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ABSTRACT

Motivation: Sequence-based methods to delimit species are central

to DNA taxonomy, microbial community surveys and DNA metabar-

coding studies. Current approaches either rely on simple sequence

similarity thresholds (OTU-picking) or on complex and compute-inten-

sive evolutionary models. The OTU-picking methods scale well on

large datasets, but the results are highly sensitive to the similarity

threshold. Coalescent-based species delimitation approaches often

rely on Bayesian statistics and Markov Chain Monte Carlo sampling,

and can therefore only be applied to small datasets.

Results: We introduce the Poisson tree processes (PTP) model to

infer putative species boundaries on a given phylogenetic input tree.

We also integrate PTP with our evolutionary placement algorithm

(EPA-PTP) to count the number of species in phylogenetic place-

ments. We compare our approaches with popular OTU-picking meth-

ods and the General Mixed Yule Coalescent (GMYC) model. For de

novo species delimitation, the stand-alone PTP model generally out-

performs GYMC as well as OTU-picking methods when evolutionary

distances between species are small. PTP neither requires an ultra-

metric input tree nor a sequence similarity threshold as input. In the

open reference species delimitation approach, EPA-PTP yields more

accurate results than de novo species delimitation methods. Finally,

EPA-PTP scales on large datasets because it relies on the parallel

implementations of the EPA and RAxML, thereby allowing to delimit

species in high-throughput sequencing data.

Availability and implementation: The code is freely available at www.

exelixis-lab.org/software.html.
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1 INTRODUCTION

DNA barcoding studies mostly rely on a single marker gene and

are widely used for DNA taxonomy (Goldstein and DeSalle,

2011; Vogler and Monaghan, 2007). More recently, high-

throughput sequencing of barcoding genes has been deployed

to disentangle the structure of microbial communities

(Caporaso et al., 2011) and in metabarcoding biodiversity

(Coissac et al., 2012) studies. A central analytical task in such

studies is to classify molecular sequences into entities that cor-

respond to species; this is commonly denoted as OTU-picking in

metagenomic studies (Sun et al., 2012). The main goals of such

methods are to identify known species and delimit new species

(Vogler and Monaghan, 2007).
Numerous approaches exist for associating anonymous reads/

query sequences with known species, for instance, nearest-neigh-

bor BLAST (Liu et al., 2008) or the naı̈ve Bayesian classifier

(Wang et al., 2007). These methods use sequence similarity to

associate reads with taxonomic ranks. Phylogeny-aware methods

for identifying reads were introduced independently and simul-

taneously with the evolutionary placement algorithm (EPA;

Berger et al., 2011) and pplacer (Matsen et al., 2010). Instead

of sequence similarity, they use the phylogenetic signal in the

reference and query sequences to attain higher classification ac-

curacy. Note that obtaining a taxonomic classification from

phylogenetic placements represents a difficult task because phy-

logenies and taxonomies are frequently incongruent (Cole et al.,

2009). Placement methods are similar to closed-reference OTU-

picking (Bik et al., 2012) or taxonomy-dependent methods

(Schloss and Westcott, 2011). Their ability to associate query

sequences with species depends on the completeness of the

taxon sampling in the reference data (Meyer and Paulay,

2005). Closed-reference or taxonomy-dependent methods gener-

ally lack the ability to delimit new species; consequently, they

may underestimate the number of species and hence the diversity

in the query sequences (see example in Supplementary Fig. S1).
To identify new species, taxonomy-independent methods or de

novo OTU-picking approaches are used to initially cluster se-

quences into so-called molecular operational taxonomic units

(MOTUs) (Floyd et al., 2002; Goldstein and DeSalle, 2011;

Vogler and Monaghan, 2007). Then, one can use a representative

sequence from each MOTU cluster and assign a taxonomic rank

via taxonomy-dependent methods. Although taxonomic assign-

ments may still be inaccurate due to incomplete reference data,

coarse-grain biodiversity estimates can be accurate when

MOTUs are assigned to higher taxonomic ranks. De novo

OTU-picking usually relies on unsupervised machine learning

methods (Cai and Sun, 2011; Edgar, 2010; Fu et al., 2012) that*To whom correspondence should be addressed.
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cluster sequences based on, mostly arbitrary, sequence similarity
thresholds (Puillandre et al., 2012; Schloss and Westcott, 2011).
However, it is currently unclear how MOTUs correspond to

species (Vogler and Monaghan, 2007).
To delimit species using molecular sequences, we initially need

to define our species concept. The phylogenetic species concept

(PSC) was initially introduced by Eldredge and Cracraft (1980)
and subsequently refined by Baum and Donoghue (1995);
Cracraft (1983); Davis and Nixon (1992); and Nixon and

Wheeler (1990). For a review of PSCs definitions please refer
to Baum and Shaw (1995). In general, phylogenetic species are
the smallest units for which phylogenetic relationships can be

reliably inferred. The PSC, in particular, from the genealogical
point of view (Baum and Shaw, 1995), states that species reside
at the transition point between evolutionary relationships that

are best represented phylogenetically and relationships that are
best reflected by reticulating genealogical connections (Goldstein
and Desalle, 2000).

