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Abstract
Several recent reports in large, independent samples have demonstrated the influence of motion
artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing
typically includes regression of confounding signals and band-pass filtering. However, substantial
heterogeneity exists in how these techniques are implemented across studies, and no prior study
has examined the effect of differing approaches for the control of motion-induced artifacts. To
better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial,
temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses
utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically
evaluate the efficacy of a range of confound regression and filtering techniques for the control of
motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the
control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit
beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be
substantially attenuated through improved preprocessing procedures, but not completely removed.
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INTRODUCTION
Although it has long been known that in-scanner head motion can have profound effects on
fMRI timeseries data (Friston et al., 1996; Bullmore et al., 1999), the specific importance of
this artifact for the analysis of resting state functional connectivity MRI (rsfc-MRI; Biswal
et al., 1995; Fox and Raichle, 2007) has only recently been appreciated. In particular, it has
been demonstrated in three large independent samples (Van Dijk et al., 2011; Power et al.,
2011; Satterthwaite et al., 2012) that even relatively small amounts of in-scanner head
motion represent a substantial confound for rsfc-MRI data. All three studies concluded that
motion in general tends to enhance short-range connectivity and diminish long-distance
connectivity among network nodes. As rsfc-MRI has evolved to become an important tool
for examining brain networks in health and disease (Biswal et al., 2010; Fox and Grecius,
2010; Glan et al., 2010; Seeley et al., 2009; Yeo et al., 2011; Zhou et al., 2010), it is of
critical importance to understand how best to model and account for this artifact.

Power et al. (2011) recently introduced a novel method, called “scrubbing,” that identifies
motion-induced spikes in the rsfc-MRI timeseries and excises this data with a temporal
mask; adjacent timepoints are then temporally concatenated. Subsequently, Carp (2011)
proposed a modification of scrubbing where data were removed and interpolated prior to
band-pass filtering in order to avoid propagation of the motion artifact during the application
of the band-pass filter. Using simulated data, he demonstrated that this modified scrubbing
procedure was able to recover the “ground truth” connectivity in this timeseries (Carp,
2011). In a reply to Carp, Power et al. (2012) note that this procedure may be of marginal
benefit given the fact that motion often occurs in long epochs, and that the effect of motion
may occur beyond one isolated volume.

Scrubbing is a preprocessing technique that can be implemented after (Power et al., 2011) or
as part of (Power et al., 2012) standard rsfc-MRI preprocessing, which usually includes
image re-alignment, spatial smoothing, filtering, and confound regression (Van Dijk et al.,
2010). Notably, no prior report has investigated whether these standard rsfc-MRI
preprocessing steps can themselves be improved to control the artifacts induced by in-
scanner head motion. Here, we focus on two of these steps— confound regression and
filtering—and investigate whether improved methods can produce better control of motion
artifact.

There is substantial variation regarding how motion is modeled during confound regression
(Johnstone et al., 2006; Auer, 2008): some studies include only the six motion parameters
themselves, while others include the temporal derivatives, or even the quadratic of both the
raw parameters and derivatives (zu Eulenburg et al., 2012). Yet other studies have modeled
motion-induced spikes in the timeseries data with individual regressors, effectively
removing the effect of these data points on any subsequent analysis of the residual
timeseries (Lemieux et al., 2007). Furthermore, while most studies apply a band-pass filter
with a high-pass cutoff in the range of 0.008–0.01Hz and a low-pass threshold of 0.08–
0.1Hz (Cordes et al., 2001; Niazy et al., 2011), it has not yet been specifically demonstrated
how motion affects the magnitude spectra of rsfc-MRI data, nor is it known whether band-
pass filtering can be tailored for better control of motion artifact.
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This study investigates the effect of motion and the improvement of preprocessing
procedures in a large sample of adolescents (n=348) who completed an rsfc-MRI study of
typical duration (6 minutes). We had two primary goals. First, we sought to describe the
spatial, temporal, and spectral characteristics of motion artifact, and evaluated how typical
preprocessing steps alter the manifestations of this artifact. Second, we systematically
evaluated whether confound regression and filtering could be improved to provide better
control of motion artifact. Results reveal that the effectiveness of preprocessing procedures
on the control of motion artifact are quite variable, and that improved preprocessing
provides a substantial benefit beyond typical procedures, allowing the attenuation but not
complete removal of motion artifact from rsfc-MRI data.

MATERIALS, METHODS, AND RESULTS
Overall approach

Reflecting the two main goals of this study, the methods and results of this paper are
described in two parts. In the first section we further describe how in-scanner motion affects
rsfc-MRI data through use of both real data and simulations, and how different
preprocessing strategies may alter the way motion artifact manifests. In order to evaluate the
spatial distribution of motion artifact, we introduce a novel procedure for estimating motion
on a voxelwise basis. In the second section, we investigate strategies for improving
preprocessing through different techniques of confound regression and filtering. However,
we begin by detailing the general methods that are common to both parts.

General methods
Subjects and sub-samples—The present study is a collaboration between the Center
for Applied Genomics (CAG) at Children’s Hospital of Philadelphia (CHOP) and the Brain
Behavior Laboratory at the University of Pennsylvania (Penn); full study design and
procedures are described elsewhere (Gur et al., 2012; Satterthwaite et al., 2012;
Satterthwaite et al., 2012b). For the purposes of this report, we compared preprocessing
techniques among a subsample of 348 adolescents (ages 8–23) previously examined in
Satterthwaite et al. (2012), who were selected through a manual process so that age and in-
scanner motion were uncorrelated. As described in Sattertwaite et al. (2012) subjects with
gross motion (>0.55mm mean relative displacement) were initially excluded from analysis.
Furthermore, in the age/motion matching process several additional high-motion subjects
were excluded; thus, the highest mean relative displacement of any subject in the present
sample was 0.20 mm. Because age and motion were uncorrelated, this sample thus avoids
any confounding influence of subject age on estimated effects of in-scanner motion, as
younger subjects move substantially more during image acquisition. All subjects or their
parent or guardian provided informed consent (or assent if <18 years old); study procedures
were approved by the Institutional Review Boards of both Penn and CHOP.

Throughout this report, we compare two sub-samples of these 348 subjects. These sub-
samples consisted of two groups of 100 subjects each: the “low-motion” group comprised
the 100 lowest-motion subjects, whereas the “high-motion” group included 100 high-motion
subjects who were matched for age and sex on a 1:1 basis with the low-motion group using a
matching algorithm implemented in MATLAB (The Mathworks; Natick, MA). This
algorithm (code available upon request) started with the 100 lowest-motion subjects in the
sample, and then iteratively found subjects of the same gender and most-similar age from
the remaining pool of 248 higher-motion participants. Therefore, the “low-motion” group
comprises the subjects the lowest movement in this sample, whereas the “high-motion”
group includes age and gender matched subjects with higher motion. Note, however, that
this “high-motion” group is not simply comprised of the highest-motion subjects in the
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overall sample, as that would have lead to substantial differences in age between the low
motion and the high motion groups, with the high-motion group being significantly younger.
Subject demographics for the complete sample and matched sub-samples are detailed in
Table 1.

Image acquisition—All imaging data in this report is the same as the data from our initial
report on the effect of in-scanner motion on functional connectivity (Satterthwaite et al.,
2012). All subject data were acquired on the same scanner (Siemens Tim Trio 3 Tesla,
Erlangen, Germany; 32 channel head coil) using the same imaging sequences. Blood oxygen
level dependent (BOLD) fMRI was acquired using a whole-brain, single-shot, multi-slice,
gradient-echo (GE) echoplanar (EPI) sequence of 124 volumes with the following
parameters: TR/TE=3000/32 ms, flip angle=90 degrees, FOV=192×192 mm,
matrix=64X64, 46 slices, slice thickness/gap =3mm/0mm, interleaved acquisition. The
resulting nominal voxel size was 3.0×3.0×3.0mm. A fixation cross was displayed as images
were acquired. Subjects were instructed to stay awake, keep their eyes open, fixate on the
displayed crosshair, and remain still. Prior to timeseries acquisition, a magnetization-
prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR 1810ms, TE
3.51 ms, FOV 180×240 mm, matrix 256×192, 160 slices, TI 1100 ms, flip angle 9 degrees,
effective voxel resolution of 1 × 1 × 1mm) was acquired to aid spatial normalization to
standard atlas space. In order to acclimate subjects to the MRI environment, a mock
scanning session was conducted prior to image acquisition for each individual using a
decommissioned MRI scanner and head coil. Mock-scanning was accompanied by acoustic
recordings of the noise produced by gradient coils for each scanning pulse sequence. During
these sessions, feedback regarding head movement was provided to the subjects using the
MoTrack (Psychology Software Tools, Inc, Sharpsburg, PA) motion tracking system.
Motion feedback was only given during the mock scanning session. In order to further
minimize motion, subjects’ heads were stabilized in the head coil using one foam pad over
each ear and a third over the top of the head.

