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The uncultured miscellaneous crenarchaeotic group (MCG) archaea comprise one of the most abundant microbial groups in the
Earth’s subsurface environment. However, very little information is available regarding the lifestyle, physiology, and factors
controlling the distribution of members of this group. We established a novel method using both cultivation and molecular
techniques, including a pre-PCR propidium monoazide treatment, to investigate viable members of the MCG in vitro. Enrich-
ment cultures prepared from estuarine sediment were provided with one of a variety of carbon substrates or cultivation condi-
tions and incubated for 3 weeks. Compared with the samples from time zero, there was an order-of-magnitude increase in the
number of MCG 16S rRNA genes in almost all cultures, indicating that MCG archaea are amenable to in vitro cultivation. None
of the tested substrates or conditions significantly stimulated growth of MCG archaea more than the basal medium alone; how-
ever, glycerol (0.02%) had a significantly inhibitory effect (P < 0.05). Diversity analysis of populations resulting from four cul-
ture treatments (basal medium, addition of amino acids, H2-CO2 as the gas phase, or initial aerobic conditions) revealed that the
majority of viable MCG archaea were affiliated with the MCG-8 and MCG-4 clusters. There were no significant differences in
MCG diversity between these treatments, also indicating that some members of MCG-4 and MCG-8 are tolerant of initially oxic
conditions. The methods outlined here will be useful for further investigation of MCG archaea and comparison of substrates and
cultivation conditions that influence their growth in vitro.

With the application of gene-based technologies in microbial
ecology, it has become increasingly evident that the diversity

of microbial life in natural ecosystems far exceeds that which has
been revealed by cultivation-based studies (1, 2). Subsurface en-
vironments are quite typical in this regard, and almost every phy-
logenetic analysis of a sedimentary ecosystem has revealed an
abundance of microorganisms from presently uncultivated and
often deeply branching phylogenetic lineages of both Bacteria and
Archaea (3). While rapid advances in sequencing technologies are
affording deeper insight into the phylogenetic composition of mi-
crobial communities, the metabolic function of most members of
these communities remains speculative or is completely un-
known. Metagenomics, proteomics, and transcriptomic ap-
proaches have helped to obtain insights into metabolic capabilities
of communities in general or specific members thereof (4–7).
However, cultivation, i.e., growth on specific substrates, remains
the final proof of metabolic activity and is required for detailed
physiologic study. Although the majority of microorganisms are
not yet cultivable in artificial media as pure cultures, the combi-
nation of enrichment cultivation and gene-based analyses can
provide valuable insight into the function of microorganisms, of-
ten not possible using gene-based techniques alone (2).

In the present study, we sought to use a combination of mo-
lecular and cultivation-based techniques to investigate the possi-
ble phenotype of members of the miscellaneous crenarchaeotic
group (MCG) archaea. MCG archaea are regularly detected in
subsurface ecosystems (marine and estuarine sediments), and
they have also been found in a variety of other habitats, including
hydrothermal vents, water columns, aquifers, and soils (e.g., see
reference 8). The MCG is a phylogenetically diverse group, with
16S rRNA gene sequence identities between the most distant

members being as low as 76% (8). As a comparison within the
domain Bacteria, this level of divergence would represent at least
order-level diversity, and as one example, the most distant mem-
bers of the very heterogeneic order Clostridiales share approxi-
mately 77% 16S rRNA gene identity. The wide distribution of
MCG archaea in sediments as well as evidence from the carbon
isotopic composition of archaeal cells in MCG-dominated sedi-
ments (9) have led to the hypothesis that MCG archaea are anaer-
obic heterotrophs (3). Webster et al. (10) found evidence for MCG
involvement in acetate cycling, and recent genomic and metag-
enomic information suggested that members of the MCG are in-
volved in protein degradation (11) and that others may be in-
volved in protocatechuate degradation (12). However, beyond
that, there are no clear indications about the function of this wide-
spread microbial group in sediments and their potentially signif-
icant role in elemental cycling in Earth’s biosphere.