There already exist several PSC-based species delimitation
approaches (e.g. see reviews in Fujita et al., 2012; Sites and
Marshall, 2003, 2004). The General Mixed Yule Coalescent

(GMYC) model (Fujisawa and Barraclough, 2013; Pons et al.,
2006) for delimiting species on single genes is frequently used in
empirical studies (Carstens and Dewey, 2010; Fontaneto et al.,

2007; Monaghan et al., 2009; Powell, 2012; Vuataz et al., 2011).
The GMYC method models speciation (among-species

branching events) via a pure birth process and within-species

branching events as neutral coalescent processes. GMYC identi-
fies the transition points between inter- and intra-species branch-
ing rates on a time-calibrated ultrametric tree by maximizing the

likelihood score of the model. It assumes that all lineages leading
from the root to the transition points are different species.
GMYC has been shown to work well for comparatively small

population sizes and low birth rates (Esselstyn et al., 2012). One
drawback of GMYC is that it depends on the accuracy of the
ultrametric input tree. Obtaining an ultrametric tree from a given

phylogeny is a compute-intensive and potentially error-prone
process. Most state-of-the-art likelihood-based tree calibration
methods such as BEAST (Drummond and Rambaut, 2007) or

DPPDIV (Heath et al., 2012) rely on Bayesian sampling using
MCMC (Markov Chain Monte Carlo) methods. When delimit-
ing species in phylogenetic placements, which requires calibrating

thousands of trees, it is almost impossible to deploy these meth-
ods in an automated pipeline, given the difficulties to assess
MCMC chain convergence, for instance.

Inspired by the PSC, we introduce the PTP model that can
delimit species using non-ultrametric phylogenies. Ultrametricity
is not required because we model speciation rate by directly using

the number of substitutions. The PSC implies that deploying
phylogenetic reconstruction methods within a species is inappro-
priate. A hierarchical relationship can nonetheless be inferred for

intra-species sequences using phylogenetic methods. However,
we expect to observe significant (in the statistical sense) differ-
ences between the relationships reconstructed among and within

species. These differences are reflected by branch lengths that
represent the mean expected number of substitutions per site
between two branching events. Thus, our fundamental assump-

tion is that the number of substitutions between species is sig-
nificantly higher than the number of substitutions within species.

In a sense, this is analogous to the GMYC approach that intends

to identify significant changes in the pace of branching events on

the tree. However, GMYC uses time to identify branching rate

transition points, whereas, in contrast, PTP directly uses the

number of substitutions.
PTP is simple, fast and robust. Thus, it can easily be integrated

with the EPA to calculate the number of species in a set of query

sequences that have been placed into a specific branch of the

reference phylogeny. We implemented an open reference species

delimitation pipeline by integrating PTP with the EPA to identify

known and new species.
Initially, we assess the performance of GMYC and the PTP

approach as general de novo species delimitation methods using

real and simulated data. We then compare PTP and GMYC with

two representative OTU-picking methods UCLUST (Edgar,

2010) and CROP (Hao et al., 2011). UCLUST represents a

fixed threshold OTU-picking approach, whereas CROP is a

soft threshold method that attempts to detect sequence clusters

using a Gaussian mixture model. Finally, we evaluate the per-

formance of our open reference approach EPA-PTP. For a fair

comparison, we also integrated CROP with the EPA (EPA-

CROP).

2 METHODS

2.1 The Poisson tree processes model

Classic speciation models such as the birth–death process (BDP) assume

that new species will emerge and current species will become extinct

at certain rates that are measured in unit time (Barraclough and Nee,

2001). Usually, a time-calibrated tree is required as an input. Thus,

for molecular sequence data, a molecular clock model must be

applied to calibrate the tree. Coalescent theory also relies on unit time

to describe the relationships among ancestors and descendants in a

population.

Instead, we may consider the number of substitutions between branch-

ing and/or speciation events, by modeling speciations using the number of

substitutions instead of the time. The underlying assumption is that each

substitution has a small probability of generating a speciation. Note that

the substitutions are independent of each other. If we consider one sub-

stitution at a time in discrete steps, the probability of observing � speci-

ations for � substitutions is given by a binomial distribution. Because we

assume that each substitution has a small probability � of generating a

speciation, and the number of substitutions in a population of size � is

large, the process follows a Poisson distribution in continuous time with

rate �� �. Therefore, the number of substitutions until the next speci-

ation event follows an exponential distribution.