Whole-brain motion parameters—We evaluated in-scanner head motion with both
standard procedures and also a novel method that provides an estimate of voxelwise
displacement (see below). For each subject, rigid body head motion was estimated using
FSL’s MCFLIRT routine. This estimation derives a motion transformation matrix for each
time point. Each transform is described by six motion parameters consisting of three
translations and three rotations (Jenkinson et al., 2002). These six parameter time series can
be condensed to a single vector representing the root mean squared volume-to-volume
displacement of all brain voxels (Jenkinson et al., 2002). This one-dimensional motion
timeseries can be calculated to measure the RMS displacement relative to a single reference
volume (absolute displacement), or relative to the preceding volume (relative displacement).
In this paper we focus on relative RMS displacement. Finally, as previously reported
(Satterthwaite et al., 2012; Van Dijk et al., 2011), for group-level analyses a given subject’s
motion time series was further reduced to a single scalar quantity by computing the mean
value of the relative displacement vector, called the mean relative displacement (MRD).

Voxelwise displacement parameters—In addition to using standard whole-brain
motion estimates, in this study we introduce and apply a novel technique that derives
estimates of displacement on a voxelwise basis, enabling the description of regional
heterogeneity in the effect of motion. Calculation of the mean relative displacement of each
brain voxel due to subject motion was derived as follows. First, the position of each brain
voxel prior to motion correction was calculated as a 3-element vector (x,y,z) using the
image-space to magnet-space transformation matrix provided in the Nifti data header (i.e.
the “sform” entries) of the unprocessed image data (see http://nifti.nimh.nih.gov/nifti-1/
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documentation/nifti1fields/nifti1fields_pages/qsform.html for details of this procedure).
Next, motion correction on the volume time series was performed using FSL’s MCFLIRT
tool (Jenkinson et al., 2002), which resulted in an estimation of the rigid-body motion at
each time point relative to the reference volume chosen from the middle time point of the
series. Thus, for each subject, the volume-to-volume movement of the head is described by a
3×4 matrix which incorporates the three translations and three rotation angles of the
estimated motion. From this data it is possible to caculate the position of each brain voxel
for each TR. This was done by applying the motion transformation matrix at each time point
to the original position of each voxel, resulting in a distinct voxel position estimate for every
brain voxel location at every time point. In order to calculate the degree to which a given
voxel moved from one TR to the next (e.g., the relative displacement), we computed the
Euclidean distance of its position relative to its position at the preceding time point. This
resulted in a 4-dimensional relative displacement timeseries for each subject that displayed
how much a given voxel moved from the prior timepoint.

General preprocessing steps—While each preprocessing approach had specific
differences, some steps were common to all. All fMRI data processing was conducted using
tools that are part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). BET was
used to remove non-brain areas (Smith, 2002). The first four volumes were removed to
allow BOLD signal stabilization. All functional timeseries were slice-time corrected, motion
corrected to the median image using a tri-linear interpolation with six degrees of freedom
(Jenkinson et al., 2002), spatially smoothed (6mm FWHM, isotropic), and grand-mean
scaled using mean-based intensity normalization. The functional timeseries for each subject
was co-registered with the anatomical image and transformed to standard anatomical space
(T1 Montreal Neurological Institute template, voxel dimensions of 2×2×2 mm) using a
linear normalization algorithm (FLIRT; Jenkinson et al., 2002).

DVARS—As in Power et al. (2011), we used the DVARS (Derivative of rms VARiance
over voxelS) to summarize whole-brain signal change. DVARS gauges the degree of image
intensity change from volume to volume in the timeseries on a voxelwise (or ROI-wise)
basis, providing an advantage over the global signal, where voxel intensities are first
averaged across the entire brain. Initially, in order to relate DVARS to relative RMS
displacement, DVARS was calculated on the timeseries following re-alignment and spatial
smoothing on a voxelwise basis, but prior to confound regression or filtering. Notably,
however, in the last section of the paper, DVARS was recalculated following improved
confound regression and filtering on an ROI-wise basis in order to flag volumes for
scrubbing following preprocessing.

Whole-brain network—Motion has previously been shown to have heterogeneous effects
based on the distance between network nodes (Power et al., 2011; Satterthwaite et al., 2012;
Van Dijk et al., 2011). Therefore, as previously (Satterthwaite et al., 2012) we evaluated the
effect of motion on pairwise connections within a network of 160 regions of interest (ROIs)
that cover the entire brain. These ROIs consisted of 10 mm-diameter spheres centered on
coordinates from a large meta-analysis of task-based fMRI studies (Dosenbach et al., 2010).
Following realignment and smoothing as described above, timecourses were extracted from
each of these ROIs. All subsequent analyses described below, including confound regression
and filtering, were conducted on these ROI timeseries using programs written in-house in
MATLAB. Connectivity was calculated on residual timeseries following confound
regression and band-pass filtering using Pearson’s correlations. The upper triangle of this
160×160 connectivity matrix includes 12,720 unique connections.
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Understanding the Influence of Motion on rsfc-MRI Data: Methods
In the first part of this paper, we describe the characteristics of motion artifact in rsfc-MRI
data. Below we detail analyses of the temporal, spectral, and spatial characteristics of
motion-induced variance. Temporal effects are investigated with a finite impulse response
(FIR) analysis; spectral features are evaluated using standard Fourier transformations;
spatial characteristics are described using novel analyses of voxelwise displacements.
Finally, using both real and simulated data, we outline how the inclusion of the global signal
in confound regression may alter the manifestation of motion artifact in a given dataset.

Spatial distribution of motion—Traditional modeling of motion with six motion
parameters assumes that motion affects all brain regions equally. However, this is unlikely
to be the case, as head motion is biophysically constrained by the head and neck anatomy.
For example, rotations produce a pivot of the head around the neck, leading voxels at the
edge of the brain to experience more motion than voxels near the pivot. In order to
demonstrate this, we calculated the summary voxelwise displacement timeseries for each
subject, and then calculated a second-level average across subjects, producing an across-
subject mean displacement image. All voxelwise images are displayed using Caret by
projecting the image volumes on to the PALS atlas using a trilinear interpolation (Van Essen
et al., 2001).

In order to ascertain whether regional variation in motion was effectively captured by
standard whole-brain motion parameters, we calculated whole-brain voxelwise adjusted r2

maps describing the model fit for a voxelwise confound regression model (implemented in
FEAT; Woolrich et al., 2009) that included 6 basic motion parameters. For each subject an
adjusted r2 map was constructed; these maps were then averaged across subjects to produce
a group mean. This final adjusted r2 map represents a group-level average of how much
variance the 6-parameter confound regression model explains at every voxel across the
brain.

While the above analysis emphasizes regional heterogeneity in motion, the differences in
regional displacement were of relatively small magnitude (see Results), suggesting that head
motion results in displacement that is correlated across brain voxels. To examine this
further, we created a seed-based displacement correlation map from each subject’s
voxelwise displacement timeseries. This analysis allows one to directly visualize how
correlated a given voxel’s displacement is with a selected seed. To the degree to which
motion results in displacement that affects the entire brain, one would expect the correlation
between a given seed and the rest of the brain to be high. To create the seed-based
displacement correlation maps, we extracted the average timecourse of displacement of
voxels within an 8 mm diameter spherical seed in the posterior cingulate cortex (MNI
coordinates: 0, 53, 26; Van Dijk et al., 2010). These values were then correlated on a within-
subject basis with the displacement timeseries of every other voxel in the brain. This yielded
a single-subject displacement correlation map; a group level r map was constructed by
averaging across all subjects.

In order to characterize the correlation among voxelwise displacement parameters
comprehensively, we repeated this procedure using the whole-brain network of 160 ROIs. A
160×160 correlation matrix was created for each subject using the mean displacement
timeseries from each ROI; a group level correlation matrix was created by averaging over
the complete sample, and finally displayed using a heat map.

Temporal course of motion artifact—One limitation to the successful modeling of
motion is that the timecourse of the effect of motion on the BOLD signal has not been well
described. We investigated this by conducting a finite impulse response (FIR) analysis

Satterthwaite et al. Page 6

Neuroimage. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



implemented in MATLAB. For each subject, the relative RMS displacement vector was
used to identify timepoints where displacement was above one of three specific thresholds
(relative RMS displacements of 0.3mm, 0.5mm, or 0.7mm). This multiple regression
approach estimates the BOLD signal response at each modeled timepoint following (or
preceding) the event. This method is often used to estimate a hemodynamic response
function (HRF) but here is used to estimate the “motion response function” (MRF). This
method is similar to a peri-stimulus average response plot, but unlike a simple average the
FIR accounts for closely spaced events with overlapping effects. Notably, this measure
captures the average response to a particular event type; heterogeneity in the response will
not be captured but clearly exists. In this case, we modeled 4 TRs, with the displacement
event occurring between the 2nd and 3rd modeled timepoint. It should be noted that motion
estimates from realignment algorithms describe motion as a change in head position
between two volumes. However, motion occurs both during volume acquisition and across
TRs; realignment-based estimates of motion allow only inexact attribution of when motion
takes place. For each subject, the FIR analysis was performed on whole-brain voxelwise
BOLD percent-signal-change timeseries as well as on the global average timeseries.