The aim of the present study was to establish a method for
quantifying and comparing the growth of MCG archaea in enrich-
ment cultures, in order to examine the response of MCG archaea
to various substrates and cultivation conditions. We sought to
employ the membrane-impermeant dye propidium monoazide
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(PMA) (13) in our analyses, in order to exclude DNA from non-
viable cells and therefore examine viable MCG archaea in enrich-
ment cultures.

MATERIALS AND METHODS
Sample collection. Sediment cores were collected from a 1.5-m water
depth in the White Oak River estuary, NC (34°44.141=N, 77°07.298=W),
in January 2012, a sedimentary system known as a “natural enrichment”
of a dominant and highly diverse assemblage of MCG archaea (8). Sedi-
ment from various horizon depths (14 to 42 cm) was transferred into
sterilized glass Schott bottles (500 ml, precombusted at 450°C for 6 h),
using utensils sterilized with 70% (vol/vol) ethanol. Bottles were then
sealed with autoclaved (121°C for 20 min) butyl rubber stoppers that had
been prewashed in 1 N potassium hydroxide. The headspace gas was re-
placed with nitrogen, and samples were stored at 4°C for subsequent cul-
tivation experiments over the following 9 months.

Media and cultivation conditions. Strictly anaerobically prepared
(according to standard techniques [14]) 1/2SMEbc medium was the basal
medium used for almost all cultures in this study. 1/2SMEbc medium was
a half-strength modification of the synthetic seawater SME medium de-
scribed previously by Stetter et al. (15) and was chosen as a suitable medium
for the present study after preliminary investigations testing various basal
media (dilutions of SME medium with and without added bicarbonate)
showed that MCG archaea were most readily detectable in successive
transfers on this medium (data not shown), suggesting that it was suitable
for their growth. 1/2SMEbc medium contained (per liter) 13.85 g NaCl,
3.5 g MgSO4 · 7H2O, 3 g NaHCO3, 2.75 g MgCl2 · 6H2O, 0.5 g KH2PO4, 0.5
g NH4Cl, 0.38 g CaCl2 · 2H2O, 0.33 g KCl, 0.05 g NaBr, 0.015 g H3BO3, 7.5
mg SrCl2 · 6H2O, 1 mg resazurin, 25 �g KI, 1 ml of 10� Wolfe’s minerals,
and 1 ml of 10� Wolfe’s vitamin stock [solutions described previously by
Wolin et al. (16) except prepared as 10� stock solutions, and the mineral
stock solution was prepared at pH 1.0 without a chelating agent and also
including (per liter) 2.8 g (NH4)2Ni(SO4)2 · 6H2O and 0.1 g each of
Na2WO4 · 2H2O and Na2SeO4]. The final pH of the medium was adjusted
to 7.0, to correspond with the reported in situ pH for the White Oak River
basin (17). Medium was usually dispensed by placing 50 ml into 120-ml
serum bottles in an anaerobic chamber (atmosphere of 95% [vol/vol] N2

and 5% [vol/vol] H2; Coy Laboratory Products Inc., Ann Arbor, MI,
USA). The bottles were sealed with butyl rubber stoppers and aluminum
crimp seals, evacuated three times, and provided with 200 kPa of the
desired gas mixture before sterilization.

Slurry preparation and sediment incubations for testing of specific
substrates. Sediment slurries were prepared freshly before each experi-
ment. Approximately 22.5 g of sediment from a depth of 25 to 38 cm
below the sea floor was added to 70 ml of 1/2SMEbc medium by using
sterile spoons inside an anaerobic chamber, as described above. Aliquots
(1.5 ml) of this sediment slurry were introduced into 50 ml standard basal
medium (1/2SMEbc medium with 200 kPa H2-N2-CO2 [15:65:20, vol/
vol/vol] in the headspace, unless otherwise specified) via a syringe. Prer-
educed sterile stock solutions of additives were introduced into the me-
dium in a proportion of 0.5 ml per 50 ml immediately before inoculation.
The stock solution of the additive “sediment dissolved organic matter”
(SDOM) that was used in some treatments (as 1 ml in 50 ml) was previ-
ously prepared by Soxhlet extraction of 72 g of White Oak River estuary
sediment (at a depth of 0 to 50 cm) with 400 ml water over 24 h.