Comparing this with the assumptions of a BDP, we observe that each

generation (e.g. with a generation time of 20 years) on a time-calibrated

ultrametric tree has a small probability of speciation. The BDP does not

model substitutions, thus, substitutions are superimposed onto the BDP,

whereas PTP explicitly models substitutions. Substitution information

can easily be obtained by using the branch lengths of the phylogenetic

input tree. Thus, in our model, the underlying assumptions for observing

a branching event are consistent with the assumptions made for phylo-

genetic tree inference.

We can now consider two independent classes of Poisson processes.

One process class describes speciation such that the average number of

substitutions until the next speciation event follows an exponential dis-

tribution. Given the species tree, we can estimate the rate of speciations

per substitution in a straightforward way. The second Poisson process

class describes within-species branching events that are analogous to
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coalescent events. We assume that the number of substitutions until the

next within-species branching event also follows an exponential distribu-

tion. Thus, our model assumes that the branch lengths of the input tree

have been generated by two independent Poisson process classes.

In the following step, we assign/fit the Poisson processes to the tree.

Let T be a rooted tree, and Pi be a path from the root to leaf i, where

i ¼ 1. . . l and l is the number of leaves. Let bij, j ¼ 1� � � z be the

edge lengths of Pi, representing the number of substitutions. We further

assume that bij, j ¼ 1� � � z are independent exponentially distributed

random variables with parameter �. Let Bik :¼ bi1 þ . . .þ bik be

the sum over the edge lengths for k � 1. We further define

NiðsÞ :¼ maxfk : Bik � s, s � 0g. Bik is the number of substitutions of

the kth branching event, and NiðsÞ is the number of branching

events below Bik. Note that fNiðsÞ; s � 0g constitutes a Poisson process.

Thereby, T and fNiðsÞ; s � 0g, i ¼ 1� � � l together form a tree of

Poisson processes, which we denote as Poisson Tree Processes (PTP).

To a rooted phylogeny with m species, we apply/fit one among-species

PTP and at most m within-species PTPs. An example is shown

in Figure 1.

In analogy to BP&P (Yang and Rannala, 2010) and GMYC (Pons

et al., 2006), we conduct a search for the transition points where the

branching pattern changes from an among-species to a within-species

branching pattern. The total number of possible delimitations on a

rooted binary tree with m tips ranges between m (caterpillar tree) and

1:502m, depending on the actual tree shape (Fujisawa and Barraclough,

2013). Because the search space is generally too large for an exhaustive

search, we need to devise heuristic search strategies. Given a fixed species

delimitation, we fit two exponential distributions to the respective two

branch length classes (among- and within-species branching events). We

calculate the log-likelihood as follows:

L ¼
Xk

i¼1

logð�se
��sxi Þ þ

Xn

i¼kþ1

logð�ce
��cxi Þ ð1Þ

where x1 to xk are the branch lengths generated by among-species PTPs,

xkþ1 to xn are the branch lengths of within-species PTPs, �s is the speci-

ation rate per substitution and �c is the rate of within-species branching

events per substitution. The rates �s and �c can be obtained via the in-

verse of the average branch lengths that belong to the respective pro-

cesses. Based on Equation (1), we search for the species delimitation that

maximizes L. A standard likelihood-ratio test with one degree of freedom

can be used to test if there are indeed two classes of branch lengths. Large

P-value indicates that either all sequences are one species or that every

sequence represents a single species.

We developed and assessed three heuristic search strategies for finding

species delimitations with ‘good’ likelihood scores, which are described in

the online supplement. For the experimental results presented here, we

used the heuristic that performed best, based on our preliminary

experiments.

2.2 Species delimitation using phylogenetic placements

In the following, we describe the open reference species delimitation

pipeline that combines the EPA with the PTP (EPA-PTP). The EPA

initially places a large number of query sequences (short reads) into the

branches of a given reference phylogeny. Thereafter, we execute PTP

separately and independently for the query sequences assigned to each

branch. This allows to annotate the branches of the reference tree by the

number of species induced by the query sequences that were placed

into each branch. The input of our pipeline is a reference alignment

where each sequence represents one species and a reference phylogeny

for that alignment. The PTP method and the pipeline are implemented

in Python and rely on the python Environment for Tree Exploration

package (Huerta-Cepas et al., 2010) for tree manipulation and

visualization.

Our pipeline executes the following steps:

1. Run UCHIME (Edgar et al., 2011) against the reference alignment

to remove chimeric query sequences.

2. Use EPA to place the query sequences onto the reference tree.

Sequences that have a maximum placement likelihood weight of

50.5 (i.e. an uncertain placement, see Berger et al., 2011 for details)

are discarded.

