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ABSTRACT

Motivation: DNA methylation is a heritable modifiable chemical pro-

cess that affects gene transcription and is associated with other mo-

lecular markers (e.g. gene expression) and biomarkers (e.g. cancer or

other diseases). Current technology measures methylation in hundred

of thousands, or millions of CpG sites throughout the genome. It is

evident that neighboring CpG sites are often highly correlated with

each other, and current literature suggests that clusters of adjacent

CpG sites are co-regulated.

Results: We develop the Adjacent Site Clustering (A-clustering) algo-

rithm to detect sets of neighboring CpG sites that are correlated with

each other. To detect methylation regions associated with exposure,

we propose an analysis pipeline for high-dimensional methylation data

in which CpG sites within regions identified by A-clustering are mod-

eled as multivariate responses to environmental exposure using a

generalized estimating equation approach that assumes exposure

equally affects all sites in the cluster. We develop a correlation pre-

serving simulation scheme, and study the proposed methodology via

simulations. We study the clusters detected by the algorithm on high

dimensional dataset of peripheral blood methylation of pesticide

applicators.

Availability: We provide the R package Aclust that efficiently imple-

ments the A-clustering and the analysis pipeline, and produces ana-

lysis reports. The package is found on http://www.hsph.harvard.edu/

tamar-sofer/packages/

Contact: tsofer@hsph.harvard.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Methylation is a heritable and modifiable chemical process by

which, most often, a methyl group attaches to a cytosine base

that is followed by guanine on the same DNA strand (CpG

dinucleotide, or CpG site). It is sensitive to environmental

exposure, such as smoking, air pollution and chemicals (Anttila

et al., 2003; Hou et al., 2012; Sofer et al., 2013). Modern array-

based platforms measure methylation in hundreds of thousands

of CpG sites, and sequencing methods measure methylation in

millions of sites. Methylation is often measured as a continuous

variable known as a � value, representing the proportion of

methylated CpG sites out of the total in the measured tissue.

Interestingly, sets of related-by-location CpG sites, whether asso-

ciated with a gene or not, may be jointly affected by environ-

mental exposure. It is of interest to identify such sets of CpG sites

that are affected by an exposure in a computationally efficient

and quick manner.

Methylation occurs throughout the genome, and it differs be-

tween tissues and cell types. Although it is known that methyla-

tion is associated with the control of genes, the mechanisms are

still debated (Jones, 2012). The distribution of CpG sites varies

across the genome. Areas densely populated with CpG sites are

called CpG islands [CGIs; Gardiner-Garden et al. (1987)]. CGIs

are often found in the promoter area of genes, and they exhibit

low methylation. Higher CGI methylation is associated with

gene silencing. Within gene bodies, CpG sites are usually hyper-

methylated, and are found in lower density. However, there are

many exceptions to these general rules, such as CGIs within gene

bodies or promoter areas without CGIs. There are other, prede-

fined, regions associated with CGIs. In addition to the island

itself, there are north and south shores and shelves, located up-

and downstream from the island, respectively, and are defined

according to their distance (in base pairs) from the island

(Irizarry et al., 2009; Sandoval et al., 2011). Shores are up to

2kb of the island, and shelves are within 2–4 kb of the islands.

We term the collection of shelves, shores and island associated

with a single CGI by a ‘resort’ to eliminate confusion. The def-

inition of these regions is independent of any actual observed

behavior of the sets of associated CpG sites. Further, Jacoby

et al. (2012) report finding clusters of methylated CpG sites

within specific cell types, these clusters are not related to CGIs.

In other words, these regions do not necessarily correspond to

regions that are co-regulated. Therefore, it is useful to employ

computational tools for discovery of regions with CpG sites*To whom correspondence should be addressed.
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exhibiting common behavior that are not necessarily restricted to
the known predefined methylation domains.
This article has three aspects: (i) automated identification of

methylation regions based on the correlation between methyla-
tion sites, and independently of any exposure data; (ii) analysis of
these regions to identify those affected by exposure; and (iii)

development of a realistic correlation-preserving simulation
scheme for methylation data. Jaffe et al. (2012) proposed a
method to identify regions that are associated with exposure.

Our proposed method differs from their work in that we perform
general region detection, pose different modeling assumptions on
the exposure effect on a region and, as a result, provide a simpler

testing procedure. Others used the correlation for analysis of
genetic data, more specifically, data from tiling arrays in which
adjacent probes target overlapping sequences. For instance,

Kuan et al. (2008) developed a software package to correct the
P-values associated with a probe using the estimated correlation
between the probe and neighboring probes. Pedersen et al. (2012)

developed a software package, applying methods to combine
adjacent correlated P-values and detect regions of low P-value.
These methods identify differentially methylation regions