Each culture treatment was performed in triplicate. Exact details of
each treatment are listed in Table 2. Briefly, tested additives or cultivation
conditions included (separately) acetate, glucose, a mixture of 20 amino
acids, methanol, protocatechuic acid, pyruvate, SDOM, SDOM with ace-
tate, glycerol, a mixture of complex undefined organics, selected citric
acid cycle intermediates, headspace containing H2-CO2, headspace con-
taining N2-CO2, an aerobic variation of 1/2SMEbc medium which did not
contain the reducing agent sodium sulfide or the resazurin indicator and
which had an air headspace, and a variation of 1/2SMEbc medium that
contained 1 g liter�1 cysteine hydrochloride as a reducing agent instead of

sodium sulfide. Triplicate control cultures consisting of basal medium
were incubated along with tests. Triplicate cultures on basal medium were
also harvested at the beginning of each experiment for determinations at
time zero. Triplicate killed controls on basal medium were prepared by
autoclaving at 121°C for 40 min after inoculation and before incubation.
Cultures were incubated horizontally, without shaking, in the dark at
20°C for 3 weeks and were inverted once after 10 days of incubation. The
incubation temperature was chosen as a midpoint between measured
summer and winter temperatures at the White Oak River basin (18),
where MCG populations have been found to be stable throughout the
year.

DNA extraction, PMA treatment, and qPCR. DNA was extracted
from 20 ml of harvested (13,000 � g for 10 min at 4°C) sediment slurries
or cultures by using part of a cetyltrimethylammonium bromide (CTAB)
bead-beating-based method outlined previously (19) in combination
with column-based purification of nucleic acids. Rather than isopropanol
precipitation of nucleic acids (19), the aqueous phase after phenol-chlo-
roform-isoamyl alcohol treatment was processed by using the final col-
umn-based steps of the UltraClean soil DNA isolation kit (Mo Bio, Carls-
bad, CA). Pre-PCR propidium monoazide (PMA) treatment to
intercalate DNA from nonviable cells was performed as outlined by
Nocker et al. (13), with minor modifications, as follows: pellets from
harvested sediment slurries were immediately resuspended in 1.5 ml of
cold phosphate-buffered saline (PBS) (pH 7.2), and PMA (in water)
(Biotium Inc., Hayward, CA) was added to a final concentration of 50
�M, before incubation in the dark at room temperature for 10 min, with
continuous gentle inversion throughout. Sample tubes were then placed
on ice, with the lids opened, in a biohazard cabinet and exposed to light
from two halogen lamps (500 W and 400 W) held side by side at a distance
of 20 cm for 5 min; samples were on a shaker during this process to ensure
adequate exposure of all parts of each sample to the light. For comparison,
samples that were not PMA treated were subjected to the same incubation
in the dark and exposure to light as the PMA-treated samples.

For quantitative real-time PCR (qPCR) of MCG 16S rRNA genes, the
MCG-specific primer pair 528f and 732r (Table 1) was used. qPCR mix-
tures (10-�l reaction mixtures) contained final concentrations of 1�
QuantiTect SYBR green PCR mix (Qiagen, Hilden, Germany), 0.3 �M
each forward and reverse primer, and 1 �l of template DNA. qPCRs were
performed by using a Rotor Gene 6000 instrument and analyzed by using
Rotor Gene 6000 series software 1.7 (Qiagen). qPCR cycling was per-
formed as follows: 95°C for 10 min, followed by 40 cycles of denaturation
at 95°C for 15 s, annealing at 60°C for 25 s, and extension at 72°C for 20 s,
with fluorescence acquisition at the end of each cycle, followed by disso-
ciation curve analysis from 65°C to 95°C increasing at a rate of 0.2°C s�1,
with continuous fluorescence measurement. qPCRs were performed in
triplicate. Negative controls were included in each assay by omitting the
DNA template. Results were expressed as the number of 16S rRNA gene
copies per �l DNA. A standard curve of MCG 16S rRNA genes was gen-
erated from a 10-fold dilution series of 108 gene copies to 103 gene copies
per �l using PCR amplicons obtained from White Oak River estuary
sediment with primers 493f and 1069r (Table 1) (used at an annealing
temperature of 50°C) and then cloned as previously described (19) and
purified.