3. For each branch in the reference tree, we extract the set of query

sequences that have been placed into that branch and infer a tree

on them using RAxML (Stamatakis, 2006). Because the PTP

method requires a correctly rooted tree, we use the following two

rooting strategies: if the branch leads to a tip, apart from the query

sequences, we extend the alignment by including the reference tree

tip sequence and that reference sequence that is furthest away from

the current tip. The most distant sequence is used as outgroup.

Keep in mind, that thereby the tree will be rooted at the longest

branch (see the discussion below). To analyze query sequence

placements at internal branches, we use the RAxML �g constraint

tree option to obtain a rooted tree of the query sequences.

The constraint tree consists of the bifurcating reference tree and

a polytomy comprising the query sequences attached to the refer-

ence tree branch under consideration. The result of this constrained

ML tree search is a resolved tree of query sequences that are at-

tached to the reference tree branch. The attachment point is used

as root.

4. Because we assume that the reference phylogeny is a species tree

that reflects our knowledge about the speciation process and rate,

we initially estimate �s only once on the reference phylogeny.

Thereafter, we apply PTP to each query sequence (one for each

branch of the reference phylogeny) tree to delimit species. Note

that in this scenario we will only need to estimate �c, as �s remains

fixed.

5. When PTP is applied to a placement of query sequences on a

terminal branch, those queries that are delimited as one population

with the reference sequence at the tip will be assigned taxo-

nomically to the species represented by this reference

sequence. Otherwise, they are identified as new species in the ref-

erence tree.

Fig. 1. Illustration of the PTP. The example tree contains 6 speciation

events: R, A, B, D, E, F, and 4 species: C, D, E, F. Species C consists of

one individual; species D, E, F have two individuals each. The thick lines

represent among-species PTP, and the thin lines represent within-species

PTPs. The Newick representation of this tree is ((C:0.14, (d1:0.01,

d2:0.02)D:0.1)A:0.15, ((e1:0.015, e2:0.014)E:0.1, (f1:0.03, f2:0.02)

F:0.12)B:0.11)R. The tree has a total of 16 different possible species

delimitations. The maximum likelihood search returned the depicted spe-

cies delimitation with a log-likelihood score of 24.77, and �s¼ 8.33 and

�c¼ 55.05
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As mentioned previously, we also combined EPA with CROP (EPA-

CROP). The method works as EPA-PTP, with the only difference that

CROP is used instead of PTP to calculate the number of MOTUs for

each placement.

3 EXPERIMENTAL SETUP

We initially tested stand-alone PTP for general species delimita-

tion and compared it with the single-threshold GMYC model.
The single-threshold GMYC model infers a single cutoff time T

where all nodes above T represent species. Although the more

advanced multiple-threshold GMYC allows for several threshold

times Ti, the single-threshold GMYC is usually more accurate
than the multi-threshold version (see Fujita et al., 2012 for de-

tails). For simulated data, we used RAxML (Stamatakis, 2006)

to infer phylogenetic trees, and then used them as input to PTP.
Subsequently, these phylogenies were made ultrametric by r8s

(Sanderson, 2003) to test GMYC. For UCLUST and CROP,

only molecular sequences are needed as input. In both programs,

we set the sequence dissimilarity threshold to 97%, a widely ac-
cepted threshold for bacterial sequences (Stackebrandt and

Goebel, 1994). For real datasets, we used the phylogenetic tree

and ultrametric tree from the original publications whenever pos-
sible, otherwise we used the same settings as described

previously.

We then tested our open reference species delimitation
approaches (EPA-PTP and EPA-CROP). We also assessed the

impact of incomplete taxon sampling on the accuracy of these

approaches, by removing up to 50% of the reference sequences.

3.1 Empirical datasets

3.1.1 Arthropod datasets The Rivancidella dataset comprises
three genes (cyt b, COI, 16S) and was originally used in Pons

et al. (2006). The total number of sequences is 472, which repre-

sents 24 morphological species and 4 outgroup taxa. The esti-
mated number of putative species for the genus as inferred by

GMYC was 48 (with confidence limits ranging between 46 and

52 species). Alternative methods (see Pons et al., 2006 for details)

used in this study yielded 46 and 47 putative species, respectively.
We also used COI marker datasets (Papadopoulou et al.,

2010) of the genera Dendarus, Pimellia and Tentyria. The data-
sets comprise 51, 56 and 59 sequences, respectively. The number

of species that were attributed to each taxon using morphological

criteria was seven, one and one.

3.1.2 Gallotia dataset The lizard genus Gallotia comprises seven

species (based on genetic and morphological markers) that are
endemic to the Canary islands. The taxonomic species tree and

the molecular phylogeny for this dataset are fully congruent. The

data (Cox et al., 2010) comprises four mitochondrial genes (cyt b,
COI, 12S, 16S) and a total of 90 sequences (76 representing

Gallotia and 14 outgroup sequences).