Effect of motion on the magnitude spectra of rsfc-MRI data—Next, we explored
how motion affects the magnitude spectra of the resting-state timecourse. Previously, we
have shown (Satterthwaite et al., 2012) that motion is highly correlated with the fractional
amplitude of low frequency fluctuations (fALFF; Zou et al., 2008). However, the effect of
motion on the magnitude spectra of rsfc-MRI data has not previously been described. If
motion were to differentially affect certain frequencies, filtering could be improved
accordingly. Therefore, we created magnitude spectra for every subject at every ROI using
the Fast Fourier Transformation (FFT) implemented in MATLAB. Timeseries were
extracted following realignment and spatial smoothing as above, but prior to confound
regression or filtering. Prior to the application of the FFT, average ROI time signals were
normalized by demeaning and then dividing by the same mean. This process yielded 160
magnitude spectra for each subject (one per ROI); these were averaged across subject ROIs
to create average representative magnitude spectra for each subject. Group-average
magnitude spectra are displayed separately for both low motion subjects and matched high-
motion subjects. Low and high motion groups were compared at each frequency using a
two-tailed two-sample t-test.

Effect of global signal regression on motion artifact—As described in the Results
section, the above analyses demonstrate that displacement is highly correlated across the
brain, and that motion-induced displacement tends to produce a drop in signal across the
entire brain. However, such effects would tend to increase connectivity globally; this is at
odds with prior reports (including our own) that motion tends to increase connectivity for
short-range connections, and decrease connectivity for long-range connections (VanDijk et
al., 2011; Power et al., 2011; Satterthwaite et al., 2012). We suspected that the inclusion of
the global signal in confound regression might influence the impact of motion artifact on
functional connectivity measures and produce this pattern of results. We investigated this
possibility using both real and simulated data.

First, we evaluated the effect of the inclusion of the global signal on the appearance of
motion within the whole-brain network of 160 ROIs. Following realignment and spatial
smoothing (6mm FWHM), timeseries were extracted from each ROI and confound
regression was performed under two conditions. In the first, we included six standard motion
parameters only. In the second, we added the global signal as well (seven parameters total).
After confound regression, timeseries were band-pass filtered (0.01–0.1 Hz). Following
preprocessing a 160×160 connectivity matrix was constructed for each subject as above; a
Fisher’s r-to-z transformation was applied to improve normality. Finally, as previously
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(Satterthwaite et al., 2012), mean relative displacement was correlated across subjects with
the connectivity calculated for every node pair. Thus, the resulting plot (see Results) is a plot
of the correlation between motion and connectivity versus inter-node distance, effectively
describing the degree to which inter-node distance modulates the effect of subject-level
motion on pairwise connectivity. We expanded upon this approach using simulated
timeseries and motion artifact (see Supplementary Methods).

Understanding the Influence of Motion on rsfc-MRI Data: Results
Characteristics of sample—Given that children usually move more than adults, in-
scanner motion of the selected sample was relatively small (Table 1); all subjects had a
relative mean displacement <0.22mm. (This is due to the fact that subjects with gross
motion were excluded.) As in Power et al. (2011) we observed a strong relationship between
relative RMS displacement and frame-to-frame change in signal as measured by DVARS
(r=0.63; p<1.0×10−10).

Spatial distribution of motion—Group-level analysis of voxelwise displacements
illustrates that motion is not equally distributed across the brain, but maximal in the anterior
frontal cortex and minimal in posterior subcortical regions near the pivot about which head
rotation occurs (Figure 1A). Although the at the group level voxelwise mean relative
displacement appears highly regular, individual subject maps reveal heterogeneity in both
the magnitude and pattern of motion (Supplementary Figure 1). A pattern similar to the
group-level voxelwise displacement map is also seen in the whole-brain adjusted r2 maps
describing the voxelwise model fit of confound regression with 6 standard motion
parameters (Figure 1B), suggesting that whole-brain motion parameters explain more signal
variance in regions that also are more motion-prone. However, there are exceptions to this
general pattern, and certain regions (such as the insula) with medium levels of motion
nonetheless have relatively low amounts of variance explained by motion parameter
regression.

Despite regional variation in displacement magnitude, displacement timeseries were highly
correlated across the brain: the displacement correlation seed analysis in the posterior
cingulate cortex (Figure 2A) revealed that, while displacement in distant frontal regions
showed less strong correlations with the PCC than those areas adjacent to the seed, overall
the correlation was still quite high. A similar pattern is seen in the relationship among
displacements in each of the 160 ROIs (Figure 2B); while some level of heterogeneity does
exist, the general level of correlation is very strong. Given these results, it is not surprising
that the correlation with whole-brain relative RMS displacement was so high (mean r=0.89;
S.D. 0.092; Figures 2C and D). While this is an inevitable consequence of the fact that the
head is a rigid body that pivots about the neck, these results clarify the success of whole-
brain motion parameters in modeling motion seen below.

Timecourse and magnitude spectrum of motion artifact—FIR analysis revealed
that displacement induces a fairly dramatic drop in the BOLD signal that scales with the
amplitude of the displacement (Figure 3A). Realignment parameters describe motion
between two adjacent TR’s; the observed drop in signal intensity was maximal at timepoint
1, although substantial effects were also seen at timepoint 0. Voxelwise FIR analysis
demonstrates that signal at timepoint 1 drops throughout the entire brain parenchyma
(Figure 3B). However, signal is dramatically increased in a rim around the edge of the brain.

Analysis of the magnitude spectra of the matched low and high motion groups indicate that
signal change introduced by in-scanner motion is relatively nonspecific in terms of its
spectral characteristics. Motion was associated with a divergence in the magnitude spectra of

Satterthwaite et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the signals of the high and low motion groups across the frequency spectrum (Figure 4).
Low and high motion groups were significantly different at all frequencies.

Effect of inclusion of global signal in confound regression—When the global
signal was not included in confound regression, subject-level motion as summarized by
MRD increased pairwise connectivity maximally for adjacent nodes, but also tended to
increase connectivity for distant nodes to a somewhat lesser degree (Figure 5A). In contrast,
when the global signal was included in confound regression, motion increased connectivity
between nodes that were closer together, and decreased connectivity between longer
distance connections (Figure 5B). These results are consistent with the results of
connectivity simulations as well as additional analyses of global-ROI similarity in real data
(see Supplementary Figures 2 & 3).

Improvement of Regression and Filtering During Preprocessing: Methods
In the second part of this study, we systematically investigated whether confound regression
and filtering could be improved to improve control of the motion artifact. As a final step, we
evaluated the degree to which the scrubbing techniques described by Power et al. (2011)
might provide additional benefit beyond improved preprocessing.

Regression using whole-brain motion parameters—As noted above, there is
considerable heterogeneity among studies as to how confounding signals are accounted for
in the regression step. In order to compare confound regression strategies for mitigating
effects of motion artifact (Johnstone et al., 2006), we evaluated four different regression
models composed of an escalating number of whole-brain motion parameters. All confound
regression models were implemented in MATLAB on each of the previously realigned and
smoothed 160 ROI timeseries. The models evaluated included:

1. 3 parameters: No motion regression; only mean global timeseries, white matter
(WM), and cerebrospinal fluid (CSF) timeseries were included (Fox et al., 2005).
WM and CSF were defined on a subject-specific basis through segmentation of the
T1-weighted image using FAST (Zhang et al., 2001). This model also forms the
base model for comparisons with regression of voxelwise displacement parameters
(below).

2. 9 parameters: standard 6 motion parameters (x, y, z translations and rotations) +
WM/CSF/global timecourses.

3. 18 parameters: includes regressors from 9 parameter model, plus temporal
derivative of each parameter across the timeseries (calculated using backward
difference). The inclusion of the temporal derivative effectively accounts for a one-
frame delay in the effect of motion on the BOLD signal. Such an 18-parameter
model has been widely applied (Power et al., 2011; Van Dijk et al., 2011).

4. 36 parameters: additionally includes the quadratic term for all parameters in the 18-
parameter model. Inclusion of the quadratic term effectively removes the sign of
the motion parameter and also models nonlinearities in the effect of motion on the
BOLD signal. This model is similar to the Volterra expansion proposed by Friston
et al. (1996).

Regression using voxelwise displacement parameters—Our initial analyses of the
voxelwise displacement parameters indicated that they were highly correlated with each
other and with whole-brain motion parameters. We therefore did not expect them to provide
a benefit over the whole-brain models described above. However, to evaluate this
empirically, we examined three confound regression models using voxelwise displacement:
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1. 6 parameters: 3 voxelwise displacement parameters (x, y, z) + WM/CSF/global
timecourses.

2. 12 parameters: includes regressors from the 6-parameter model and their temporal
derivatives.

3. 24 parameters: includes regressors from the 12-parameter model and their quadratic
terms.