(DMRs) after testing for the exposure effect on the methylation
sites, while we first cluster sites, and then test for the exposure
effect on the clusters. Wu et al. (2010) proposed a method to

detect CGIs using a Hidden Markov Model. However, their
work focuses on redefining CGIs to alleviate limitations of the
traditional definition based on CpG content in an interval, rather
than on identifying regions of common behavior of CpG sites. In

terms of simulation, Jaffe et al. (2012) did perform some simu-
lations, but our proposed simulation scheme better imitates the
reality, by preserving the correlation structure and methylation

patterns of a real dataset.
In what follows, we present an adjacent sites clustering

method, dubbed A-clustering, to discover methylation regions

by clustering together neighboring CpG sites according to their
correlation, and under possible restrictions on their distance
from each other on the DNA. The clustering can be preceded

by a dbp-merge step, an algorithm that merges a set of methy-
lation sites wedged between two highly correlated CpG sites, that
are physically located close enough to each other along a

chromosome. This combination of the dbp-merge and A-cluster-
ing detects regions of co-regulated CpG sites. We further provide
a pipeline for analysis after normalization and batch correction

are performed that first includes clustering CpG sites, and then
tests the effect of exposure on each cluster. For testing, we
assume that the exposure equally affects all CpG sites, while

each site has its own baseline methylation level. We perform
this analysis using generalized estimating equations (GEEs;
Liang and Zeger, 1986) that are robust to the specification of

data distribution. The clustering method and the following GEE
analysis are implemented in the R package Aclust.
The article is organized as follows: in Section 2, we present the

model at the basis of this work. Section 3 describes the A-clus-
tering and dbp-merge algorithms, the proposed analysis pipeline
and an abbreviated description of the correlation-preserving

simulation scheme (complete details may be found in the
Supplementary Material). In Section 4, we first study the per-
formance of the proposed analysis pipeline for finding regions

associated with the exposure, via an extensive simulation study

with different implementations of the A-clustering algorithm and
a subsequent sensitivity analysis. We then compare the analysis

pipeline with the Bump Hunting method of Jaffe et al. (2012) as

well as briefly review single-site analysis results. We then com-

pare clustering results between two implementation options of

the A-clustering and dbp-merge on a dataset of peripheral blood
methylation of pesticide applicators. We conclude with discus-

sion in Section 5.

2 MODEL

Suppose there are i ¼ 1, . . . , n subjects with j ¼ 1, . . . ,m sites

with measured methylation. Denote the exposure measure of

subject i by Ei, and the 1� p vector of covariates of subject i
by xTi . We model the methylation of a site j as a linear function of

exposure and covariates, according to

yij ¼ �j þ Ei�Ej þ xTi bxj þ �ij, i ¼ 1, . . . , n, j ¼ 1, . . . ,m,

where this is a general model that lets the jth site have a unique
baseline methylation value �j, as well as unique exposure effect

�Ej and covariates’ effects bxj on its methylation level. The vector

of covariates xTi includes biological covariates. Note that it can

potentially include confounders and technical biases, such as

variables derived using a Surrogate Variables Analysis (SVA)
procedure (Leek and Storey, 2007), but in this article we limit

the discussion to the clustering and association analysis and as-

sume that technical biases were already removed from the data.
We assume that there are sets or regions of sites, i.e. clusters of

methylation sites, such that their methylation values are corre-

lated with each other. The correlation can be attributable to

underlying unknown or unaccountable biological mechanisms,
so that exposure effect of sites within these clusters is constant.

For example, let y1, y2 and y3 belong to the same cluster, or set of

correlated sites. Then,

yij ¼ �j þ Ei�E þ xTi bxj þ �ij, i ¼ 1, . . . , n, j ¼ 1, 2, 3,

where �E is the common exposure effect on the methylation in

the three sites, and �1, 2, 3 �Fð0,DÞ for some mean zero distribu-

tion F with a 3� 3 covariance matrix D.

3 METHODS

In this section, we describe the computational methods, the clustering

algorithms and analysis pipeline and the correlation-preserving simula-

tion scheme.

3.1 Computational methods

The proposed epigenome-wide analysis is composed of two steps. At the

first step, we identify clusters of correlated methylation sites using the

Adjacent sites algorithm (‘A-clustering’, or shortly ‘Aclust’), and at

the second step, we test these clusters for association with exposure (or

outcome) using GEEs. We expand here on each of these steps.

The first step is clustering of adjacent correlated CpG sites. The pro-

posed clustering algorithm, Aclust, is similar to the agglomerative nesting

clustering algorithm (Izenman, 2008). However, it is restricted so that

only probes that are adjacent to each other (i.e. next to each other

along the chromosome) could be clustered together, or, more generally,

only neighboring clusters could be merged to form a larger single cluster.

In general, the clustering is performed by cycling through the sites,
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ordered by location, and merging together neighboring clusters if the

distance measure between them is smaller than a predefined threshold

D. Here, the ‘distance measure’ is a similarity metric that depends on the

actual methylation values observed in the sample. The distance measure

between two clusters depends on the distances between probes in the

cluster. The distance between two probes is defined by any general

distance measure, where in our approach we recommend using the

correlation-based distance measure:

distðsitei, sitejÞ ¼ 1� corðsitei, sitejÞ,

where correlation could be Pearson or Spearman correlation, for

instance. Then, the distance between two clusters could be defined as

either the single, average or complete distance between sites in the cor-

responding two clusters. To merge two clusters, if the single distance type

is used, then it suffices to have one site in each cluster, such that they are

closer to each other by at least D. The average type requires the mean

distance between all sites in the two clusters to be at most D, and the

complete type requires the distance between every pair of sites in the two

clusters to be at mostD. Note that for a fixed thresholdD, if the complete

distance is used, then the clusters will be smaller than those created by

using the average distance, which in turn will yield smaller clusters than

the single distance. It is noteworthy that the clustering results are some-

what sensitive to the order of the clustering (e.g. starting from the first

versus last location). In practice, these differences are expected to be

minor. Pseudocode for the algorithm is given in Supplementary

Material. Aclust potentially limits CpG sites from clustering, by specify-

ing �dbp, a maximal distance between two neighboring CpG sites to be

clustered together. For instance, if �dbp ¼ 1000, one may not allow for two

CpG sites that are 1000 base pairs away that are without any other CpG

site(s) in the middle to cluster together.

