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ABSTRACT

Motivation: Genome-scale metabolic models have been used exten-

sively to investigate alterations in cellular metabolism. The accuracy of

these models to represent cellular metabolism in specific conditions

has been improved by constraining the model with omics data

sources. However, few practical methods for integrating metabolo-

mics data with other omics data sources into genome-scale models

of metabolism have been developed.

Results: GIM3E (Gene Inactivation Moderated by Metabolism,

Metabolomics and Expression) is an algorithm that enables the devel-

opment of condition-specific models based on an objective function,

transcriptomics and cellular metabolomics data. GIM3E establishes

metabolite use requirements with metabolomics data, uses model-

paired transcriptomics data to find experimentally supported solutions

and provides calculations of the turnover (production/consumption)

flux of metabolites. GIM3E was used to investigate the effects of inte-

grating additional omics datasets to create increasingly constrained

solution spaces of Salmonella Typhimurium metabolism during growth

in both rich and virulence media. This integration proved to be inform-

ative and resulted in a requirement of additional active reactions (12 in

each case) or metabolites (26 or 29, respectively). The addition of

constraints from transcriptomics also impacted the allowed solution

space, and the cellular metabolites with turnover fluxes that were ne-

cessarily altered by the change in conditions increased from 118 to

271 of 1397.

Availability: GIM3E has been implemented in Python and requires a

COBRApy 0.2.x. The algorithm and sample data described here are

freely available at: http://opencobra.sourceforge.net/

Contacts: brianjamesschmidt@gmail.com or hyduke@usu.edu

Supplementary information: Supplementary information is available
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1 INTRODUCTION

The extraction and integration of biological knowledge from

large, omics datasets is an active area of research (Palsson and

Zengler, 2010). Genome-scale metabolic models (GEMs) provide

a ‘context for content’ for metabolic information and facilitate

interpreting large datasets in terms of the resulting functional

state of the network (Feist and Palsson, 2008; Oberhardt et al.,

2009). As opposed to an inference-based analysis of omics data-

sets (Ansong et al., 2013a; Yoon et al., 2011), GEMs enable the

calculation of the flux through network reactions (Hyduke et al.,

2012; Orth et al., 2010). However, sufficient information to

uniquely determine all of the fluxes for network reactions is gen-

erally not available (Orth et al., 2010; Reed, 2012).
Constraint-based modeling approaches are useful for calculat-

ing network states at the genome scale, establishing bounds of

allowed operation of the network from available information

(Orth et al., 2010; Reed, 2012). Omics datasets can be used to

better constrain the allowed operations of a metabolic network

model and improve the accuracy of flux predictions, especially

when the regulatory logic of the network is not fully known

(Hyduke et al., 2012; Reed, 2012). The value of model-guided

analysis of omics data is evident from its application in a variety

of contexts in systems biology research (Hyduke et al., 2012). For

example, constraint-based models have been used to assess the

impact of alternate conditions on growth rate, biofilm formation

and other functions that pathogens require to effectively imple-

ment a virulence program (Oberhardt et al., 2010; Kim et al.,

2013). In the context of mammalian metabolism, constraint-

based models have been used to study metabolic alterations in

diseases of interest to medical research (Bordbar and Palsson,

2012) and drug development (Schmidt et al., 2013).

Algorithms have been developed and used to automatically

constrain GEMs by using a variety of data types, especially

transcriptomics and proteomics (Blazier and Papin, 2012).

Metabolomics has also been used to develop model constraints

(Fleming et al., 2009; Henry et al., 2007; Kümmel et al., 2006;

Yizhak et al., 2010) and infer altered reactions from GEMs

(Cakir et al., 2006). When isotopically labeled metabolic sub-

strates are used for cellular uptake, GEMs facilitate the calcula-

tion of metabolic fluxes directly from metabolomics data (Sauer,

2006). In addition, GEMs can be used with transcriptomics data

to infer transcriptional control of cellular metabolites (Patil and

Nielsen, 2005).