For reference, all voxelwise models are compared to the whole-brain regression technique
with the best model fit (36-parameter model, see Results).

Spike regression: criteria and threshold—A complementary strategy to regression of
motion parameters is the regression of motion spikes. In this procedure, timepoints are
identified as a motion-induced artifact, and an individual regressor is created for each
identified spike. This strategy has been effectively applied before (Lemieux et al., 2007), but
never examined directly in the context of connectivity-based outcome measures data.
However, any regression of spikes first requires selection of criteria defining a spike.
Second, one must decide how to model the spike regressor. The most straightforward
approach is to model each motion spike as a single event (1 TR) in the timeseries;
alternatively, one could model a window of TRs around the identified spike. Here, we tested
two strategies for spike identification, and then tested six different temporal windows around
a spike (see below). In the first “single criterion” approach, a spike was identified as any
relative RMS displacement above a specified threshold. In the second “dual criteria”
approach, as in Power et al. (2011), a spike was identified using a combination of both
relative RMS displacement and DVARS thresholds.

As recently noted by Power et al. (2012) in their reply to Carp (2012), the criteria for
defining what is a motion-related spike that should be removed (through scrubbing or spike
regression) is of critical importance. Selecting a spike regression threshold requires
navigating two goals which are in tension: a lower spike regression threshold produces
cleaner data, but at the expense of excluding more timepoints and having a reduced residual
timeseries for connectivity analysis. When a single-TR regressor is added to the confound
regression, that timepoint is censored from the residual timeseries and replaced with a zero.
Because the mean value of the residual timeseries is also zero, such timepoints do not
influence the overall correlation value. However, such timepoints clearly are not brain
signal. While cleaner data is always desirable, at some point insufficient real data remains
for subsequent analysis. This data quality versus data quantity tradeoff is particularly acute
for typical resting-state acquisition durations such as the one used in the present study (6
minutes). In this study we consider <4 minutes of resting state data insufficient. This
threshold is consistent both with the established literature and with the results of Van Dijk et
al. (2010), who showed that connectivity estimates within common resting state networks
are stable with a 4-minute timeseries.

We selected a relative RMS displacement threshold for spike identification of 0.25mm
(+2S.D. for all displacements across all subjects). This value is quite similar to the 0.2mm
threshold used by Power et al. in their revised account of scrubbing (Power et al., 2012). The
equivalent +2S.D. threshold for DVARS in the dual-criterion approach was 1.4%. While
other thresholds were tested, higher (+3S.D.) thresholds performed more poorly, and lower
thresholds (+1S.D.) produced an excessive number (i.e., >40) of regressors in higher-motion
subjects, leading to their exclusion. While zero subjects were excluded using a single-
criterion threshold of 0.25 mm (+2 S.D.), 10 subjects were excluded using a lower 0.15 mm
(+1 S.D.) relative RMS displacement threshold. For comparison, 21 subjects would have <4
minutes of retained data using a dual-criterion approach of +2 S.D. followed by scrubbing
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one volume before and two volumes after a motion spike, as in the scrubbing procedure
proposed in Power et al., 2011. However, we emphasize that these thresholds are not
prescriptive, and the optimal spike/scrubbing threshold selection will depend on both the
length of the acquisition timeseries and the amount of motion present in a given dataset.

Spike regression: temporal window—As results of earlier analyses (and Friston et al.,
1996) suggested that motion has effects beyond the immediate timepoint of the event, we
also tested the effect of modeling various temporal windows around each spike. We created
windows around spikes identified by both methods, as motion-related signal fluctuations
may appear in adjacent timepoints without themselves being above the spike identification
threshold. We tested six temporal windows (modeled as boxcars), over the backwards/
forwards (“b,f”) range of: backwards 0, forwards 0 (b0,f0); backwards 1, forward 0 (b1,f0);
backwards 1, forward 1 (b1,f1); backwards 1, forward 2 (b1,f2); backwards 0, forward 1
(b0,f1); backwards 0, forward 2 (b0,f2).

Outcome measures: regression diagnostics—One challenge in deciding which
preprocessing approach is superior in real data is the lack of a known, noiseless ground
truth. In lieu of such a ground truth, we used a series of outcome measures to evaluate the
effectiveness of confound regression procedures. These measures included two standard
regression diagnostic measures, as well as two outcome measures directly examining the
influence of motion on functional connectivity.

First, for each regression model tested we calculated the adjusted r2 for the model at each of
the 160 ROIs for every subject; adjusted r2 values were averaged across ROIs for each
subject. This measure provides an easily interpretable measure of how much variance each
regression model explained at the subject-level, while accounting for the degrees of freedom
lost by including more parameters in the model. Adjusted r2 values range from 0–1; for
example, an adjusted r2 of 0.5 denotes that the regression model explains 50% of the
variance in the data after accounting for the degrees of freedom lost by additional regressors.
We reasoned that a successful confound regression model would explain a greater amount of
variance in the data. To evaluate the effect of subject motion on the amount of variance
explained by each model, average adjusted r2 for each model was calculated separately for
subjects in the high and low motion groups. Additionally, the average subject adjusted r2

was plotted versus subject MRD. Note that the adjusted r2 is reported as an easily
interpretable descriptive measure and no further statistics are performed on these values.

Second, in order to aid in model selection, we calculated the Akaike information criterion
(AIC; Akaike, 1974) for every model examined. AIC balances model fit and model
complexity, privileging parsimony in terms of the number of parameters; lower AIC values
denote more successful models. Typically, the AIC values are compared between the best-
fitting model (with the lowest AIC) and other competing models; a delta-AIC of greater than
2 indicates model superiority. Critically, AIC values can be compared across models that use
different, non-nested regressors. It should be noted, however, that comparing AIC values
between completely different groups of subjects (i.e., high and low motion subjects) or with
different input data (i.e., smoothed versus unsmoothed) is not meaningful. As above, AIC
values were calculated for each model at each subject’s ROIs; mean subject AIC was
calculated for each subject by averaging across ROIs. Mean model AIC values were
obtained by averaging across subjects, both across the entire sample and separately within
low and high motion groups. Delta AIC values are reported between the model with the
lowest AIC and the next-best model tested.

It should be noted that both adjusted r2 and AIC do not provide a direct measure of how
effective a model is at removing motion artifact from the data. Rather, they provide an
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indirect measure by measuring the model fit of the confound regression procedure,
emphasizing model parsimony in the process. In order to provide convergent evidence, we
additionally employed several metrics that measured the relationship between subject-level
motion and functional connectivity.

Outcome measures: functional connectivity—The above regression diagnostics
provide measures of model fit and allow statistical comparisons between models. However,
in order to further demonstrate the relative efficacy of one confound regression model over
another, we considered two measures of the influence of motion on functional connectivity.
The first examined differential connectivity between matched high and low motion groups.
We predicted that to the degree that a given confound regression procedure successfully
attenuated motion artifact, there would be less difference in functional connectivity between
these matched groups. Following confound regression, the residual timecourse of each
model was filtered as above using a standard fourth-order Butterworth band-pass filter
retaining frequencies between 0.01–0.1Hz. A connectivity matrix within the network of 160
ROIs was constructed for each subject separately for each model as described above. All r-
values were normalized using the Fisher’s r to z transformation. Finally, connectivity values
were compared between the matched low motion and high motion groups for each unique
pairwise connection (12,720 in total) using a two-sample t-test. In order to produce an easily
interpretable measure of differential connectivity between groups, we report the total
number of pairwise connections that were significantly different in the low and high motion
groups (correcting for multiple comparisons using a false discovery rate of Q<0.05). To the
degree that confound regression successfully controlled motion artifact, we expected there to
be fewer connections that differed between the low and high motion groups. Finally, in
order to statistically compare different models, we entered the absolute value of the t
distribution produced by the 12,720 two-sample tests for each model into a Wilcoxon
signed-rank test on a pairwise basis. Specifically, this test was used to compare the best
model with the next-best model. This procedure allowed us to infer if the difference in
connectivity between the high and low motion groups was significantly influenced by the
regression model employed.

As a second outcome measure, we calculated the absolute value of the across-subject
correlation between pairwise connectivity and MRD. Specifically, every subject’s MRD was
correlated at each pairwise connection with the z-transformed measure of connectivity. This
produced 12,720 correlation values (one for each unique pairwise connection). Once again,
for ease of interpretation, we report the mean of the absolute value of each of these
normalized correlation measures, indicating the degree to which motion influences
connectivity. In order to test whether the correlation between connectivity and motion
differed significantly among models, we z-transformed the absolute value of the motion-
connectivity correlation values, producing a distribution of 12,720 unique normalized
correlations for each model. As above, these distributions of normalized correlation values
from the best and second-best models were compared with a Wilcoxon signed-rank test.