A-clustering is applied on an initial vector of cluster assignments (and

a data matrix), so that only adjacent clusters can be merged at each step.

An extension of this algorithm is motivated by the two following argu-

ments. First, as was implied so far, these initial cluster assignments are the

numbers f1, 2, . . . ,mg where m is the number of sites, so that if the data

from chromosome 4, say, consists of a measured methylation site on the

1000, 1200, 1500 and 3000 chromosomal base-pair locations, than these

four sites are initially assigned with cluster 1, cluster 2, cluster 3 and

cluster 4. Note that the physical distance between the measured sites is

variable, and does not necessarily represent the complete set of sites in the

stretch of chromosomal locations 1–3000 in chromosome 4, so that there

may be additional, non-measured, methylation sites. Moreover, site 1 and

site 3 are physically closer to each other than site 3 and site 4. Second,

examinations of correlation plots (Fig. 1) reveal that some clusters are

seemingly the composite of smaller clusters, close to each other, but with

a few sites between these small clusters that evidently are not-highly

correlated with their neighbors. For instance, looking at the correlation

of a set of sites along a chromosome, one can see a pattern of [cluster of 5

probes, uncorrelated probe, cluster of 4 probes, many uncorrelated

probes], where members of the 5-probe and 4-probe clusters are highly

correlated with each other.

Therefore, we extend the Aclust algorithm by adding a more flexible

initiation step. We initialize with a ‘d-base-pair-merge’, or dbp-merge.

The dbp-merge is an algorithm that can be performed before Aclust, in

which all sites are scanned, and each is potentially merged into a cluster

with another site k � dbp base pairs away from it, and with all the sites

wedged in between these two if the distance measure between them is

small. For instance, set dbp ¼ 999, and consider CpG sites in locations

1000, 1200 and 1500, for sites 1–3, respectively, and the distance measure

between them are distðsite1, site2Þ ¼ 0:7, and distðsite1, site3Þ ¼ 0:3. Then,

for D � 0:3, even though site1 and site2 are not similar to each other (as

determined by the distance measure), because site1 and site3 are similar to

each other, and the base-pair distance between them is 500, which is

smaller than dbp, then the three CpG sites will be merged to a single

cluster. Notice that this algorithm is aimed at merging sites rather than

clusters. The dbp-merge step results in an initial clustering assignment,

which is then complemented by the Aclust algorithm. The dbp-merge

pseudocode is provided in the Supplementary Material.

After defining clusters of probes, whether with or without an initial

dbp-merge step, a final step of the analysis, if desired, tests for the effect

of exposure on the detected clusters of methylation sites, where one can

choose the minimum cluster sizes, say two or three sites per cluster. We fit

a GEE model assuming common exposure and covariate effects

(including possible batch effects) on all sites within a cluster and an in-

dividual location effect for each site, as described in Section 2. Note that

if batch effect was previously removed, such as with ComBat (Johnson

et al., 2007), there is no need to further adjust for batch. The raw P-value

is then the P-value of the exposure variable from the GEE model. We use

the robust sandwich variance estimator in our computations. Note that

GEEs are performed under less assumptions than regression or mixed

model analyses, as only a marginal mean model is assumed. As such, a

working covariance structure must be provided, but is allowed to be mis-

specified. After producing raw P-values for each of the clusters, we cor-

rect for multiple testing using existing procedures, such as by control of

the false-discovery rate (FDR) (Benjamini and Hochberg, 1995).

3.2 Simulating methylation data

We adapt the strategy of Gaile et al. (2007) to generate (spatial) correl-

ation-preserved methylation data via sampling from a real methylation

dataset. More specifically, we consider the comparison of methylation �

values for two subgroups (e.g. low and high exposure). Simulated datasets

consist of methylation assay � values for n¼ 40 samples from each sub-

group, where assignment of methylation � values to the simulated sam-

ples is designed to preserve the true correlation structure within regional

blocks of dense array coverage (described in greater detail below). The

number of samples in each subgroup, and their definitions of high and

low exposure groups, mimics the dataset we analyze (Section 4.2).

3.2.1 Description of data The dataset on which the simulations were

based consists of batch-corrected methylation � values for 1299� 105

breast invasive adenocarcinoma samples obtained from The Cancer

Genome Atlas; specific dataset descriptions are provided in the

Supplementary Material. These 539 samples were assayed with the

Illumina 450K array and provide estimates of 485577 � methylation

values located across the genome. We performed two simulation studies.

First, we focused on chromosome 1, and simulated M¼ 5 differentially

methylated clusters. We used this simulation to study different combin-

ations of the Aclust parameters, and choose the most fitting parameters.