Metabolomics data can also be used to develop model flux

constraints, but using measures of cellular metabolite concentra-

tions to develop model reaction flux constraints requires add-

itional information (Reed, 2012). For example, reaction

directionality can be bound by the calculated Gibb’s free

energy change of a reaction from metabolite concentrations (or

more precisely, activity) (Reed, 2012). However, the free energy*To whom correspondence should be addressed.
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change for all reactions in the model often is not available and

must be estimated from group contribution theory (Fleming

et al., 2009; Henry et al., 2007; Kümmel et al., 2006). Also,

free energy varies as a function of cellular pH (Fleming et al.,

2009), which might be unknown. Furthermore, the concentration

of all reaction participants may not be known. Finally, available

metabolomics data may be qualitative or semi-quantitative and

may not give the absolute concentration of detected metabolites.
Here, we present an algorithm to enable the integrated func-

tional analysis of intracellular metabolomics data and gene

expression microarray data, guided by a GEM. The algorithm,

GIM3E (Gene Inactivation Moderated by Metabolism,

Metabolomics and Expression), uses metabolomics data to

ensure that the detected species are used in the calculated net-

work operating states. Transcriptomics data are used in GIM3E

to further constrain the model fluxes. The models created with

the GIM3E algorithm report the modeled rate of creation or

consumption (turnover) of metabolites. GIM3E can also be im-

plemented with metabolomics data that report the identity of

detected metabolites and does not require their absolute

concentrations.
We developed and used GIM3E during an investigation of

alterations in S.Typhimurium metabolism in ‘rich’ and ‘viru-

lence’ media specifically to combine the broad semi-quantitative

metabolomics dataset we developed for this infectious microbe

with transcriptomics data (Kim et al., 2013). Our purpose was to

better constrain the model and perform an investigation of alter-

ations in the network that was focused on metabolite turnover.

Unexpectedly, we discovered alterations in metabolites with pre-

viously postulated immunomodulatory roles (Bordbar et al.,

2012) and a preferential maintenance of cellular pathways impli-

cated in virulence. However, we did not provide a detailed de-

scription of the steps in the algorithm or perform a holistic

investigation of the impact of transcriptomic and metabolomic

constraints on the conclusions drawn to better validate GIM3E.

Therefore, we expand on our previous analysis, detail GIM3E

and elucidate the impact of additional omics data sources on the

model-guided interpretation of metabolism.

2 METHODS

2.1 Steps in GIM3E

The steps in GIM3E proceed in distinct phases to implement constraints

based on the cellular objective as well as metabolomics and transcrip-

tomics data (Fig. 1). Models developed with GIM3E also report the pro-

duction or consumption (turnover) of metabolites by adding turnover

metabolites to the model. Hence, any reaction that produces or consumes

metabolite ‘A’ also produces a corresponding ‘turnover’ metabolite, ‘AT.’

A sink reaction for the turnover metabolite, i.e. ‘RATS,’ therefore tracks

the flux through the metabolite. The network can then be constrained to

use a detected metabolite by imposing a minimum flux requirement for

the turnover.

As in the previously developed Gene Inactivation Moderated by

Metabolism and Expression (GIMME) algorithm (Becker and Palsson,

2008), penalty coefficients are calculated for model reactions based on

transcriptomics data. The penalties minimize the degree to which the

network uses reactions that have weaker supporting evidence in the

data. Manipulations to the stoichiometric S matrix are also shown in

Figure 1B. The mathematical description of the steps in GIM3E follows.

1. Determination of objective function bound The GEM is optimized

for the selected objective with flux balance analysis (Orth et al., 2010).

Maximize:

c � v ð1Þ

Such that:

Sv ¼ 0 ð2Þ

a � v � b ð3Þ

Here, c is a column vector of objective coefficients, v is a column vector of

reaction flux values, S is the stoichiometric matrix, a is a vector of lower

bounds for the fluxes and b is a vector of upper bounds for the fluxes.

Note that a and b include limits for nutrient uptake, and will vary based

on the media. Once the optimal value is determined, a constraint is added

to require that the objective maintains a value greater than or equal to

some fraction, f, of the optimum objective value, oopt.