TABLE 1 Primers used in this study

Primer Sequence (5=–3=) Reference Target group

493f GGAATAAGGAGAGGGCAAG 8a MCG archaea
915r GTGCTCCCCCGCCAATTCCT 36 General archaea
528f CGGTAATACCAGCTCTCCGAG 8 MCG archaea
732r CGCGTTCTAGCCGACAGC 8 MCG archaea
1069r ACCTCACGGCACGAA 37 Group C2 archaea
a Modified from the 493 fluorescence in situ hybridization (FISH) probe described by
Kubo et al. (8).
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Statistical analyses. 16S rRNA gene copies per �l DNA were con-
verted to 16S rRNA gene copies per ml of culture by assuming 100% DNA
recovery and equal DNA extraction efficiency for all samples. Results are
presented as means � standard errors. Student’s t test was used to com-
pare differences in means, and differences were considered significant at a
P value of �0.05.

Clone libraries and diversity analyses. MCG diversity analyses were
performed on DNA from four culture treatments: (i) incubated control
(CON), (ii) H2-CO2 headspace (HY), (iii) amino acid mix (AA), and (iv)
initial aerobic conditions (OX). PCR mixtures (25 or 50 �l) contained
final concentrations of 1� PCR buffer (10� buffer stock [200 mM Tris-
HCl {pH 8.4} and 500 mM KCl]), 3 mM MgCl2, 0.2 mM deoxyribonucle-
otide triphosphates, 0.14 �M each primer, 1 U of Platinum Taq DNA
polymerase (Invitrogen, Carlsbad, CA), and 1 �l of template DNA. PCR
conditions were as follows: initial denaturation step at 95°C for 5 min
followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 58°C
for 30 s, and extension at 72°C for 30 s, followed by a final extension step
at 72°C for 7 min. MCG 16S rRNA genes were amplified from triplicate
cultures of each treatment separately. Amplicons were then purified,
pooled according to treatment, and cloned and sequenced as previously
described (19). Sequences were aligned by using MOTHUR (20) and the
Greengenes reference alignment (21). Fine alignments were performed
manually in ARB (22). Bootstrapped neighbor-joining trees of 16S rRNA
gene sequences were constructed in ARB (22) with 100 resamplings. Se-
quences were clustered into operational taxonomic units (OTUs) at a
distance of �0.03 by using MOTHUR (20). LIBSHUFF in MOTHUR (20)
was used to compare the structures of 16S rRNA gene libraries.

Nucleotide sequence accession numbers. Sequences of the clones
have been submitted to the GenBank database under accession numbers
KF308184 to KF308270 (n � 18 for CON, n � 24 for HY, n � 22 for AA,
and n � 23 for OX). Sequences of the clones used for qPCR of MCG 16S
rRNA have been submitted to GenBank under accession numbers
KF308271 and KF308272.

RESULTS AND DISCUSSION

A diverse, abundant, and active population of MCG archaea exists
within the top meter of White Oak River estuary sediments
throughout the year (8), making it an ideal sampling site for in
vitro studies of the MCG archaea. Initial studies (data not shown)
using sediment collected from this site indicated that MCG ar-
chaea were amenable to in vitro cultivation and subculture (2 to
4% inoculum) up to six times. However, while growth, as indi-
cated by an increase in MCG 16S rRNA gene copy numbers in
cultures, was evident in subsequent subcultures, it was poorer
with each subculture, and MCG archaea were never detectable
beyond the sixth transfer despite the use of a wide range of tested
carbon substrates in the culture medium and culture conditions.