A−clustering
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Fig. 1. Spearman correlation heatmaps of a large cluster identified on

chromosome 7, as detected by the A-clustering algorithm without (left)

and with (right) 999 dbp-merge initialization. The algorithms were imple-

mented using ‘Spearman’ as the distance measure, and single distance

type. The axes’ labels represent the location on the chromosome 7, plus

1299� 105
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Then, we conducted epigenome-wide association study (EWAS) simula-

tions with M¼ 10 differentially methylated clusters, in which Aclust was

implemented using the parameters settings selected in the chromosome 1

simulations.

3.2.2 Assigning samples to exposure groups We conduct 100 simu-

lations, where in each simulation we derive a simulated dataset from the

original N ¼ 539 samples. Consider first a single chromosome. A simu-

lated dataset was constructed by preferentially resampling pre-specified

‘regional blocks’ (defined below) of the chromosome based on methyla-

tion values at the locations of M putative ‘targets’. The sites selected to

serve as ‘targets’ satisfy three properties: (i) evidence of a substantial

variability in methylation � values in the original 539 samples, (ii) evi-

dence of substantial correlations with neighboring sites (cor4:5 for at

least two neighbors) within the same regional block across the original

539 samples, and (iii) none of the M targets could be located within the

same regional block. Note that although the preferential resampling to be

described below focuses on single targets, owing to the correlation struc-

ture among neighboring sites, the entire correlated ‘cluster’ will be asso-

ciated with exposure. For a whole epigenome simulation, a single dataset

is composed of all simulated chromosomes, sampled independently of one

another. Correlation heatmaps of the targets and associated clusters used

in simulations are provided in the Supplementary Material.

We created regional blocks by partitioning each chromosome by defin-

ing breakpoints in areas of low array/site coverage. Specifically, break-

points were formed between adjacent sites410K bp apart. For instance,

in chromosome 1 there were 30 796 sites (after quality control) and 2861

regional blocks. Thus, contiguous portions of a chromosome that were

densely assayed are grouped within the same regional block so that the

any spatial correlation existing in these dense areas will be preserved

during the resampling process.

To create each of the 2n samples within a simulated dataset, each of

the regional blocks is sampled independently of each other, but the M

regional blocks containing the targets are preferentially resampled to

force differences in methylation between groups at the target and its

associated cluster. Note that the regional block is sampled as a unit, so

that all sites within a regional block sample travel together. Hence, in

practice, we sample each regional block without replacement from the set

of N ‘block samples’ for that particular region. Briefly, for each target, we

assign n¼ 40 regional block samples containing the target (‘target block

samples’, henceforth) to the high exposure group (group H) by sampling

from the original N ¼ 539 target block samples, with the sampling

probability of each target block sample as a function of its target’s

ranked methylation level (rH) and a selection weight (w40) as

ð1� rH=ðNþ 1ÞÞw: From the remaining N� n ¼ 499 target block sam-

ples, we assign n¼ 40 target block samples with sampling probabilities

ðrL=ðN� nþ 1ÞÞw to the low exposure group, group L, where rL is the

rank of the target’s methylation value with respect to the remaining 499

target methylation values not assigned to group H. The weight w controls

the magnitude of differential methylation between groups H and L. For

example, if w ¼ 1, it is likely that the samples with the highest and lowest

� values for the target will be assigned to different groups. As w decreases

toward 0, the sampling becomes less biased, so that each group consists of

target block samples with a mix of both high and low methylation

� values at the target. For this simulation, the weight w was tuned

such that the average value (across 1000 simulations) of single-site stat-

istics matched typical ‘high signal’ sites. We specifically targeted Wald

statistics such that the mean (across 1000 simulations) single-site

(unadjusted) P-values were approximately 0.001.

Finally, each of the remaining regional blocks not containing a target

need to be assigned to each of the 2n samples within the simulated dataset

to ‘complete’ the chromosome. For each of these regional blocks, we

randomly selected 2n ¼ 80 block samples of the given region from the

original N¼ 539 block samples of that region with equal probability, and

assigned n to each exposure group. Thus, each sample within a simulated

dataset is a composite of the N¼ 539 original samples, with regional

blocks containing the target preferentially resampled so that the two

groups are differentially methylated at the target. As a consequence of

the locally preserved spatial correlation within regional blocks, the

target’s neighboring sites will be differentially methylated, as well.

The complete algorithm and more specific details are provided in the

Supplementary Material.

4 RESULTS

4.1 Simulation results

We first performed simulations using 100 datasets sampled from

chromosome 1 data. We simulated M¼ 5 differentially methy-

lated clusters. We analyzed the data using a comprehensive set of

parameter settings of Aclust and the ensuing GEE analysis, two

implementations of Bump Hunting (using function dmrFind in

R package charm; Aryee et al., 2011) and a more traditional

single-site analysis. The goal in these simulations was 3-fold:

compare the proposed pipeline to other analyses, study its

robustness for parameter specification and identify optimal par-

ameters settings to use in data analysis. Then, we carried out an

EWAS simulations with M¼ 10 differentially methylated clus-

ters and compared the proposed pipeline, with Aclust imple-

mented using the parameters previously identified, and Bump

Hunting. We first describe and report chromosome 1 results,

and then the EWAS results.