3.1.3 Arthropod metabarcoding dataset This dataset contains
673 full-length COI arthropod sequences with a length of

658bp. The sequence was obtained via polymerase chain reac-
tion amplification and Sanger sequencing. Subsequently, these

673 sequences were resequenced with a 454 sequencer to generate

a total of 133057 short reads (Yu et al., 2012). Using the Sanger

data as reference, Yu et al. developed metabarcoding protocols

that use the 454 reads to unravel the diversity in the reference

data. The authors use a multistep OTU-picking procedure with

different similarity thresholds for clustering the 454 reads and the

full-length reference sequences. The method clustered the 673

sequences into 547 MOTUs. The OTU-picking results for the

454 data are summarized in Table 4. Our PTP model finds 545

putative species in the 673 full-length sequences when directly

applied to the phylogenetic reference tree. To ensure comparabil-

ity of results, we used the 547 MOTUs identified in the original

study to build a reference tree and reference alignment for testing

the EPA-PTP and EPA-CROP pipelines. Initially, we aligned

454 sequences with a length exceeding 100 bp to these 547 refer-

ence sequences with HMMER (Eddy, 2009). Yu et al. initially

blasted the 454-MOTU (obtained via three alternative clustering

methods) to the Sanger-MOTUs using a threshold of 1e-10 and

97% minimum similarity. The Sanger-MOTUs that did not

match any of the 454-MOTUs are called ‘dropouts’ by the au-

thors. Inversely, 454-MOTUs that did not match Sanger-

MOTUs are called ‘no-matches’.
Analogously, in our pipelines, when the delimited species from

454 sequence placements contain one of the full-length reference

sequences (see step 4 in 2.2), we consider this as a ‘match’.

Further, we denote a full-length reference sequence that is not

included in any short read placement delimitation as ‘dropout’.

Finally, we call a short read placement that is delimited as a new

species (i.e. does not contain a reference sequence) as ‘no-match’.

3.2 Simulations

We generated simulated datasets using a Yule coalescent model.

We used ms (Hudson, 2002) and BioPerl (Stajich et al., 2002) in

combination with INDELible (Fletcher and Yang, 2009) to

simulate sequences. Using a modified version of the BioPerl

module Bio::Phylo that allows to vary the birth rate value in

the simulations, we initially generated a set of random species

trees T ¼ T1,T2, . . . ,T100. The leaves of each tree Ti

(15 ¼ i5 ¼ 100) represent extant species. All 600 simulated

datasets we generated contain 30 species. In the next step, we

used ms to generate a structured coalescent gene tree. The node

ages of the phylogenetic tree Ti are interpreted as divergence

times between populations. In other words, we treat species as

diverged populations that were completely isolated from each

other after they diverged from their common ancestor. Thus,

using ms we simulated a multispecies coalescent gene tree with

30 species and 100 individuals per species. For each species, we

randomly selected 10 individuals to generate evenly sampled (in

terms of the number of individuals per species) datasets. We also

generated unevenly sampled datasets containing 2 species with

100 individuals, 4 with 50 individuals, 8 with 10 individuals and

16 with 2 individuals. Finally, we used INDELible to simulate

DNA alignments of 250, 500 and 1000bp on the previously men-

tioned multispecies coalescent trees.

We generated datasets with a scaled birth rate

(b0 :¼ 5, 10, 20, 40, 80, 160); small values generate large evolu-

tionary distances between species. For details on the simulations

and on the scaled rate b0, please refer to the online supplement.
We used the normalized mutual information (NMI) criterion

(Vinh et al., 2010) to asses how the delimitation accuracy of the
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different algorithms agrees with the ground truth. The mutual

information (MI) of two distinct partitions of the same dataset

quantifies how much information is shared by these; NMI scales

MI to values between 0.0 and 1.0. In our case, NMI¼ 1 means

that the delimitation is identical to the ground truth, whereas

NMI¼ 0 means that the delimited species are randomly parti-

tioned compared with the ground truth.

Finally, we also tested the EPA-PTP and EPA-CROP pipe-

lines on simulated data. In each simulated alignment, we ran-

domly selected one individual sequence per species as reference

sequence and treated the remaining sequences (of that species) as

query sequences. To assess the impact of incomplete reference

trees on species delimitations, we randomly removed up to 50%

of the reference sequences. We deployed the same metrics as

mentioned previously to quantify delimitation accuracy.