Control analyses—As described in the Results, we found a substantial benefit for
confound regression using models that included greater numbers of motion parameters.
However, we were concerned that the large number of regressors included in such models
might remove real brain signal in addition to motion artifact (Ollinger et al., 2009). To test
this possibility, we examined the most strongly connected (r>0.2) (r>0.2) long-range
connections (>120mm) identified in the 3-parameter whole-brain motion confound
regression model (n=52, see Supplementary Table 1 for a list of these connections). We
chose this subset of connections as they were most likely to show a loss of signal: motion
reduces connectivity in long-range connections (if the global signal is included, see above),
so a successful model would result in increased connectivity if motion were being
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effectively regressed out. However, if the regression were removing brain signal in addition
to noise, we would expect connectivity to be reduced in these connections. In contrast, in
short range connections motion typically increases connectivity; in this case both effects
would go in the same direction and could not be disambiguated. We examined these long-
range, strong connections in only the low-motion subjects as data with little motion artifact
provides the most sensitive test of potentially deleterious signal-removing effects of
confound regression.

A second control analysis examined the effects of adding increasing numbers random noise
regressors on our outcome measures of interest. We compared the 6, 9, 18, and 36 whole-
brain motion parameter models across all outcome measures to models where equal numbers
of random timeseries were included as confound regressors. This procedure evaluates
whether adding a greater number of regressors (that would explain some variance by
chance) influenced chosen outcome measures. In order to equate the total number of
regressors found in the 9, 18, and 36-parameter models, we used the real global, WM, and
CSF signal for each subject. In addition these three regressors, we sequentially added 6, 15,
and 33 timeseries of random noise as confound regressors to the model, so that the total
number of regressors would be the same for each comparison.

Band-pass filtering—As suggested by Weissenbacher et al. (2009) we followed
confound regression with band-pass filtering. As described below (see Results), initial
analyses revealed a strong relationship between the magnitude spectra of the resting-state
signal and subject MRD. However, the initial analysis was conducted on the resting-state
signal prior to confound regression. Given the likelihood that confound regression would
change the magnitude spectra of the resting-state signals, we repeated this analysis following
each confound regression model described above. Specifically, we compared the high and
low motion subjects in terms of the magnitude spectra of residual timeseries produced by
each confound regression model. In order to determine the frequency ranges in which the
two groups were different, we compared the amplitude of the magnitude spectra of the two
groups at each frequency interval using a two-sample t-test. This analysis determined which
frequencies should be retained in band-pass filtering; frequency ranges where the high- and
low-motion groups were different were likely due to motion-induced artifact. Based on the
results of these analyses, we compared a 0.01–0.1 Hz band-pass filter to a band-pass filter
retaining only frequencies where there were no difference in the magnitude spectra between
high and low motion groups (0.01–0.08 Hz, see Results). All filter designs used a fourth-
order Butterworth filter; this filter design was chosen as it has a reasonably sharp frequency
response but does not induce substantial passband ripple. Improved and standard filtering
were compared using the connectivity-based outcome measures described above.

Effects of improved preprocessing on network modularity—All analyses thus far
evaluate pairwise connectivity among ROIs. A useful global measure of the effectiveness of
preprocessing is the effect on the overall network community structure. We compared how
the community structure differed between low and high motion subjects in both typical and
improved preprocessing methods. “Standard” preprocessing included 9-parameter voxelwise
confound regression and a band-pass filter of 0.01–0.1 Hz; “improved” preprocessing
included 36-parameter + single-TR spike regression performed on an ROI-wise basis,
followed by band-pass filtering at 0.01–0.08 Hz. All data was smoothed at 6mm FWHM.
The mean correlation matrix was calculated separately for high and low motion subject
groups; community structure of this mean correlation matrix was calculated with a
threshold-free modularity analysis (Rubinov and Sporns, 2011). This measure allows
estimation of modularity (using the Louvain algorithm) for fully connected networks with
positive and negative weights. As in Power et al. (2011), the similarity between community
structures was evaluated using Normalized Mutual Information (NMI). This measure
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quantifies the dependence of a joint probability distribution; in this case, two networks with
an identical community structure would have an NMI of 1, whereas networks that are
completely dissimilar (such that the community structure of one does not predict the other)
would have an NMI of 0. NMI values were compared with permutation testing. In this
procedure, for each subject we randomly chose whether to include the improved or standard
connectivity matrix into the group average. This produced an average connectivity matrix
for the low and high motion groups where (improved or standard) preprocessing was
determined by chance. The community structure of each of these connectivity matrices was
compared using NMI. This process was repeated 1000 times, producing a null distribution of
NMI values representing the expected NMI if preprocessing were determined by chance
alone.

Evaluation of the number of volumes flagged for scrubbing following
improved preprocessing—As a final step, we assessed whether the addition of a second
stage of processing using the scrubbing techniques outlined by Power (Power et al. 2011)
would provide any additional benefit beyond improved preprocessing that included spike
regression. As in Power et al. (2011), in order to account for signal variability removed by
confound regression, DVARS was re-calculated after complete preprocessing, including
confound regression and filtering. (Note that one difference from Power et al. (2011) was
that at this stage values were calculated from the residual ROI timecourses). Volumes were
flagged for scrubbing if both the DVARS and relative RMS displacement values were >2
S.D. above the group average (0.25mm; 0.3%). As noted above (and as in Power et al.,
2011), we excluded subjects with < 4 minutes of data following scrubbing. The difference
between standard and improved preprocessing in terms of number of volumes flagged for
second-stage scrubbing was assessed using a paired Wilcoxon signed-rank test.

Improvement of Regression and Filtering During Preprocessing: Results
Confound regression using whole-brain motion parameters—Next, we
systematically tested which confound regression strategies could mitigate the influence of
motion artifact. When 3-, 9-, 18-, and 36-parameter confound regression models were
compared, there was evidence for better model fit and lower effect of motion on
connectivity of the 36-parameter model. (Figures 6 & 7). Specifically, higher-parameter
models explained more signal variance as evinced by a higher model adjusted r2 (Figure
6A). However, this effect was not homogeneous, and the variance explained by any given
confound regression model was systematically greater for high motion subjects than low
motion subjects.

Similarly, the better model fit of higher-parameter models was indicated by lower AIC
values (Figure 6B). The 36-parameter model had the lowest average AIC value. The delta-
AIC between the 36-parameter model and all other lower-parameter models was significant,
with a delta-AIC of 4 versus the 18-parameter model, a delta-AIC of 7 versus the 9-
parameter model, and a delta-AIC of 42 versus the 3- parameter model. However, this was
largely driven by the high-motion group: AIC values declined for the low motion group
when six standard motion parameters were included, but the AIC in this group did not drop
when derivative and quadratic terms were added in the 18- and 36-parameter models. In
contrast, in the high-motion group AIC values continued to decline at each step as more
parameters were added.

Paralleling the results of these regression diagnostic measures, connectivity-based outcomes
improved with high-parameter confound regression models (Figure 7). Notably, the 36-
parameter model had the lowest number of significantly different connections between the
high and low motion groups (Figure 7A). In addition, the 36-parameter model had the
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lowest mean absolute correlation between connectivity and motion (Figure 7B). Pairwise
comparisons between the 36-parameter model and all other models were highly statistically
significant; when the 36-parameter model was compared to the 18-parameter model (which
was next-best), the 36 parameter model showed less connections that were different between
the high and low motion groups (z=46.09; p<1.0×10−10) and a lower correlation between
motion and connectivity (z=62.60; p<1.0×10−10)

Confound regression using voxelwise motion parameters—Since motion was
highly correlated across the entire brain, we did not expect that voxelwise motion
parameters would provide substantial superiority over whole-brain motion parameters. As
seen in Supplementary Figure 4, the 24-parameter regression model based on voxelwise
parameters was slightly inferior to the 36-parameter whole-brain confound regression model
on all outcome measures. The delta-AIC between the two models was 5.6; the 36-parameter
whole brain model also had a smaller difference between high and low motion groups
(z=13.75; p<1.0×10−10) and a lower correlation between connectivity and motion (z=44.20;
p<1.0×10−10).

Control analyses—To address the concern that high-parameter models might remove real
brain signal along with motion-induced noise, we conducted a control analysis examining
the influence of increased number of confound regressors on distant connections in low
motion subjects. We did not find any evidence for diminished connectivity across the 9-,
18-, and 36-parameter models (r=0.25–0.26 for all models). As expected, addition of random
noise regressors did not alter model adjusted r2 (Figure 8A), and worsened (increased)
model AIC (Figure 8C). In contrast, connectivity-based outcome measures were driven by
the addition of noise regressors, diminishing differences between the high and low motion
groups (Figure 8B) and reducing the overall correlation between motion and connectivity
(Figure 4D). This suggests that when evaluating confound regression techniques,
connectivity-based outcome measures should not be considered in isolation, but always
evaluated in tandem with regression diagnostics (such as adjusted r2 and AIC) that consider
model fit within the context of degrees of freedom.