4.1.1 Chromosome 1 simulation study A major goal of these

simulations was to study the appropriateness of the various

Aclust parameters for an analysis that is focused on the identi-

fication of differentially methylated clusters, and find the ‘best’
parameters. Therefore, we analyzed each of the simulated

datasets with all combinations of the following parameter speci-

fications: Pearson or Spearman correlation, with or without

999-dbp-merge initiation, with and without 1000 �dbp distance

restriction for merging, single, average or complete clustering

type, and distance threshold D ¼ 0:25. From these simulations

we concluded that 1000 �dbp distance restriction is beneficial, and

that either average or complete clustering type is more appropri-

ate than the single for the purpose of identification of DMRs.

Note, however, that overall the results are robust for different

specifications of the parameters, which is reassuring. The results

of these simulations are provided in the Supplementary Material,

including comparison to single-site analysis and to Bump

Hunting.

Then, we performed a sensitivity analysis stage for these simu-

lations. For each combination of Pearson and Spearman correl-

ations, types average and complete and with and without

999-dbp-merge, we varied the value of D as f0:05, 0:1, . . . , 0:5g
and chose the most performant D for each setting. Table 1

reports the analysis results based on each of the above combin-

ations with the matching (identified) D, and compares them to

the results of Bump Hunting. The complete sensitivity analysis
results, parameter specifications used for Bump Hunting and

correlation heatmaps for the neighborhoods around the targets

are included in the Supplementary Material.

For each Aclust method, Table 1 provides the number of

detected clusters of 3 or more members (not necessarily differen-

tially methylated). For Bump Hunting, this measure is not
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provided because it searches DMRs, rather than performs clus-

tering and then association analysis, as the proposed pipeline.

For Aclust, we say that a cluster was detected if the Benjamini

and Hochberg (BH)-adjusted (Benjamini and Hochberg, 1995)

exposure effect P-value 50:05 from the GEE analysis. For

Bump Hunting, a cluster was detected if its q-value was50.05.

The true-positive rate of target m (TPR m) is defined as the

proportion of simulations in which a cluster containing target

m was detected. The TPR is defined as the proportion of simu-

lations in which clusters containing all M¼ 5 targets were de-

tected. Finally, the false-positive (FP) rate is the mean number of

non-target clusters detected across simulations. We also report

the mean number of members in the mth cluster in each scenario

(‘Memb m’) and the mean elapsed computation time (in seconds)

for the analysis (Time).

Comparing TPRs across the different implementations of

Aclust, the results are consistent, with the largest difference

seen in cluster 1, with the lowest TPR1 being 0.61 and the highest

0.71. This difference is seen in the two implementations of Aclust

using Pearson correlation and type average. Notice that specif-

ically in this cluster, there was a relatively large fluctuation, of

about 2, in the estimated number of members across Aclust spe-

cifications. Spearman correlation yielded overall larger TPRs,

and also slightly larger FPs, but still the mean FPs are small,

so that Spearman correlation seems to be more appropriate, es-

pecially when the dbp-merge initiation is used. When using both

Pearson and Spearman correlations, and initiating with the

dbp-merge, the average and complete clusterings gave almost

identical results. Because the computation time of the average

clustering is lower, this simulations study leads us to conclude

that average clustering type is preferable.

As compared with the results from A-clustering, our imple-

mentation of Bump Hunting tended to detect less true differen-

tially methylated clusters, slightly less FP and its computation
time is longer. Interestingly, Bump Hunting performed well on

large clusters, but less so on smaller clusters. Taken as a whole,
the results of A-clustering tend to be robust to the implementa-

tion specifications that we considered, and are competitive with
the Bump Hunting method.

We briefly summarize the single site comparisons here. Each of
the sites along chromosome 1 was tested for differential methy-

lation using Wald tests with robust standard error estimates.
The resulting P-values were adjusted according to one of two

methods: BH FDR (Benjamini and Hochberg, 1995) and

Benjamini-Yekutieli FDR, which controls the FDR of sites
under dependency (Benjamini and Yekutieli, 2001). A site was

detected if its adjusted P-value50.05. To make the results com-
parable with the clusters/DMRs-based analyses, define TPRm in

the single site analysis as the proportion of simulations including
at least one site detected within the cluster containing target m,

and similarly TPR is the proportion of simulations in which at
least one site was detected in all M target clusters. Define FPR as

the proportion of simulations with detected sites not belonging to

clusters containing any of the targets. The best TPR observed in
the single-site analysis (i.e. across the different Aclust implemen-

tations) was 0.2, lower than any TPR reported in Table 1. The
corresponding FPR was 0.7, higher than any of the clustering

FPs in Table 1. We conclude that the single site analysis is less
powerful then the clustering-based analysis; refer to the

Supplementary Material for more details.