4 RESULTS

4.1 General species delimitation

The number of putative species delimited for Dendarus, Pimelia,

Tentyria and Gallotia are comparable for all four methods

(Table 1). For the Gallotia dataset, GMYC and PTP yield iden-

tical results. Three of the Gallotia species were split into two

separate groups according to geographical isolation of the cor-

responding populations on different islands (see Supplementary

Fig. S4).
On the Rivacindela dataset PTP yields a more conservative

delimitation than GMYC. PTP identifies 27 putative species

(GMYC: 48), which is closer to the number of morphological

species (24) and the number of independent networks (25) ob-

tained via statistical parsimony (Pons et al., 2006). This pro-

nounced difference may be associated with the construction of

the ultrametric tree. According to the r8s manual, the presence of

many short (close to zero) branches in the tree can yield inaccur-

ate results. When applying PTP to the ultrametric tree, the re-

sulting estimate is substantially closer to the GMYC estimate

(see Table 1). Thus, we believe that the overestimation of

the Rivacidela species by GMYC is most probably because of

an erroneous ultrametric tree reconstruction. CROP and

UCLUST yield dissimilar results; CROP only detects 6 clusters,

whereas UCLUST detects 82 clusters.
The results on evenly sampled simulated data are summarized

in Table 2 and Supplementary Table S1. On average, PTP shows

the best performance and outperforms GMYC in all the test

scenarios. OTU-picking methods work well on datasets with

small b0 values that is when the evolutionary distances between

species are large. For b0 � 20, UCLUST generally outperforms

PTP and yields the best overall results. However, with increasing

b0 the accuracy of OTU-picking methods decreases steeply. As

expected, for shorter sequence lengths (250 and 500bp), accuracy

deteriorates for all methods and in a more pronounced way for

PTP and GMYC. However, even with sequence lengths of

250 bp, PTP still yields best results on datasets with b0420.

On the unevenly sampled simulated datasets (Supplementary

Table S2), the delimitation accuracy decreases for UCLUST and

PTP. CROP and GMYC yield higher NMI scores than on evenly

sampled dataset. On average, PTP yields the best results over all

(evenly and unevenly sampled) simulated datasets.

4.2 Species delimitation with phylogenetic placements

By combining EPA with PTP (or CROP) and applying it to

simulated data as described in Section 3.2, we can substantially

improve the delimitation accuracy on simulated data (Table 3

and Supplementary Tables S3 and S5).
When the reference phylogeny includes470% of the reference

data, EPA-PTP outperforms all competing approaches, includ-

ing stand-alone PTP. EPA-PTP outperforms PTP even when the

reference phylogeny contains only 50% of the simulated refer-

ence data for b0 � 20. With increasing b0, the reference data need

to be more complete for EPA-PTP to outperform PTP. This is

because with increasing b0, internal branch lengths tend to get

shorter and the EPA placement accuracy decreases. Hence, more

data are needed to obtain accurate placements. Note that under

extremely high speciation rates, EPA-PTP performs worse than

PTP. The estimation errors may also because of (i) discarding

sequences with low likelihood weights (see Section 2.2) (ii) errors

in phylogenetic inferences or (iii) PTP heuristics failing to find

the maximum likelihood species delimitation.

The results for the EPA-CROP pipeline are shown in

Supplementary Tables S4 and S6. EPA-CROP outperforms the

stand-alone version of CROP, but the results are worse than for

EPA-PTP.

On the Arthropod metabarcoding data, the EPA-PTP pipeline

yields substantially better results than the multistep OTU-picking

pipeline used in the original publication (Table 4). When the

Table 2. Species delimitation accuracy (measured in NMI) on simulated

evenly sampled data

NMI b0 Mean

(variance)

5 10 20 40 80 160

1000bp

UCLUST 0.969 0.959 0.938 0.892 0.782 0.575 0.852 (0.023)

CROP 0.964 0.930 0.848 0.646 0.232 0.038 0.609 (0.151)

GMYC 0.924 0.914 0.907 0.886 0.834 0.697 0.860 (0.007)

PTP 0.944 0.935 0.922 0.905 0.882 0.857 0.907 (0.001)

250 bp

UCLUST 0.967 0.954 0.930 0.871 0.735 0.522 0.829 (0.029)

CROP 0.961 0.917 0.800 0.545 0.152 0.024 0.566 (0.159)

GMYC 0.892 0.620 0.484 0.464 0.550 0.503 0.585 (0.025)

PTP 0.946 0.927 0.907 0.881 0.833 0.780 0.879 (0.003)

Table 1. Number of species delimitated on real data

Taxon Morphological GMYC PTP CROP UCLUST

Rivacindela 24 48 27/44a 6 82

Dendarus 7 10 9/11a 7 11

Pimelia 1 10 9/15a 7 10

Tentyria 1 2 2/2a 1 3

Gallotia 7 10 10/10a 9 15

aUsing the ultrametric tree as an input for PTP.
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complete full-length reference sequence tree is used, the EPA-

PTP pipeline shows substantially lower ‘dropout’ and ‘no-

match’ rates. It recovers 12.5% more species with respect to

the reference data that represent an improvement of over 50%.