Confound regression of motion spikes—Next, we investigated if adding more
confound regressors corresponding to motion spikes could further improve performance.
Regression diagnostics (AIC and adjusted r2) were calculated for each spike regression
model, which also included as a base 36 whole brain motion parameters as detailed above.
Both the single criterion (relative RMS displacement) and the dual-criteria (relative RMS +
DVARS) approaches produced a mean adjusted r2 of 0.65 across all temporal windows.
However, the mean AIC of the single criterion was lower than the AIC of the dual criteria
method across all temporal windows; the mean single criterion AIC was 1222, whereas the
dual criteria AIC was 1235 (delta-AIC=13). The AIC of the single-criterion (but not dual-
criteria) spike regression compared favorably to that of the 36-parameter model alone
(AIC=1231; delta-AIC=9).

When different spike identification techniques and windows were evaluated using
connectivity based outcome measures, all spike-regression methods produced a substantial
improvement over confound regression with the 36-parameter model alone (Figure 9).
Furthermore, there was evidence for the improvement with the single-criterion relative RMS
displacement approach. In particular, regression of spikes without a temporal window (i.e.,
only at the timepoint immediately following motion) from spikes identified using the single-
criterion method produced the least number of significantly different connections between
the high and low motion groups (Figure 9A) and the lowest mean absolute correlation
between connectivity and motion (Figure 9B). The difference between single-criterion,
single-TR spike regression was statistically significant when compared to the next best
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model for both difference between high and low motion groups (comparator model: single-
criterion, 1b,0f; z=8.00, p<1.0×10−10) as well as the correlation between motion and
connectivity (comparator model: single-criterion 0b,1f; z=8.47, p<1.0×10−10). As expected,
among subjects who had spikes identified, the adjusted r2 values were higher in those with
more spikes (Figure 9C).

Band-pass filtering—Previous analyses of unregressed magnitude spectra indicated that
motion increased signal magnitude across both low and high frequencies. However,
bandpass filtering in our framework occurs after confound regression; therefore, we
reevaluated the effects of motion on the magnitude spectra following confound regression.
As displayed in Figure 10, confound regression dramatically altered the spectral
characteristics of the motion confound. Differences between high and low motion groups
were present at all frequencies for the 3- and 9-paramter models. This was also the case for
the 18-parameter model, except at 0.0389 Hz (where a trend was present). In the 36-
parameter model, groups were significantly different at all frequencies above 0.0139 Hz
except isolated frequencies including 0.0278, 0.0306, 0.0389, and 0.0528 Hz. In contrast to
such generally global differences, when the improved (36-parameter + spike regression)
confound regression model was applied, significant differences between the high and low
motion groups were only seen at frequencies at or above 0.08 Hz.

Based on this information, we compared band-pass filtering using a 0.01–0.1 Hz filter to a
filter retaining frequencies between 0.01–0.08Hz. Regression procedures were the same for
both, utilizing the improved 36-parameter + single criterion, single-TR (0b,0f) spike
regression. Filtering at 0.01–0.08Hz reduced the number of different connections between
the high and low motion groups (86 versus 154 connections); this difference was statistically
significant (z=20.68, p<1.0×10−10). Additionally, the 0.01–0.08 Hz bandpass filter produced
a statistically significant reduction in the mean absolute correlation between connectivity
and motion (r=0.065 versus r=0.068; z=13.29, p<1.0×10−10).

Effect of improved preprocessing on network modularity—As a final evaluation
of the benefits of improved preprocessing, we compared the community structure of the
whole-brain networks in high and low motion groups under standard and improved
preprocessing using normalized mutual information (Power et al. 2011). Community
structure for all four conditions is described in Supplementary Table 2. As seen in Figure 11,
the community structure in the low motion group was nearly identical under both
preprocessing streams (NMI=0.96). In contrast, the community structure of the high motion
group was substantially altered by improved preprocessing (NMI=0.73). This shift was in
part the result of the community structure of the high-motion group becoming more similar
to that of the low motion group. Under standard preprocessing, low and high motion groups
were fairly dissimilar in terms of community structure (NMI 0.70). In contrast, when the low
and high motion groups were compared following improved preprocessing, NMI was 0.86.
This NMI value was statistically significant (p=0.003) when compared to a null distribution
of 1000 NMI values resulting from community structures of average networks produced by
randomly permuted (standard versus improved) preprocessing.

Number of volumes flagged for scrubbing after improved preprocessing—
Lastly, we compared the number of volumes flagged for scrubbing following standard and
improved preprocessing as described above. Using standard preprocessing, 72 subjects had
volumes flagged for scrubbing (mean # of volumes scrubbed per subject: 0.88; S.D. 2.64);
of these subjects, 8 would have <4 minutes of data after scrubbing. In contrast, following
improved preprocessing, we found that only 3 subjects of 348 had volumes flagged for
scrubbing (mean 0.029 volumes; S.D. 0.3934); none would have <4 minutes of data. The
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difference in number of volumes flagged for scrubbing was significantly different between
the two pipelines (z=7.41, p<1.0×10−10).

DISCUSSION
Motion artifact is a primary obstacle impeding the application of rsfc-MRI to the study of
individual and group differences. Therefore, understanding and mitigating the influence of
this artifact is critical. Our results further describe the spatial, temporal, and spectral
characteristics of motion artifact in rsfc-MRI data, providing information that can guide
efforts to minimize its effect. Systematic analyses indicate that improved confound
regression and filtering can substantially attenuate—though not eliminate—motion artifact.
A summary of the proposed improved pipeline and important considerations at each step in
the process is presented in Figure 12.

Characteristics of motion artifact
In order to better account for motion artifact in rsfc-MRI data, it is important to understand
its properties. Our analyses indicate that motion artifact is relatively spatially distributed,
temporally constrained, and frequency-nonspecific. Voxelwise analyses of motion-related
displacement suggest that, while there is some heterogeneity in motion-induced
displacement, in general the displacement of voxels is highly correlated across the brain. As
a result, the effects of motion tend to be spatially distributed: motion causes a substantial
drop in signal intensity across the entire brain parenchyma. Notably, the opposite occurs
around the rim of the brain where motion results in large increases in BOLD signal.

Additionally, the drop in signal intensity associated with motion appears to be temporally
constrained, mainly affecting the two timepoints around which motion occurs. As noted by
Power et al. (2011), the effect of motion seems to scale with the amplitude of the
displacement: greater amplitude displacements are associated with greater change in BOLD
signal. As discussed below, this is an important topic that merits further attention, as it
impacts the way in which motion “spikes” are defined for regression, scrubbing, or de-
weighting.

Finally, the effect of motion does not appear to reside uniquely in one frequency domain;
motion tends to increase signal magnitude across the frequency spectrum in rsfc-MRI data.
Mapping the spectral characteristics of motion artifact is important as it impacts the optimal
design of the filter to be applied. Had motion only caused high frequency artifact, the
judicious application of a well-designed band-pass filter could completely remove it,
obviating the need for confound regression. However, this is not the case: confound
regression is critical for removing artifact, and in the process further isolates the frequencies
at which motion artifact is apparent, increasing the utility of subsequent temporal filtering.

Global signal regression biases the apparent structure of motion artifact
The initial three reports on motion artifact in rsfc-MRI data (Power et al., 2011;
Satterthwaite et al., 2012; Van Dijk et al., 2011) emphasized the degree to which motion
artifact is modulated by the distance between connections. All three studies documented that
increased subject motion is associated with increased connectivity between nodes that are
relatively close together, but simultaneously associated with diminished connectivity
between more distant nodes. Here, by analyzing both real and simulated data, we establish
that this pattern of motion artifact is largely determined by the inclusion of the global signal
in confound regression: when the global signal (or similar mean WM or CSF signals) are not
included in confound regression, the effect of motion is simply to increase connectivity. This
effect is still most prominent at nodes that are close together, and decays somewhat with
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greater distance. As illustrated by analyses of voxelwise motion parameters (Figure 2), this
distance-dependent decay is the result of the fact that displacement and resulting artifact at
nodes that are far apart are less highly correlated. It should be noted that this effect was
previously shown (but not emphasized) by Power et al. (2011); see their Figure 9. We
believe that the predominant effect of motion, typically produced by z-axis displacement
(e.g., nodding) that shifts tissue perpendicular to the excitation slice plane, is to introduce
widely distributed and often very large reductions in BOLD signal. This global artifact
diffusely increases simple timeseries correlations, but its consistent timing and valence
across the brain allows it to be removed effectively by covarying for the global brain
timeseries. However, motion also introduces artifacts that have the same valence in nearby
regions but opposite (anticorrelated) valence in regions distant from each other (Power et al.
2011). These regionally heterogeneous effects are unmasked by inclusion of a global
covariate and explain the local vs. distal effects previously reported (see Supplementary
Material for detailed analysis and discussion of this effect). Given the debate regarding the
merits of including global signal in rsfc-MRI preprocessing (Murphy et al., 2009; Fox et al.,
2009; Weissenbacher et al., 2009), and since not all studies include the global signal in
confound regression, the presence of motion artifact and its effects on connectivity should
be evaluated within the context of the preprocessing scheme used.