4.1.2 EWAS simulations results In this set of simulations, we
chose M¼ 10 ‘targets’, none of them overlapping with those used

Table 1. Clustering and association analysis results in chromosome 1 simulations

Method Cluster Memb1 TPR1 Memb2 TPR2 Memb3 TPR3 Memb4 TPR4 Memb5 TPR5 TPR FP Time

A-clustering

Pearson Correlation

Average

dþAclust (0.15) 1068.86 5.41 0.61 7.00 0.73 5.89 0.70 6.76 0.80 3.95 0.76 0.26 0.31 143.98

Aclust (0.25) 1241.28 3.41 0.71 7.00 0.72 5.94 0.67 7.95 0.77 4.00 0.76 0.27 0.44 273.36

Complete

dþAclust (0.15) 1068.67 5.41 0.61 7.00 0.73 5.89 0.70 6.76 0.80 3.95 0.76 0.26 0.31 137.10

Aclust (0.35) 1656.38 3.25 0.70 7.00 0.71 5.96 0.64 8.13 0.75 4.22 0.70 0.22 0.45 138.95

Spearman Correlation

Average

dþAclust (0.20) 771.60 5.91 0.65 7.00 0.76 6.00 0.73 8.06 0.82 3.98 0.80 0.32 0.44 260.21

Aclust (0.30) 1018.20 3.79 0.67 7.00 0.73 5.95 0.69 8.78 0.77 4.00 0.78 0.24 0.60 132.14

Complete

dþAclust (0.20) 771.21 5.89 0.65 7.00 0.76 5.92 0.73 8.06 0.82 3.98 0.80 0.32 0.44 299.06

Aclust (0.35) 1113.85 3.23 0.66 7.00 0.73 5.82 0.70 8.32 0.78 4.15 0.77 0.24 0.60 115.35

Bump Hunting – 4.49 0.59 7.00 0.69 5.99 0.62 9.49 0.76 4.00 0.42 0.11 0.23 789.48

Note: Results of the proposed analysis pipeline based on different parameters of the Aclust algorithm, and the more performant implementation of Bump Hunting. Aclust and

dþAclust stand A-clustering without (Aclust) and with (dþAclust) 999-dbp-merge initiation step. 1000 �dbp restriction was always applied. The numbers in parentheses are

the distance thresholds D used in each clustering implementation. These thresholds are the optimal ones for each settings, as determined by sensitivity analysis described in the

Supplementary Material. Cluster provides the total number of detected clusters by Aclust. Memb m is the mean number of members in the mth cluster, and TPR m is the

proportion of simulations in which the mth cluster was found to be significantly associated with the exposure after FDR correction. TPR is the proportion of simulations in

which all five clusters were associated with exposure, and FP is the mean number of clusters that were falsely detected as associated with exposure. Time is the elapsed

computation time (in seconds).
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for chromosome 1 simulations, to allow for more scenarios. The
correlation heatmaps for neighborhoods surrounding these tar-

gets are provided in the Supplementary Material. We compared
the proposed pipeline, with the ‘best’ Aclust parameters settings

from chromosome 1 simulations, with Bump Hunting. (The
‘best’ settings: Spearman correlation, average clustering type,

D ¼ 0:2, �dbp ¼ 1000 and 999-dbp-merge initiation). As in the
other simulations, the minimum cluster size was set to 3.

Table 2 gives a brief summary of the simulations with three re-
ported measures: the average number of true-positive detections

across 100 simulations (here the maximum number is 10) and
the average number of FP detections, or average number of clus-

ters detected that are not in fact DMRs, and computation time
(Time). More detailed results are reported in the Supplementary

Material.

4.2 Data analysis

We applied the proposed clustering algorithm and analysis
pipeline to data generated from a NIH-funded RC1 grant

(1RC1ES018461-01) studying genome-wide methylation alter-
ations in response to pesticide exposure using the Illumina

Infimum 450K beadchip. The data we used for our analysis in
the present investigation were produced from 80 certified, white

male US pesticide applicators. The exposure was defined as high
versus low exposure to pesticides. There were 40 subjects in each

exposure group. Before application of the A-clustering and sub-
sequent analysis, the dataset was preprocessed by applying the

pipeline proposed in Touleimat and Tost (2012). CpG sites in the
proximity of Single Nucleotide Polymorphisms (SNPs) (up to

10 bp away) of minor allele frequency at least 0.05 were removed.
The data were corrected for batch effect using empirical Bayes

correction [ComBat, Johnson et al. (2007)].
We now describe the results of two clustering and analyses

applied to the entire dataset. In the first analysis, we used the
settings identified as optimal for the purpose of detection of

DMRs in the simulations studies, and in the second analysis,
we used less stringent distance criteria to both glean into the

differences in the results, and also learn about the clustering
outcomes themselves.

4.3 Clustering results

There were 460 337 CpG sites in the data used for analysis. We
applied the A-clustering algorithm on the dataset twice. In the

first analysis, we applied A-clustering with the settings identified
in simulations as most appropriate to detect DMRs, i.e.

Spearman correlation-based distance measure, average distance
type, threshold distance for merging D ¼ 0:2, dbp-merge initi-

ation (999bp) and 1000bp restriction on merging of adjacent
CpG sites. Table 3 summarizes the results of this analysis.