Here, we apply an analogous criterion as in the original study

where at least two reads need to be contained in an OTU cluster

for it to be considered. In our case, � 2 reads need to be con-

tained in a species delimitation. If an OTU cluster or species

delimitation only contains one read, it is highly likely that it

represents a sequencing error. However, the availability of the

complete reference dataset is not granted for most metabarcod-

ing analyses. Thus, as for the simulated data, we randomly

removed up to 50% of the reference sequences and reran our

pipelines. We then calculated the ratios between the number of

species estimated on the reduced reference data relative to the

number of species estimated on the complete reference data. The

results are shown in Supplementary Figure S5 in the online sup-

plement. When species are delimited with taxonomy-dependent

approaches, such as the EPA, the number of estimated species is

expected to decrease with the number of species in the reference

data. When combined with PTP (using � 5 reads per

delimitation as cutoff), EPA-PTP yields stable diversity esti-
mates, irrespective of the completeness of the reference phyl-
ogeny. EPA-CROP also yields better results than the multistep

OTU-picking pipeline and stand-alone CROP. The results are
slightly worse than for EPA-PTP (Supplementary Table S7).

5 DISCUSSION

We introduced, implemented and made available a new model

(PTP) for species delimitation that is mainly intended for delimit-
ing species in single-locus molecular phylogenies. PTP can pro-
pose species boundaries that are consistent with the PSC. An

important advantage of our method is that it models speciation
in terms of the number of substitutions. Thereby, it circumvents
the potentially error-prone and compute-intensive process of

generating time-calibrated ultrametric trees, which are required
as an input for GMYC.
Using real datasets, we show that delimitations inferred with

PTP are comparable with delimitations obtained via GMYC.
Simulations suggest PTP outperforms GMYC.
In addition, it is more straightforward to use because it only

requires a standard phylogenetic tree as input and because it also
is substantially faster. On the 673-taxon metabarcoding dataset
(using a modern Intel desktop processor), for instance, r8s re-

quires 3 days to complete, whereas RAxML in combination with
PTP only requires a total of about 20min to return a species
delimitation.

We also compared GMYC and PTP with two clustering algo-
rithms: CROP and UCLUST. From our point of view, the prob-
lem of species delimitation needs to incoporate data from various

sources (e.g. sequences and trees) and also depends heavily on the
species definition used. Thus, GMYC and PTP yield comparable

results on real data because they are based on the PSC. In con-
trast, by their very definition, CROP and UCLUST simply iden-
tify sequence clusters. The fact that there is a difference between

sequence clusters and PSC-based species delimitation is under-
pinned by our simulations.
We simulate the data in accordance with the GMYC model

that essentially adopts the PSC. To demonstrate the impact of
the b0 parameter on clustering-based delimitation accuracy, we
plotted the pairwise sequence distances within species and be-

tween directly adjacent species in the simulated tree, for b0 :¼ 5
and b0 :¼ 160 in Supplementary Figures S2 and S3 of the online
supplement. Lower b0 values lead to larger evolutionary distances

between species, that is, the so-called barcoding gap (Puillandre
et al., 2012) is present. Increasing b0 reduces the evolutionary
distances between species and the barcoding gap disappears

(see Puillandre et al., 2012 for examples of this phenomenon
on real data). Therefore, our simulations show that clustering

algorithms work on datasets with the barcoding gap because
phylogenetic species are mostly consistent with sequence clusters
in this case. However, clustering methods are prone to fail when

the barcoding gap is not present because sequences cannot be
told apart any more via sequence similarity alone. As we show,
GMYC and PTP delimitation performance is more robust to the

absence of barcoding gap. Thus, when no prior information
(barcoding gap presence) about the dataset is available and the
goal is to delimit phylogenetic species, GMYC and PTP should

be preferred.

Table 3. Species delimitation accuracy (measured in NMI) on simulated

evenly sampled data using the EPA-PTP pipeline

NMI b0 Mean

(variance)

5 10 20 40 80 160

1000bp

Full ref. 0.989 0.978 0.962 0.933 0.884 0.836 0.930 (0.003)

90% ref. 0.984 0.972 0.955 0.925 0.876 0.830 0.923 (0.003)

80% ref. 0.976 0.966 0.949 0.921 0.872 0.823 0.917 (0.003)

70% ref. 0.971 0.959 0.943 0.912 0.868 0.816 0.911 (0.003)

60% ref. 0.966 0.956 0.939 0.908 0.860 0.805 0.905 (0.003)

50% ref. 0.962 0.950 0.934 0.904 0.853 0.787 0.898 (0.004)

250 bp

Full ref. 0.978 0.968 0.949 0.918 0.863 0.811 0.914 (0.004)