High-parameter confound regression models are potentially beneficial
We developed an improved preprocessing pipeline for rsfc-MRI data that is more robust to
the influences of motion artifact. We found that improved preprocessing can produce
substantial advantages relative to standard preprocessing measures, and greatly attenuate—
but not completely remove—motion artifacts in rsfc-MRI data. Initially, we examined
confound regression models with expanded numbers of whole-brain motion parameters,
which sequentially included temporal derivative and quadratic terms (Friston et al., 1996; Zu
Eulenburg, 2012). There was clear evidence for the relative benefit of higher-parameter
models, with the 36-parameter model showing the best performance across both regression-
diagnostic and connectivity-based outcome measures.

Importantly, with this regression procedure we did not see any evidence for removal of real
brain signal along with noise (Ollinger et al., 2009) among the long-distance connections
that are likely to be particularly susceptible to such effects. Furthermore, control analyses
with noise regressors could not explain the observed pattern of results: while connectivity-
based outcome measures may respond nonspecifically to increased numbers of regressors,
regression diagnostic measures worsen as nonspecific noise regressors are added to the
model. However, it is important to note that high-parameter models seem to primarily
benefit subjects with greater levels of motion, as evinced by the flat AIC values in the low-
motion group for the 18- and 36-parameter models, as well as the clear relationship between
variance explained (adjusted r2) and subject MRD. These results suggest that the optimal
confound regression strategy will vary by study and subject population: studies with nearly
motionless subjects (i.e., healthy undergraduates) may not benefit from a high-parameter
approach, whereas datasets with greater degrees of motion (i.e., youth or clinical samples)
are likely to preferentially benefit from a higher-parameter confound regression model.

Spike regression censors motion artifact at individual TRs
As suggested previously (Lemieux et al., 2007), we found that the addition of spike
regressors provided a substantial benefit over use of 36-parameter confound regression
model alone. It is likely that spike regression provides this benefit because the relationship
between motion and the BOLD signal may be neither linear nor quadratic with higher
degrees of movement (Lemieux et al., 2007). Similarly, while the average timecourse of
motion artifact is relatively constrained to the two timepoints bounding a movement, for
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each individual movement there is likely a great deal of heterogeneity in the effect on BOLD
signal. The fact that the BOLD signal change created by a motion spike is in fact unlikely to
be consistently shaped like a boxcar or any other fixed shape is the reason that expanding
the temporal window around a given motion spike was not found to be helpful during spike
regression. Thus, any temporal window that models motion-related effects using a fixed
shape will suffer from poor fit. In contrast, a single regressor for a spike at a given timepoint
effectively removes the influence of that timepoint from subsequent correlation analysis of
the resulting residual data. Though implemented differently, our approach of including spike
regressors is extremely similar in the final result to the updated scrubbing procedure outlined
by Power et al. (2012). This accounts for the fact that very few volumes were flagged for
scrubbing as a second stage in addition to spike regression following improved
preprocessing.

One difference from the method of Power et al. (2012) is their use of a censoring of a wider
temporal window (i.e., 1 timepoint point before and 2 timepoints after) a motion-induced
spike. This could be implemented using spike regression as well, but it would be necessary
to model each TR of the window separately as its own regressor. We did not pursue such an
approach as it quickly led to an unreasonably large number of spike confound regressors
(i.e., >40) in higher-motion subjects, leading to their exclusion due to insufficient (i.e., <4
minutes) of data remaining. A lower threshold for spike identification similarly excluded
more subjects due to insufficient data. It should be emphasized that this data quality versus
data quantity tradeoff is of particular concern in studies of subjects who are movement-
prone (children, patients) with brief resting-state acquisitions. Studies of healthy
undergraduates or those with longer acquisition durations may be able to lower the spike
threshold or assign multiple regressors for each spike without compromising the remaining
timeseries duration. One potential solution to the problem of thresholding spike regression is
the use of a variance-weighting approach that de-weights timepoints along a continuum on
the basis of signal quality and the presence of detected artifact (Diedrichsen and Shadmehr,
2005). Although not yet applied to rsfc-MRI data, such an approach could integrate the
virtues of a spike-regression approach but without the need to select an arbitrary threshold
for designating the presence of a spike.

Tailoring band-pass filtering improves control of motion
Following improved confound regression we found that the magnitude spectra of high and
low motion subjects diverged only at relatively high frequencies (>0.08Hz). Notably, the
frequencies impacted by artifact vary according to the confound regression applied.
Accordingly, selection of the optimal filter may depend on which confound regression
approach was pursued, as well as acquisition-related data characteristics. In this study, we
found that a filter with a low-pass cutoff of 0.08 Hz performed better than a low-pass filter
of 0.1 Hz. However, it should be noted that these “improved” filter settings are in fact quite
similar to those routinely used in prior work (Power et al., 2011; Van Dijk et al., 2011). We
caution that removal of higher-frequency signals through band-filtering may remove signal
that contributes to resting state networks (Niazy et al., 2011). However, our analyses
indicate that higher frequency signals are more likely to be related to differences in subject
motion even following improved confound regression; the removal of these frequencies may
therefore improve the ability to detect group and individual differences that are not related to
motion. Finally, we note that most rsfc-MRI studies do not report the characteristics of the
band-pass filter used; given concern regarding filter-induced ringing artifacts in the data
(Carp, 2012; Power et al., 2012) we encourage future studies to provide details regarding
filter design (such as filter order).
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Future Directions and Limitations
There are several limitations to the current work that should be acknowledged. First and
most importantly, in this study we used 4 surrogate outcome measures in the context of not
knowing the ground truth of what is signal and what is noise in rsfc-MRI data. By
examining measures such as AIC that privilege parsimony, we aimed to strike a balance
between the competing goals of maximally removing noise without removing brain signal.
However, it should be emphasized that such measures provide only an indirect measure of
effectiveness, as they only report the degree to which a given confound regression procedure
fits the data. In order to provide convergent evidence, we also employed connectivity-based
outcome measures. However, our control analyses indicate that “improvement” on these
measures can be driven simply by adding greater numbers of random regressors to the
confound regression model, underlining their limited utility as an outcome measure when
evaluated in isolation. In contrast to the connectivity-based outcome measures, the adjusted
r2 and AIC values were not improved by the addition of random confound regressors,
suggesting that the regression-based and connectivity-based outcome measures should be
evaluated together. Thus, the outcome measures used in the present study are not definitive,
and future research will benefit from experimental designs dedicated to the investigation of
this issue. Specifically, in future work we hope to implement a within-subject design where
connectivity is assessed in motionless subjects and then compared to connectivity in subjects
where small amounts of motion artifact are added to the acquisition in a controlled fashion.
Such an experiment would allow us to better separate signal from noise in rsfc-MRI data.

Second, in this study we assume that any differences between the matched high and low
motion group are attributable to motion itself. However, in the current across-subjects study
design we cannot completely exclude the possibility that observed differences related to
motion are due not just to motion alone but also to subject factors that were not controlled
for during the matching process.

Third, there are several important approaches to artifact removal that we did not evaluate,
most notably independent components analysis (Tohka et al., 2008; Churchill et al., 2012b).
Such approaches should be evaluated fully in future studies and compared to the confound
regression strategies outlined here. In particular, approaches such as fully exploratory
network ICA (FENICA; Schöpf et al., 2010; Schöpf et al., 2011) and CompCor (Behzadi et
al. 2007; Chai et al. 2011) may help gain traction towards this goal in the future.

Fourth, as noted above, our approach presupposes the use of a standard pipeline across all
subjects. One potentially attractive alternative to choosing such a rigid processing pipeline is
the use of subject-specific processing pipelines. While they have yet to be validated in rsfc-
MRI data, advanced tools exist that would allow heterogeneous samples to receive tailored
preprocessing in a data-driven manner (Zhang et al., 2009; Strother et al., 2002; Churchill et
al., 2012a). It will be of great interest to ascertain whether such tools can be adapted towards
specific use in rsfc-MRI data, and scaled to accommodate very large imaging-genomic
datasets.

Fifth, a potentially important issue not addressed in the current work is the statistical
implications of the practice of extracting connectivity measures in the form of correlations
from the residual timeseries data following confound regression. One consequence of this
standard practice is the loss of information regarding degrees of freedom: the connectivity
measure obtained from the residual data does not consider nor penalize the number of
regressors used during confound regression. This may be of particular concern when
subjects have timeseries of different initial length, the timeseries are shortened via scrubbing
to disparate durations, or divergent numbers of regressors are used during confound
regression. This effect is not likely to be substantial for short timeseries acquisitions where
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the amount of data lost to scrubbing is limited by requirements that a minimum amount of
real data remains after scrubbing or spike regression (in this case, 4 minutes). In the present
dataset, the statistical significance of correlation values calculated from 80 timepoints (the
floor) or 120 timepoints (the maximum) are quite similar. However, with a very long
acquisition timeseries a situation could arise where a high proportion of data might be
removed by scrubbing, producing cases where a subject with 5 minutes of data was being
compared to another subject with 1 hour of data. In such cases, it seems likely that the
current standard of calculating Pearson’s correlations from residual timeseries would need to
be modified. Options include corrections for degrees of freedom (such as the Bartlett
correction, see Van Dijk et al., 2010) or alternate approaches such as such as calculating
connectivity through regressions where scrubbing or despiking is performed simultaneously,
thus allowing information regarding signal variance and degrees of freedom to be retained.
Furthermore, such regressions could integrate autocorrelation correction procedures (as
implemented in neuroimaging packages such as FSL; Woolrich et al., 2009), which account
for the lack of temporal independence in fMRI timeseries data that violate the assumptions
of Pearson’s correlations. Additionally, an alternative utilizing generalized estimated
equations that account for temporal dependence (D’Angelo et al., 2011) has recently been
proposed and may merit wider application.