2. Addition of turnover metabolites The model is first converted to an

irreversible format that serves two purposes. First, breaking reversible

reactions into complementary irreversible pairs is required for the calcu-

lation of virtual metabolite turnover. Second, complementary irreversible

pairs will be mathematically necessary to calculate a penalty using com-

mercial linear program solvers. A turnover metabolite for each model

cellular metabolite is added to each reaction that produces or consumes

the corresponding model cellular metabolite. Next, a sink reaction for

each turnover metabolite is added. To ensure that detected metabolites

are used by the network in valid model solutions, the lower bound on flux

through each turnover sink reaction corresponding to a detected metab-

olite is set to a small positive value limited by the solver’s numerical

tolerance (here, 1� 10�8). As described previously (Kim et al., 2013), it

was not possible to require 100% of optimal growth and also produce all

detected metabolites. Therefore, we set f to 0.99 to stay within 1% of the

maximum objective value, oopt.

3. Addition of penalty coefficients Transcriptomics data are used to

develop penalties to reduce the use of reactions with lower evidence for

expression. Transcriptomics data are particularly useful, as these data

generally offer good coverage of the reactions in the genome-scale

model. Penalty coefficients are calculated for each model-paired tran-

script on the basis of intensity by:

�g ¼ Imax � Ig ð4Þ

Here, �g indicates the transcript-associated penalty coefficient for tran-

script g. Ig indicates the corrected log2 intensity for transcript g. Imax
indicates the maximum corrected log2 intensity for all model-paired tran-

scripts in the current media condition being considered. The transcript-

associated penalty coefficients are then mapped to model reactions with

gene–protein reaction relationships from the reconstruction (Thiele et al.,

2011) (e.g. �g values are mapped to the elements of ’irr, a column vector

of reaction penalty coefficients).

4. Determination of penalty bound Optimization is performed to min-

imize the total penalty.

Minimize:

’irr � virr ð5Þ

Such that:

Sirrvirr ¼ 0 ð6Þ

airr � virr � birr ð7Þ

cirr � virr � foopt ð8Þ

Here, Sirr is the stoichiometric matrix that has been converted to an irre-

versible format (Fig. 1B) with added turnover metabolites, virr is the

vector of reaction fluxes, airr is a vector of lower bounds for the fluxes,
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birr is a vector of upper bounds for the fluxes and cirr is the column vector

of objective coefficients corresponding to the optimization in Step 1. Note

that airr will include lower bounds for the turnover sink reactions, which

are taken to be 1.01 ", the solver tolerance. For clarity, a sample penalty

calculation is shown in the table in Figure 1A.

Once the best objective function value is determined, a constraint is

implemented to require that the penalty maintained a value within some

fraction, g, of the minimum value, �min. Because we took f to be 0.99 to

remain within 1% of maximum growth, we took g to be 1.01 to remain

within 1% of the minimum penalty. Network properties could then be

explored while maintaining consistency with the omics data sources and

the capacity to meet cellular objectives.

2.2 Conversion to mixed integer linear program

When calculating the turnover flux of a metabolite participating in mul-

tiple reversible reactions, the flux of one reaction of each reversible pair

should be constrained to 0. An example to illustrate the motivation for

this requirement is provided in Supplementary Figure S1. To ensure only

one reaction of a reversible pair is used, integer (binary) variables can be

incorporated into the model to represent the choice of the forward or

reverse reaction for each pair. In this case, a mixed integer linear pro-

gramming (MILP) problem must be solved. Once we have already estab-

lished constraints on the penalty and objective function based on the best

values, the optimization problem for any linear objective function of

interest can be stated as:

Optimize (minimize/maximize):

mirr � virr ð9Þ

Such that:

Sirrvirr ¼ 0 ð10Þ

airr � virr � birr ð11Þ

cirr � virr � foopt ð12Þ

’irr � virr � g�min ð13Þ

With additional constraints for each reversible reaction pair k (of 1, 2, . . . ,

K):

rk 2 0, 1f g ð14Þ

dk ¼ iforwardðkÞ, ireverseðkÞ
� �

ð15Þ

virrdk, 1 � 1� rkð Þbirrdk, 1 ð16Þ

virrdk, 2 � rkb
irr
dk, 2

ð17Þ

Here, m is the column vector of objective coefficients, rk is a binary

variable that effectively enables just one reaction of forward and reverse

reaction pair k, d is a K� 2 matrix with rows that track the indices of the

forward and reverse pairs in virr and iforward(k) and ireverse(k) are functions

to respectively map each of the K reaction pairs to the appropriate indices

in virr. As described in the Supplementary Data, a distinct formulation

was required to implement the MILP in COBRApy (Ebrahim et al.,

2013).