90% ref. 0.967 0.955 0.935 0.907 0.854 0.800 0.903 (0.004)

80% ref. 0.956 0.944 0.926 0.895 0.846 0.786 0.892 (0.004)

70% ref. 0.942 0.926 0.912 0.880 0.830 0.773 0.877 (0.004)

60% ref. 0.927 0.911 0.893 0.861 0.813 0.755 0.860 (0.004)

50% ref. 0.909 0.891 0.871 0.838 0.784 0.732 0.837 (0.004)

Note: ref. indicates reference sequences

Table 4. Arthropod dataset: number of estimated MOTUs and species for

the complete reference data and tree

No. reads OTU-picking EPA-PTP

Number

of cluster

Drop-out

(%)

No-match

(%)

Number

of cluster

Drop-out

(%)

No-match

(%)

� 1 reads 973 19 42.8 587 7.3 13.6

� 2 reads 602 24 25.4 516 11.5 6.2

� 5 reads — 36 — 441 21.9 3.2

Note: Sanger data (the reference dataset) has a total of 547 MOTUs. The ‘—’

indicates that the number is not available in the original publication.
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Apart from the stand-alone PTP code, we also introduced the
EPA-PTP pipeline that combines the EPA with PTP.
The EPA-PTP pipeline represents the first integrated approach

for analyzing metagenomic data that combines the phylogenetic
placement approach with an explicit statistical criterion for spe-
cies delimitation. On a representative empirical dataset, our pipe-

line yields a substantially more accurate diversity estimate than
traditional OTU-picking methods. Using simulated data, we
show that, open reference-based approaches can improve delimi-

tation accuracy compared with de novo approaches. More im-
portantly, the EPA-PTP pipeline allows for deploying a widely
accepted species concept to metagenomic data, where millions of

sequences need to be processed. EPA-CROP (with the default
setting of 2000 MCMC generations) is approximately twice as
fast as EPA-PTP on the metabarcoding dataset. Note that 2000

generations may not be sufficient, and that CROP does not offer
a built-in MCMC convergence assessment criterion.
In the following, we discuss the current limitations of our

approach.
Readers should keep in mind that entities delimited by PTP

are putative species only. The phylogenetic trees inferred on
single-gene molecular sequences are gene trees rather than species

trees, albeit the hierarchical relationships above the species
boundaries are expected to be mostly consistent with the species

tree. However, the boundaries inferred by PTP are only approxi-
mate. Additional data need to be integrated to further validate
the delimitations, such as morphological characters and multi-

gene sequence data (Ence and Carstens, 2011) within an integra-
tive taxonomy framework (Padial et al., 2010; Sauer and
Hausdorf, 2012). The putative species delimited by PTP, can,

for instance, be used as initial hypothesis that can be further
scrutinized with multilocus coalescent-based methods such as
BP&P (Yang and Rannala, 2010). BP&P requires prior know-

ledge of species boundaries, and it represents a validation
method, rather than a delimitation method. Owing to its com-
putational complexity, BP&P can currently only handle up to 20

species.
Compared with OTU-picking methods, PTP and EPA-PTP

require substantially more CPU time because of the phylogenetic
calculations. Although most OTU-picking methods can run on

an off-the-shelf desktop computer, the EPA-PTP pipeline
requires a multicore server for analyzing large metagenomic

datasets.
Because PTP initiates the search for the maximum likelihood

delimitation at the root of the input phylogeny, the tree has to be
correctly rooted to obtain accurate estimates. Also, PTP should

be used with caution on datasets where the number of individuals
sampled per species is unbalanced and where the over-sampled
species exhibit small within-species variation (see Supplementary

Tables S1 through 4).
In such cases, the inferred phylogeny will comprise both, sub-

trees (comprising one species and many individuals) with a large

number of extremely short branches, and subtrees (comprising
one species but only few individuals) with short, but not
extremely short branches. Such unbalanced samples may require

the introduction of a third � parameter class of branches to
accommodate (i) over-sampled within-species branches, (ii)
within-species branches and (iii) among-species branches.

Otherwise, the species that are not over-sampled cannot be

delimited properly, that is, each individual is likely to be identi-

fied as a separate species. Hence, we either need a criterion for

removing over-sampled sequences, or a criterion to decide when

and how many additional classes of PTP (� parameters) need to

be introduced.
However, a major drawback of introducing additional PTP

classes is that the delimitation search space becomes significantly

larger. Hence, finding the maximum likelihood delimitation or a

best known delimitation represents a challenging task. Thus,

before extending the number of classes, we feel that more work

on the design and performance of heuristic search strategies for

species delimitation is required to better characterize and under-

stand the problem. This also applies to the heuristics used in

GMYC, given that the underlying optimization problems are

similar.
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