Sixth, while we did not find a benefit for the use of voxelwise displacement parameters in
confound regression, this does not preclude their potential effectiveness in general. For
example, voxelwise displacement parameters may be beneficial for analyses of connections
between specific nodes where displacements are particularly divergent and thus poorly
captured by whole-brain motion parameters. Additionally, it is possible that externally-
recorded motion tracking (Tremblay et al., 2005) may provide superior performance and
better estimation of voxelwise displacement.

Seventh, while we focused on the effects of in-scanner head motion on functional
connectivity, physiologic signals such as heart and respiration rate also have a substantial
influence on rsfc-MRI data (Auer, 2008; Birn et al., 2006; Chang and Glover, 2009; Shmueli
et al., 2007). Methods exist for the control of such signals, and should be considered
alongside methods to reduce the influence of motion artifact in rsfc-MRI data (Jones et al.,
2008; Glover et al., 2000; Churchill et al., 2012a).

Eighth and finally, as fast TR acquisitions become more common (Feinberg et al., 2010),
slice timing correction may be avoided, perhaps allowing the effects of motion to be better
isolated to the volumes in which motion occurs.

Conclusion and Summary
The present results suggest that, when compared to standard techniques, improved
preprocessing can substantially reduce the burden of artifact induced by in-scanner head
motion in rsfc-MRI data. However, it should be emphasized that the procedures examined
herein do not result in the elimination of motion artifact, and that the residual effects of
motion are still substantial enough to represent an important confound to rsfc-MRI studies of
individual difference and psychopathology, especially in developmental populations
(Church et al., 2010; Luna et al., 2010). Therefore, we continue to recommend that subject
motion be explicitly reported as an important outcome measure in all rsfc-MRI studies. We
also suggest that, regardless of the preprocessing techniques applied, motion should be
matched with respect to the outcome of interest. Nonetheless, improved preprocessing
techniques that mitigate the influence of motion artifact remain of value, as reducing the
noise in rsfc-MRI should inevitably increase sensitivity to detect real differences in
connectivity and network structure among individuals and groups (Guo et al., 2012).
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We describe spatial, temporal, and spectral features of rsfc-MRI motion artifact.

• We show how these artifact features impact preprocessing choices.

• We systematically evaluate different confound regression and filtering
techniques.

• Our optimized preprocessing approach minimizes rsfc-MRI motion artifact.
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Figure 1.
Spatial distribution of mean relative displacement. A) Average voxelwise displacement
across the entire sample as estimated by voxelwise displacement parameters. Displacement
is maximal at voxels that are far from the pivot around which rotation occurs. B) Adjusted r2

maps showing amount of signal variance explained by 6 standard motion parameters.
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Figure 2.
Displacement correlations across the brain. A) Displacement correlation analysis relating
displacement timecourse from posterior cingulate seed to displacement timecourses of all
other voxels in the brain. Voxels close to the seed are most highly correlated, but even
distant voxels have a high correlation with the seed. B) Heat map showing all correlations
(160×160) of displacement timecourses from each of 160 regions of interest. While
heterogeneity in ROI-level displacement clearly exists, displacement among all ROIs is very
highly correlated. C) Correlation between whole-brain relative RMS displacement vector
and displacement timecourses of each voxel in the brain. Relative RMS displacement is
highly correlated with all voxels, especially those in high-motion frontal regions. D)
Histogram of correlation values between relative RMS displacement and displacement
parameters at each ROI for every subject (n=55,680 total). The distribution illustrates that
ROI-level displacement is in general very highly correlated with whole-brain relative RMS
displacement.
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Figure 3.
Timecourse of the motion artifact. A) Motion produces a large reduction in BOLD signal
that is maximal in the volume following subject movement. The magnitude of signal
reduction increases as motion amplitude increases (red, >.3mm displacements; green, >.
5mm, blue >.7mm). Results are from a FIR analysis of the global signal timeseries. B)
Motion reduces BOLD signal (blue, negative % signal change) throughout the brain
parenchyma, but increases signal around rim of brain (red, positive % signal change). Image
is a voxelwise map of timepoint 1 from FIR analysis in (A) using a threshold of 0.7mm.
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Figure 4.
Magnitude spectra of rsfc-MRI signal among matched groups of high and low motion
subjects (n=100 each). The high motion group displays increased magnitude at every
frequency. Note that prior to Fourier transform this data has been realigned and spatially
smoothed; confound regression has not been applied (see Figure 9).
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Figure 5.
Effect of the inclusion of the global signal in confound regression. A) Plot of the correlation
between MRD and pairwise connectivity across subjects in a network of 160 ROIs (12,720
unique connections) versus inter-node Euclidean distance, when the global signal is not
included in confound regression. Motion tends to increase connectivity between nodes; this
effect is maximal close to the seed but is present across the range of inter-node distance. B)
Plot of the correlation between MRD and pairwise connectivity in a network of 160 ROIs
versus inter-node distance when the global signal is included in confound regression. In this
model motion increases connectivity between adjacent nodes, but diminishes connectivity
between more distant nodes.
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Figure 6.
Regression diagnostics from confound regression models using whole-brain motion
parameters. A) Adjusted r2. Inclusion of more whole-brain motion parameters increases the
variance explained by the confound regression model. This effect is particularly dramatic for
the high-motion subjects. When subject adjusted r2 in the 36-parameter model is related to
subject MRD, a clear relationship emerges. B) AIC. Model superiority as measured by lower
AIC improves as more parameters are added to the confound regression model. However,
this effect is only seen in the high-motion subjects; the low motion group benefits from the
9-parameter model, but in these subjects the AIC does not improve for the 18- and 36-
parameter models.
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Figure 7.
Connectivity-based outcome measures from confound regression models using whole-brain
motion parameters. Higher-order confound regression models result in fewer significantly
different (FDR Q<0.05) connections between the high and low motion groups (A) and a
diminished mean absolute correlation between subject MRD and pairwise connectivity (B).
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Figure 8.
Control analysis investigating the effect of including increasing numbers of noise regressors
on regression diagnostic outcomes and connectivity-based outcome measures. Whole-brain
confound regression models are shown in black. The grey line plot indicates confound
regression models that included a variable number of noise regressors. All noise regression
models consist of 3 confound regressors that were constructed from real data (global signal,
white matter, CSF), plus a variable number (6, 15, 33) of randomly generated noise
regressors. Adding noise regressors does not increase the variance explained by the model as
measured by the adjusted r2 (A). Addition of noise regressors worsens model fit as measured
by AIC (C). However, adding noise regressors does modestly reduce the # of different
connections between matched high and low motion groups (B) and the mean absolute
correlation between subject MRD and pairwise functional connectivity (D). However, these
effects are much smaller than the gains observed by including real motion parameters (black
line).
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Figure 9.
Confound regression of motion spikes. Spike regression was evaluated using a single-
criterion identification method (relative RMS displacement; grey diamonds) and a dual-
criteria method (relative RMS displacement + DVARS; black circles). These two methods
were tested over a range of windows (xb,yf denotes x TRs before spike, y TRs after spike).
The single-criterion approach without an expanded temporal window (0b,0f) produced the
least number of significantly different connections between high and low motion groups (A)
and the lowest mean absolute correlation between MRD and functional connectivity (B).
Variance explained by single-criterion spike regression model without a window (among
subjects where spikes were identified) was highly related to the number of spikes present for
a given subject (C).
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Figure 10.
Effects of confound regression on magnitude spectra of rsfc-MRI data. A) Confound
regression progressively diminishes the generalized effect of greater magnitude for the high
motion group. B) When improved confound regression (36 parameters + spike regression) is
applied, high and low motion groups diverge only at frequencies above 0.08 Hz. Starred
grey bar indicates a significant difference between magnitude of high and low motion
groups at each frequency.
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Figure 11.
Improved preprocessing reduces differences in community structure between low and high
motion groups. The community structure of low-motion subjects is extremely similar under
both standard and improved preprocessing. However, with improved preprocessing the
community structure of the high-motion group’s network becomes much more similar to
that of the low motion group than when using standard preprocessing procedures.
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Figure 12.
Summary of recommended preprocessing pipeline and critical considerations. We
emphasize that this pipeline is not prescriptive, will likely be subject to rapid evolution, and
should be tailored to individual study goals and datasets.
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