Fig. 1. GIM3E modifies a genome-scale model of metabolism to incorporate constraints based on metabolomics and transcriptomics data. (A) GIM3E

starts with a genome-scale model, allowed nutrient exchanges as defined by the media and an objective function such as biomass production (growth).

Metabolomics data are mapped onto the model. Two reactions are shown in more detail to illustrate the manipulations to the model made during

execution of the GIM3E algorithm. Turnover metabolites are added as products to each reaction, one turnover metabolite for each reaction substrate or

product. A turnover sink reaction is also added for each turnover metabolite. The minimum bound for the turnover sink flux is set to a small positive

value if the metabolite was detected. Transcriptomics data were used by calculating penalties for reactions that do not meet a threshold criterion. The

inset table demonstrates a sample calculation of the penalty for each reaction assuming a given set of reaction flux values. The total penalty that is subject

to minimization is calculated by summing the penalty values for all reactions. (B) Summary of the steps in GIM3E and alterations to the S matrix

2902

B.J.Schmidt et al.

,
s
Since 
zero
the 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt493/-/DC1
)
In order t
tilized
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt493/-/DC1


2.3 Preparation and integration of omics data

The processed omics data used to inform the analysis are available with

the GIM3E algorithm (see opencobra.sourceforge.net). Transcriptomics

data from 25 microarrays for Salmonella Typhimurium were used (JCVI

S.Typhimurium 13k v8 two-channel spotted oligonucleotide microarrays,

see SysBEP.org for datalinks). The microarrays offered coverage of

499% of annotated genes (Supplementary Table S1) in our previously

published genome-scale model of S.Typhimurium metabolism (Thiele

et al., 2011). Intensities were extracted using the limma package for R

from Bioconductor on individual channels (Smyth, 2005a, b), back-

ground-corrected with the normexp method (Ritchie et al., 2007), nor-

malized using the print-tip LOESS method and adjusted by quantile

normalization between the channels and arrays. Median intensities were

used for transcripts with multiple probes for the calculation of penalties in

Equation (4).

We used published GC–MS metabolomics datasets for

S.Typhimurium in log-phase growth in two conditions (Kim et al.,

2013), which we have previously described as ‘rich’ (Luria Burtani

broth, LB) and ‘virulence’ (acidic minimal medium low in phosphate

and magnesium, LPM) media. Virulence medium has been designed for

the induction of genes critical for intracellular virulence, as observed

in vivo (Aranda et al., 1992; Deiwick et al., 1999; Figueroa-Bossi and

Bossi, 1999). We used Kyoto Encyclopedia of Genes and Genomes

(KEGG) identifiers assigned to the detected metabolites to speed the

matching with metabolites in our consensus reconstruction of

S.Typhimurium metabolism (Kanehisa and Goto, 2000; Kanehisa

et al., 2011). One challenge in interpreting metabolomics data is the con-

founding factor of subcellular compartment localization. Unlike more

complex eukaryotic organisms with greater compartmentalization, our

reconstruction of S.Typhimurium metabolism contains a cytoplasmic

and periplasmic space. Therefore, we preferentially paired our metabolo-

mics data with metabolites in the larger more biosynthetically relevant

cytoplasmic compartment. The cytoplasmic compartment is also poten-

tially less permeable to the loss of metabolites by diffusive transport

processes during sample washing and preparation. Future implementa-

tions of GIM3E to analyze more compartmentalized organisms could

alter the implementation of turnover metabolites to couple each metab-

olite across compartments and ensure flux through the metabolite in at

least one compartment.

