison between CNR curves for 156 selected ROIs from OCT dataset.

(a) (b) (c)

Figure 14: A comparison between the segmented layers of a 650×512×128 Topcon 3DOCT-1000 imaging system using proposedmethod in
[53]. From left to right: original image, denoised image by nonlocal homomorphic BiGaussRayMixShrinkLmethod, and local homomorphic
BiGaussRayMixShrinkLmethod.

For example, the HH wavelet is the product of the high-
pass functions along the first and seconddimensions. Because
DWT uses real filters, the HH wavelet mixes +45∘ and
−45∘ orientations that results in the checkerboard artifact
because it fails to isolate these orientations. In contrast, since
the spectrum of the (approximately) analytic 1D wavelet is
supported on only one side of the frequency axis, the
spectrum of the DCWT in 2D domain is supported in
only one quadrant of the 2D frequency plane. Figure 15
illustrates a comparison between subbands of 2D DWT and
2D DCWT.

B. A Sample Bivariate Gaussian Mixture Model

Figure 16 shows the pdf of a bivariateGaussianmixturemodel
for sample parameters. We can see the marginal distribution
produced from the model in this figure.

C. Other Kinds of Noise

In this appendix, we briefly explain the abilities of the
proposed denoising algorithm in this paper for other kinds
of noise.
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(a) (b)

(c)

(d)

Figure 15: A comparison between subbands of DWT and DCWT. (a)The wavelets in the space domain (LH, HL, and HH). (b)The idealized
support of the Fourier spectrum of each wavelet in the 2D frequency domain. We can see the checkerboard artifact of the third wavelet. (c)
The complex wavelets in the space domain. (d)The idealized support of the Fourier spectrum of each wavelet in the 2D frequency plane.The
absence of the checkerboard phenomenon is observed in both the space and frequency domains [48].

C.1. Stationary Noise. We tested the shrinkage function BiG-
aussMixShrinkL for stationary noise and compared it with
other methods such as ProbShrink [34], BiShrink [45], and
BLS-GSM [27] and found that our algorithm outperforms
these techniques visually and in terms of peak signal-to-noise
ratio (PSNR) for various levels of noise. For example, our
algorithm for crowded images preserves details of images
while BiShrink [45] in some cases produces blurred images
(e.g., compare the area around the corresponding arrows
in Figure 17). In addition, in [40] using other bivariate
mixture models such as bivariate Laplacian was examined.
We compared the results of using our model with method in
[40], and our simulations show that our algorithm is faster
and outperforms the reported shrinkage functions in [40] for
some images. For example, for a 512 × 512 8-bit grayscale
Barbara image, an improvement of 0.6 dB is obtained for
noise level of 30, and BiGaussMixShrinkL is two times faster.

C.2. Nonstationary Noise. This section presents nonstation-
ary noise reduction examples in complex wavelet domain.
Although the stationary noise model is able to simplify the
implementation of denoising algorithms, the statistical prop-
erties of the noise are not always accurately described with
this assumption. For example, in some applications, the noise
statistics are spatially varying and the noise power varies
between pixels or samples. In these cases, the nonstationary
noise assumption is more reasonable and can improve the
denoising results. For example, we contaminate three 512 ×
512 grayscale images, namely, Lena, Boat, and Barbara using
signal-dependent Gaussian noise with variance 𝜎

𝑔
(𝑖) that is

defined as a linear function of the pixel intensities 𝑠(𝑖) as [54]:

𝜎
𝑔
(𝑖) = 𝑘

0
𝑠 (𝑖) + 𝑘

1
. (C.1)

Since the variance of each noise component is spatially
varying with the corresponding content of signal, the nonsta-
tionary processes are able to model the statistical properties
of this noise. A comparison between the denoised image
using soft thresholding, proposed method in [54], and the
denoised image using a mixture of two bivariate Gaussian
pdfs with local parameters (BiGaussMixShrinkL) for different
noise levels can be seen in Table 2. In this table, the highest
PSNR value is bolded. We can see from the table that our
proposed algorithm has the better results compared to others
especially for the Barbara image (which contains details) in
the high-level noise.

In [54], it has been shown that the proposed algorithm
based on the signal-dependent Gaussian noise can also be
effective for the reduction of Poisson noise. On this base,
we use our algorithm for noise reduction of images cor-
rupted by Poisson noise generated using corresponding voxel
intensities. For this reason, we use the software provided
on http://willett.ece.wisc.edu/software.html to compare our
method with Fast TI Haar algorithm [55]. The PSNR of gray-
scale images Lena, Boat, Barbara, Confocal Microscopy
Phantom, Bowl, and Shepp Logan Phantom can be seen
in Table 3. We can see that our algorithm outperforms the
Fast TI Haar algorithm. Figure 18 illustrates a comparison
between the denoised images produced from two algorithms.
It is clear that our algorithm has better results especially for
the crowded images. In fact, the Fast TI Haar algorithm has
reasonable performance for soft images such as Confocal
Microscopy Phantom, but since this algorithm blurs the pro-
duced images, for images with details such as Barbara, high-
frequency features will be removed andwe lose the important
information. (LPA-ICI) method for applying shape adaptive
window selection around each

http://willett.ece.wisc.edu/software.html
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Figure 16: The pdf of a bivariate Gaussian mixture model for sample parameters and its marginal distribution.
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(a) (b)

Figure 17: (a) shows a part of Barbara image denoised using BiShrink [45] for stationary noise with 𝜎
𝑛
= 40 and (b) shows denoised image

using ourmethod. Comparing the area around the corresponding arrows, we understand that ourmethod is able to better preserve the details
of images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18: (a–d) show denoising results for Confocal Microscopy Phantom: from left to right: noise-free image, noisy image, and denoised
image with our model and denoised image with Fast TI Haar algorithm. (e–h) show from left to right parts of denoised Barbara image with
BiGaussMixShrinkL method and parts of denoised Barbara image with Fast TI Haar algorithm.
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