There were 7741 clusters with at least two CpG sites, with the
largest cluster having 52 sites. Seventy percent of clusters were

associated with a predefined CpG resort, and of these, 20% had
sites from multiple resort regions (e.g. both island and north

shore), suggesting that sites in different resort regions are in
fact functionally associated. At the bottom part of Table 3, we

provide characteristics of clusters with estimated exposure effect
size larger than 0.02, and are also significant at the 0.05 level

after FDR correction for multiple hypothesis testing. We

restricted the effect size to be at least 0.02 because we cannot

exclude the possibility that smaller effect sizes are due to changes

in cell mixture composition (Houseman et al., 2012). There were

402 clusters with effect size 40:02, and four of them were sig-

nificantly associated with exposure. Three of them had only two

CpG sites, and the fourth had three. The sites were rather close

to each other: two of the clusters had only 6 and 7bp between

extreme sites. One of these clusters contained 2 probes from a

CGI, another cluster contained 3 probes from a north shore and

another cluster contained 1 probe from an island and 1 probe

from a north shore.
In the second analysis (Table 4), we applied the A-clustering

with less stringent distance criteria: this time the distance type

was single, andD ¼ 0:5. Other settings remained the same. Now,

there were 17515 clusters of at least two sites, with the largest

cluster having 59 sites. Seventy-two percent of the clusters had at

least one site from a resort and of these, 29% of sites from more

than one region in a resort, a higher proportion than the equiva-

lent number in the previous analysis (20% there). There were 641

clusters with estimated exposure effect size 40:02. Applying

FDR correction for multiple testing, seven of these clusters

Table 3. A-clustering results on the entire data, 999-dbp-merge initiation,

1000 �dbp, D ¼ 0:2, Spearman correlation, type average

Characteristics Quality

Number of clusters (at least two sites) 4753

Number of CpG sites in clusters (min, median, max) (2, 2, 52)

Base-pair distance between extremes (min, median, max) (2, 115, 3611)

Clusters associated with a CpG resort (%) 3333 (70%)

w/CpGs from multiple resort regions (% of resort clusters) 659 (20%)

Restricted: clusters with exposure effect40.02, and significant

Number of clusters with effect size40.02 402

Number of significant clusters (FDR corrected) 4

Number of CpG sites in clusters (min, max) (2, 3)

Base-pair distance between extremes (min, max) (6, 725)

Clusters associated with a CpG resort 3

w/CpGs from multiple resort regions 1

w/CpGs from south shelf, shore, island, north shore, shelf 0, 0, 2, 2, 0

Note: Summary of the Aclust and analysis results on the 460 337 CpG sites. The first

block in the table refers to the entire set of clusters. The second block refers to the

set of clusters that had exposure effect size 40:02, and significant at the 0.05 level

after FDR correction. The minimum number of sites per cluster is 2.

Table 2. EWAS simulation results

TP FP Time

dþAclust 6.93 2.44 3774.75

Bump Hunting 4.52 1.48 8924.05

Note: Averaged EWAS simulations results, across 100 simulations. dþAclust used

Spearman correlation, D ¼ 0:2, clustering type average, and maximum distance
�dbp ¼ 1000. TP¼ average number of true-positive clusters; FP¼ average number

of false-positive clusters. Time is computation time.

2889

A-clustering

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt498/-/DC1
``
''
``
''
,
TP (
)
 (false
positive)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt498/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt498/-/DC1
as
 (MAF)
(
in order 
,
2 
70&percnt;
since 
4 
3
CpG island
,
2 
72&percnt;
7 


where significantly associated with the exposure at the 0.05 level.

Four of these clusters had only two sites, and the others had 3, 4

and 7 sites. Four of these clusters had at least one CpG site from

a CpG resort, while two of these had CpG sites from both an
island and a north shore. Comparing the clusters identified as

DMRs by the first analysis with those in the second analysis, the

top three clusters detected in the first (average distance type,

D ¼ 0:2) analysis where in the top five clusters identified in the

second (distance type single, D ¼ 0:5) analysis. The fourth clus-

ter was not identified as a DMR in the second analysis at all, and
in fact, there it was part of a larger cluster of five sites, with a

smaller effect size.

We also performed the same analysis while restricting to three
sites in a cluster, as in the simulations. In this case there was only

one cluster, of three sites, identified as a DMR when average

clustering and D ¼ 0:2 were used, and four clusters, of 3–7 sites,

were identified as DMRs when single and D ¼ 0:5 were used.
Finally, we implemented the Bump Hunting algorithm to

detect DMRs. In short, Bump Hunting, allowing for a minimum

of two sites per DMR, and other settings used in the simulations

suggested 452 potential DMR, but the lowest q-value was 0.18,

i.e. none were determined as significantly associated with expos-
ure. This is consistent with the simulations that showed that

Bump Hunting performs well with large clusters, but does not

easily detect small clusters.

5 DISCUSSION

We present the A-clustering algorithm that clusters together ad-
jacent methylation sites according to their distance, usually

derived from the correlation between them, and provide a pipe-

line for analysis of methylation data when they are treated as

outcomes. The clustering is used both to detect regions of sites

that are co-regulated, and also to reduce dimension, by forming a

smaller set of analysis units. We demonstrated the use of the
algorithm on a methylation dataset, in which methylation was
measured using the Illumina Infimum 450K beadchip. The pro-

posed method is also appropriate for sequencing data, possibly
even more so than for array data, which tend to be sparser. The
clustering and analysis methods are efficient, and they do not

require resampling methods to compute the P-values.
It is still an open question regarding what is the ‘right’ unit of

analysis and for which purposes (e.g. CGIs, shores). Recent work
by Jacoby et al. (2012) suggests that the unit of analysis differs by

regions (e.g. in promoter or intragenic areas), and possibly by cell
type as well. A-clustering is useful tool in studying such units of
differentially methylated regions and loci. Clusters of methyla-

tion sites will often have higher P-values then individual methy-
lation sites. For instance, the cluster will likely have a smaller
effect estimate and a larger P-value than the site within the clus-