2.4 Effects of penalty and metabolite constraints

Imposition of model metabolite and penalty constraints each alters the

allowed solution space. Therefore, three methods were used to character-

ize the solution space: a characterization of reaction and metabolite ac-

cessibility, requirement and relative flux range change. Accessibility was

evaluated by testing whether the maximal flux for a given reaction (or

metabolite) exceeded the numerical tolerance. Required reactions (and

metabolites) were enumerated by constraining the flux for the reaction

(or metabolite) of interest to zero and checking whether a solution, given

the constraints on the objective (growth), penalty and turnover metabolite

sink reactions, could still be found. We describe these reactions and me-

tabolites as ‘required’ as opposed to ‘essential’ to emphasize that not only

non-zero growth constraints but also a near optimal growth constraint

and constraints based on omics data must be met.

The relative flux range change was previously defined (Kim et al.,

2013):

xj ¼
c2, j � c1, j
� �

r2, j þ r1, j
� �

=2
ð18Þ

Here, xj indicates the relative flux range change for reaction j, rm,j indi-

cates the width of the flux range for reaction j in condition m and cm,j
indicates the center of the flux range for reaction j in condition m. Note

that rm,j and cm,j are found by flux variability analysis (Mahadevan and

Schilling, 2003). A logical cutoff to use when interpreting the relative flux

range change is jxjj41.

We further characterized the importance of correct metabolite identi-

fication on the performance of the GIM3E algorithm by quantifying

the ability to identify the required metabolites implicated by metabolo-

mics-constrained models created in virulence medium with ‘noisy’ meta-

bolomics data. Noisy metabolomics datasets were created by randomly

selecting a subset of detected metabolites and replacing the selected me-

tabolites with random accessible cellular metabolites. Five alternate noisy

metabolomics datasets were created for each number of randomized me-

tabolites to determine the average effect of metabolite misidentification.

Alternately constrained models were then created for S.Typhimurium in

virulence medium using constraints based on the objective and the noisy

metabolomics data. The required cellular metabolites were then tested for

each of the alternately constrained models. We then characterized which

of the required metabolites agreed with the required metabolites deter-

mined with the true metabolomics constraints (true positives) and

whether new requirements for metabolites with a non-zero flux were

introduced (false positives). When scoring true and false positives, me-

tabolites implicated as required by the model without omics constraints

were filtered from the comparison.

3 RESULTS AND DISCUSSION

Condition-matched transcriptomic, proteomic and metabolomic

data sources were available for S.Typhimurium. Multi-omics

data (available from SysBEP.org) gathered in two alternate

growth conditions, rich and virulence media (Kim et al., 2013),

therefore presented a good opportunity for algorithm validation.

The model coverage of these alternate omics datasets is described

in Supplementary Table S1. To elucidate the impact of additional

constraints derived from omics data on the solution space, we

performed a detailed analysis of four alternate models for each

condition, using alternate constraints in GIM3E to customize our

published genome-scale model of S.Typhimurium metabolism

(Thiele et al., 2011). The eight resulting models are described in

Table 1.

3.1 Constraints impact required reactions and metabolites

One method of characterizing the effects of the constraints on the

solution space is to enumerate reactions and metabolites that

must necessarily carry a nonzero flux for the model to satisfy

the constraints. The concept is similar to an analysis of essential

genes, whereby an in silico knockout of a gene is evaluated for an

impact on the capability for non-zero growth (Joyce and Palsson,

2008). We investigated whether constraining a reaction or me-

tabolite to be inactive (zero flux) resulted in the inability to find a

solution that satisfied imposed constraints based on the objective

(near optimal growth), as well as transcriptomics (penalty) and

metabolomics (turnover metabolite sink reactions) data. To test

the impact of the omics data on the required metabolites and

reactions, we used four models based on alternate omics con-

straints: a model with no omics constraints (growth constraints

only), a model with transcriptomics-based constraints, a model

with metabolomics-based constraints and a model with both

transcriptomics and metabolomics constraints. The number of

required reactions and metabolites for each model are summar-

ized in Table 1.

We further contrast the effect of the constraints introduced by

omics on the required reactions and metabolites in Figure 2.
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Here, each panel contrasts the requirements for models con-

structed from the alternate omics constraints (metabolomics,

transcriptomics or both), but not solely due to constraints on

growth. For example, in Figure 2C, we show differences be-

tween the required metabolites for the three alternatively con-

strained models in rich media. If transcriptomics data are

additionally included to constrain the model, there are nine

additional required metabolites. If transcriptomics data are

used, there are 27 required metabolites. If both transcriptomics

and metabolomics data are used, there are 36 required metab-

olites. In Figure 2D, we show differences between the required

metabolites for the three alternatively constrained models in

virulence media. If metabolomics data are included to build

and constrain the model, 29 more metabolites are required to

be active, 20 of which were directly detected by metabolomics

(green and blue circles). Alternatively, if transcriptomics data

are included to constrain the model, 16 metabolites are required

to be active (red and blue circles). Inclusion of both metabolo-

mics and transcriptomics constraints results in the requirement

for all 45 to be active (bottom, blue circle). In general,

imposition of constraints based on metabolomics and transcrip-

tomics data results in additional non-redundant constraints on

the solution space.
Another feature of GIM3E is that the addition of metabolo-

mics-derived constraints effectively identifies additional metabol-

ites required to provide flux to produce/consume the detected

metabolites. For example, in virulence medium, both models

created with metabolomics constraints require 29 cellular metab-

olites be produced/consumed that were not required by the

model with transcriptomics but not metabolomics constraints

(Fig. 2D and Supplementary Fig. S3). However, only 20 of

these metabolites were detected by metabolomics. As described

in the Supplementary Data, we performed an enrichment ana-

lysis on model metabolites using pathways defined by KEGG.

We first performed an enrichment analysis on the required me-

tabolites identified only when using the metabolomics constraints

(Supplementary Fig. S4). The most highly enriched pathway

in rich medium was pantothenate and coenzyme A (CoA) me-

tabolism (P¼ 0.0463) and in virulence medium was pyrimidine

metabolism (P¼ 0.0533).

Fig. 2. Alternate omics constraints result in non-overlapping requirements for valid metabolic network operation. The effects of alternately imposing

metabolomics-based constraints (green circle), transcriptomics-based constraints (red circle) or both (blue circle) are contrasted for (A) required reactions

in rich medium, (B) required reactions in virulence medium, (C) required metabolites in rich medium and (D) required metabolites in virulence medium

Table 1. Required and accessible reactions and metabolites for alternate penalty implementations and metabolomics constraints

Medium Rich Virulence

Omics constraints None Transcriptomics Metabolomics Transcriptomics,

metabolomics

None Transcriptomics Metabolomics Transcriptomics,

metabolomics

Reactions considereda 2201

Accessible reactions 1517 1517 1517 1517 1483 1483 1483 1483

Required reactions 343 374 355 386 344 377 356 389

Metabolites consideredb 1461

Accessible metabolites 985 985 985 985 971 971 971 971

Required metabolites 420 429 447 456 427 443 456 472

aAll network (cellular, non-demand) reactions were included.
bAll model cellular metabolites were included.
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Our results prompted us to explore the impact of omics data-

sets on the interpretation of pathway-level alterations in metab-

olism. In Figure 3, we examine the impact of additional omics

constraints on required reactions and metabolites, from no

omics, to metabolomics, to metabolomics plus transcriptomics.

Based on the pathways suggested by the enrichment analysis,

we examined pyrimidine metabolism in virulence conditions

(Fig. 3A). The general importance of pyrimidine metabolism

for S.Typhimurium virulence in vivo has been noted previously

(Chaudhuri et al., 2009). Addition of metabolomics to growth

constraints suggested an additional reaction, cytosine deaminase,

was necessarily active to facilitate the conversion of cytosine to

uracil (inset). It has been shown that cytidine and uracil repress

cytosine deaminase in S.Typhimurium (West and O’Donovan,

1982). However, the topology and directionality of the pyrimi-

dine synthesis and salvage pathways for uracil (West and

O’Donovan, 1982) suggest cytosine deaminase should be ex-

pressed for uracil production. Therefore, the inclusion of con-

straints based on metabolomics ensures pathways are maintained

in an active state that might not be suspected from known tran-

scriptional regulatory interactions. We also observed that al-

though only thymine was detected, flux through thymidine also

became required with the imposition of metabolomics con-

straints (Fig. 3A). When available, exogenous thymine can be

directly incorporated for DNA synthesis during growth

(Friesen, 1968). However, given thymine and thymidine are not

available in virulence medium, the result suggests synthesized

thymidine is degraded to thymine by thymidine phosphorylase.