ter with the largest effect. However, there is a considerable di-
mension reduction when clusters are considered, and further, we
believe that the fact that multiple sites exhibit similar behavior

increases our certainty that the effect is ‘real’, rather than a FP
discovery, because the probability to detect multiple adjacent
sites is lower than the probability of detecting at least one

single site.
A-clustering uses correlation as the basis for clustering of CpG

sites. This raises a few issues that are important to consider when

analyzing data. First, the type of correlation to use. We explored
the use of Pearson correlation, as well as the Spearman correl-
ation, which is more robust to non-linearities in the association

between two variables. In the dataset we used for data analysis,
as well as the simulated data, we had 80 observations, a relatively
low number, and, as was determined by simulations, Spearman

correlation was slightly more appropriate for the detection of
differentially methylated regions. When the number of observa-
tions is higher, it may be beneficial to use the Pearson correl-

ation, especially because it reduces computation time compared
with Spearman correlation. Second, one should consider redun-
dant correlation due to covariates and batch effects. We recom-

mend performing the entire analysis after normalization and
batch effect removal, but one should also consider correcting
for the effects of important covariates before A-clustering, by

implementing Aclust on the partial residuals of the methylation
measures, after regressing them on covariates. Note, however,
that in our dataset, clustering results were nearly identical

when we used the methylation values and when we used the
partial residuals. Third, one can apply A-clustering based on a
subset of the subjects. For instance, one can use only the high-

exposure group to define the clusters, rather than all subjects.
This would be useful if one expects that high exposure will ‘ac-
tivate’ a region, say, so that the signal is completely driven by the

high-exposure group. As another example, it may be advanta-
geous to cluster methylation sites based on the controls in a case-
control study, if one expects that cases will exhibit an aberrant

methylation pattern.
We provide two options to extend and restrict the clustering

algorithm. First, the dbp-merge that allows one to cluster a set of

sites that are wedged between two correlated sites and are ‘close
enough’ to each other, in terms of both correlation-based and
physical distance. We also consider restricting adjacent CpG sites

from clusters, if the base-pair distance between them (and

Table 4. A-clustering results on the entire data, 999-dbp-merge initiation,

1000 �dbp, D ¼ 0:5, Spearman correlation, type single

Characteristics quality

Number of clusters (at least two sites) 17515

Number of CpG sites in clusters (min, median, max) (2, 3, 59)

Base-pair distance between extremes (min, median, max) (2, 193, 5338)

Clusters associated with a CpG resort (%), 12554 (72%)

w/CpGs from multiple resort regions (% of resort clusters) 3640 (29%)

Restricted: clusters with exposure effect40.02, and significant

Number clusters with effect size40.02 641

Number of significant clusters (FDR corrected) 7

Number of CpG sites in clusters (min, median, max) (2, 2, 7)

Base-pair distance between extremes (min, median, max) (6, 216, 725)

Clusters associated with a CpG resort 4

w/CpGs from multiple resort regions 2

w/CpGs from south shelf, shore, island, north shore, shelf 0, 0, 3, 3, 0

Note: Summary of the Aclust and analysis results on the 460 337 CpG sites. The first

block in the table refers to the entire set of clusters. The second block refers to the

set of clusters that had exposure effect size 40:02, and significant at the 0.05 level

after FDR correction. The minimum number of sites per cluster is 2.
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without any CpG site measured between them) is smaller than a
predetermined threshold. In the data analysis, we used 999bp for
the dbp merge and 1000bp for the base-pair distance restriction.
It is not entirely clear if these are the best numbers. The best

distances would be such that the signal is maximized and yet not
too much noise is added. More complex rules for merging and
restrictions could also be devised, but that can lead to more

complicated computation and less clear interpretation. Another
possible extension to the clustering algorithm is the use of clus-
tering indicators based on prior knowledge. For instance, one

can decide that an island necessarily belongs to a certain cluster.
Also, in validating the results of one study on a different dataset,
one can use the clustering assignments from the first study.

Another tuning parameter is the type of distance between clus-
ters to be used. In the simulations, mimicking the sample size and
two exposure group’s design of our dataset, we found that the
average distance is most appropriate for the goal of detecting

differentially methylated regions.
We use GEEs for the analysis of clusters, as they use marginal

mean models that are robust to mis-specification of correlation

structure. We use exchangeable working correlation, but other
types of correlation can be explored. Also, we assumed that the
exposure effect is constant across all sites in the cluster. Although

it is likely that the direction of exposure effect (increases/decrease
methylation) is the same across the cluster, it is not clear that the
constant effect is correct and therefore, it may not be the most
advantageous assumption. For instance, it may be that even after

allowing for single-site intercept (i.e. we allowed for a different
baseline level of methylation for each site), some sites may be
more quickly modified by exposure than others. It is a topic for

future work to extend the method using other assumptions on
the effect of exposure on methylation in sites (e.g. increasing as
the site is closer to the transcriptional start site). A drawback of

the proposed GEE-based analysis is limited detection of large
clusters (e.g. 50 sites) when the sample size is small. Allowing
for different intercept for each site in a cluster may yield high

standard errors for the exposure effect. Thus, in the case of a
large cluster and small sample size, it is possible that methods
such as Bump Hunting, or analysis of the mean methylation
measure of probes in the cluster, may be more powerful.
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