The metabolic versatility for thymine use may come with the cost

of metabolic efficiency in the synthesis of DNA precursors.
R-pantothenate (vitamin B5) is an important nutrient in CoA

synthesis, and S.Typhimurium strains deficient in pantothenate

Fig. 3. Impact of omics datasets on the requirements in selected subsystem metabolism for S.Typhimurium. For clarity, the turnover metabolites added

by GIM3E are not shown. The inclusion of additional constraints derived from transcriptomics data did not result in additional requirements for

reactions and metabolites in the subsystems shown. (A) Requirements for pyrimidine metabolism in virulence medium. (B) Requirements for panto-

thenate and CoA biosynthesis in rich medium
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synthetase are auxotrophic for pantothenate (Cronan et al.,

1982). In rich medium, on the imposition of metabolomics con-

straints, we observed an enrichment of required metabolites in

pantothenate biosynthesis (Supplementary Fig. S4). Constraints

on the objective (growth) alone required the conversion of R-

pantothenate to CoA (Fig. 3B). Cellular �-alanine was detected

by metabolomics, and the addition of metabolomics constraints

required the biosynthesis of R-pantothenate and the conversion

of L-asparate, 5-10-methylenetetrahydrofolate and 3-methyl-2-

oxobutanoate to R-pantothenate. The allowed solution space

developed with metabolomics constraints suggests the biosyn-

thetic pathway is active despite availability of pantothenate in

the medium.
The addition of transcriptomics constraints to the metabolo-

mics constraints resulted in no new additional metabolite

requirements for the pathways shown in Figure 3. Therefore,

we wished to further clarify the impact of transcriptomics con-

straints in addition to metabolomics. We performed the pathway

enrichment analysis for metabolites required by metabolomics

and transcriptomics constraints, but not required when omics

constraints are absent (e.g., all metabolites in the blue circles in

Figure 2C andD). Our results confirmed the importance of omics

constraints in the interpretation of pantothenate biosynthesis in

rich medium (Supplementary Fig. S5). However, the result for

virulence conditions did not implicate pyrimidine metabolism

with a similar level of significance.
The set of metabolites connected by biochemical conversions

implicated as required by metabolomics data in the pantothenate

biosynthesis pathway (Fig. 3A) prompted us to investigate the

connectivity of metabolites required by the omics datasets.

Therefore, we checked for metabolites required by inclusion of

metabolomics and also connected by reactions required by the

inclusion of metabolomics data. Sets with at least two connected

metabolites are shown in Supplementary Figure S6A and B. In

addition to the metabolites previously implicated in rich medium

in pantothenate and CoA biosynthesis, the analysis uncovered a

grouping of metabolites required for urocanate metabolism in

virulence medium.
We verified the effect of adding transcriptomics constraints in

addition to the metabolomics constraints. Additional sets of con-

nected metabolites were implicated (Supplementary Fig. S6C and

D), including intermediates in fatty acid synthesis. Effects of al-

terations in growth conditions such as temperature, growth

phase and medium on the fatty acid composition of bacterial

membranes and LPS are well documented (Marr and

Ingraham, 1962; Wollenweber et al., 1983). The result suggests

a change in requirements from hexadecanoyl to shorter dodeca-

noyl intermediates on the change from rich to virulence medium.

Furthermore, the addition of transcriptomics constraints impli-

cated an additional required reaction set spanning the conversion

of 3-phosphoglyceroyl-phosphate to O-phospho-L-serine. Given

glycerol is the primary carbon source in virulence medium, the

result may indicate a change in metabolism to facilitate the effi-

cient synthesis of cysteine, which can be produced from serine

(Kredich and Tomkins, 1966). The result is noteworthy because

proteomics measurements have identified a protein s-thiolation

switch from glutathione to cysteine when changing from rich to

virulence medium (Ansong et al., 2013b).

The requirement that detected metabolites are used in valid

model solutions is a new development in GIM3E. Therefore, we

wanted to characterize the impact of metabolite misidentifica-

tion, or noise in the metabolite identification process, on the

required metabolites enumerated from the models created with

GIM3E (Supplementary Fig. S7). Each identification error

reduced the correct identification of true-positive required me-

tabolites by 0.45 (unadjusted R2 of 0.85 with all datapoints).

Each identification error also increased the number falsely iden-

tified required metabolites by 1.72 (unadjusted R2 of 0.776 with

all datapoints).

3.2 Constraints impact reactions altered between rich and

virulence gene-inducing conditions

We also investigated the impact of alternate model constraints on

reactions that were increased or decreased with respect to the

relative flux range change, as shown in Equation (18) and dis-

cussed further in the Supplementary Data, when comparing cel-

lular metabolism in virulence medium to rich medium.

Essentially, the relative flux range change reports alterations in

the allowed flux through a reaction between conditions. Models

with constraints on the objective only (no omics constraints) ex-

hibited the lowest number of reactions with an increased or

decreased flux range, 236 of 1587 in Table 2. Integration of

transcriptomics constraints shrank the solution space in each

condition such that more reactions were necessarily altered in

their flux range when comparing between the two conditions,

386 of 1587 reactions. The models created with the GIM3E al-

gorithm can also be used to compute the turnover flux of me-

tabolites, and the integration of transcriptomic constraints also

had effects on the calculated turnover flux. The number of me-

tabolites necessarily altered in their flux range increased, from

118 to 271 of 1397, when constraints calculated from transcrip-

tomics data were included. Although the integration of metabo-

lomics constraints had a demonstrated impact on the solution

space by increasing the required reactions and metabolites, meta-

bolomics constraints did not have a noticeable impact on the

number of reactions or metabolites with an altered flux range.
In the initial application of the GIM3E algorithm, the com-

bined omics data helped elucidate a new possible avenue of host–

pathogen interaction by alterations in the flux of metabolites

(Kim et al., 2013). To summarize those results here, metabolic

models of macrophages (Bordbar et al., 2012), the host cells of

S.Typhimurium, and experimental results have demonstrated

that individual metabolites can have predicted stimulatory or

inhibitory effects on antimicrobial functions such as nitric

oxide production. The analysis of S.Typhimurium suggested

that metabolites produced or consumed by this pathogen have

direct effects on macrophage function through metabolic flux.

These results highlight the importance of evaluating omics results

in an integrated manner as possible with the GIM3E algorithm.

Interestingly, another model-guided investigation of metabolism

elucidated the ability of S.Typhimurium to exploit parallel nu-

trient sources to enhance virulence (Steeb et al., 2013). An im-

portant next step to interpret metabolic feedback will be the

integrated model-guided analysis of omics datasets from both

the host and pathogen.
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4 CONCLUSION

The GIM3E algorithm uses metabolomics and transcriptomics

data to develop constraints for a GEM. GIM3E requires a cel-

lular objective and condition-matched omics datasets, preferably

transcriptomics data with good coverage of model genes and

metabolomics data that may be qualitative or semi-quantitative

in nature. In our previous investigation, we illustrated the utility

of GIM3E to develop biological insights into the cellular metab-

olism of S.Typhimurium in both rich and virulence media (Kim

et al., 2013). Here, we also demonstrate that omics data inte-

grated into the model with GIM3E also yields insight into me-

tabolites and reactions that must be active to be in agreement

with model constraints but that are not necessarily detected in

the metabolomics experiments. Metabolomics and transcrip-

tomics yielded distinct constraints on the solution space. The

calculation of metabolite turnover is an additional benefit of

using the GIM3E algorithm, and omics-derived constraints im-

pacted the allowed metabolite turnover flux ranges.
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