Therefore, the present study was designed to establish a
method for detailed quantitative comparison of MCG archaea in
cultures grown on various substrates and/or under different cul-
ture conditions, which may be useful in shedding light on the
factors that influence the growth of MCG archaea in vitro. A range
of substances from various broad groups of compound classes
(e.g., gases, sugars, short-chain fatty acids, common microbial
metabolism intermediates, and complex undefined organics) or
specific tests based on the literature (e.g., acetate, amino acids,
protocatechuate, and citric acid cycle intermediates [10–12]) were
tested in cultures as possible growth stimulants for MCG archaea.

A recently developed pre-PCR PMA treatment (13) was uti-
lized to exclude DNA from nonviable cells in cultures, as it seemed
likely that there would be nonviable cells in our samples either
from the sediment itself or from microorganisms adversely af-
fected under the provided culture conditions. A comparison of

cultures at time zero treated with and without PMA showed an
order-of-magnitude decrease in the average number of MCG 16S
rRNA genes detected in PMA-treated samples (2.02 � 104 �
1.74 � 104 copies ml�1) compared with non-PMA-treated sam-
ples (2.11 � 105 � 1.03 � 105 copies ml�1), confirming the im-
portance of this type of treatment in culture-based studies. It is
possible that not all DNA from nonviable cells was excluded from
cultures in the present study, as the presence of particles in envi-
ronmental samples has been found to decrease the efficiency with
which PMA excludes DNA from nonviable cells (23). However,
this was unavoidable using sediment as the inoculum. We consid-
ered the level of interference from sediment particles to be equal
across all our treatments, which were amended with the same
volume of sediment slurry.

After 3 weeks of incubation, MCG 16S rRNA gene copy num-
bers were approximately 1 order of magnitude higher than those
in cultures that had been harvested at time zero, indicating growth
of some members of the MCG archaea (Table 2). The variability in
MCG 16S rRNA gene copy numbers within given treatments was
quite large. Therefore, the increase in the gene copy numbers rel-
ative to the numbers at time zero was statistically significant for
only some treatments (control incubation, glucose, amino acid
mix, methanol, protocatechuic acid, SDOM, SDOM with acetate,
complex organics, citric acid cycle intermediates, and H2-CO2

headspace) (Table 2). Surprisingly, growth of MCG archaea was
not dependent on or even stimulated by the presence of any of the
tested additives. None of the treatments resulted in a significant
(P � 0.05) increase in MCG 16S rRNA gene copy numbers relative
to the copy numbers of the incubated control on basal medium
alone (Table 2). A mixture of 20 amino acids had the most signif-
icant effect on MCG 16S rRNA gene copy numbers in culture (i.e.,
it was the treatment demonstrating the lowest P value [P � 0.088]
of the substrates that had higher average MCG 16S rRNA gene
copy numbers than the control treatment), which is consistent
with the findings of Lloyd et al. (11) that MCG archaea have a
genomic potential for protein/amino acid metabolism. However,
further investigation of this substrate in a subsequent subculture
did not reveal any positive effect on MCG 16S rRNA genes relative
to transferred controls. Also, a repeat of the amino acid treatment
cultures and control cultures with more extensive sampling (nine
replicates each) in order to further examine the statistical signifi-
cance of this finding failed to show significant (P � 0.05) differ-
ences in MCG 16S rRNA gene copy numbers between the sub-
strate and control.

Interestingly, glycerol at a final concentration of 0.02% had a
significant (P � 0.05) inhibitory effect on the MCG in vitro.
Whether this effect was a direct result of the glycerol itself or the
end products from anaerobic glycerol fermentation by other
members of the culture (e.g., ethanol [24]) is unknown, but this
finding may be relevant for future cultivation-based investigations
and for cryopreservation of samples containing MCG (25).

Given the large intragroup phylogenetic diversity within the
MCG archaea (3, 8), we hypothesized that some substrates or
culture conditions tested in the present study may have been stim-
ulatory for particular subgroups of the MCG archaea and inhibi-
tory for others, therefore not resulting in a significant net change
in total MCG 16S rRNA gene copy numbers relative to those of
control cultures. This possibility was investigated by MCG diver-
sity analysis with four different culture treatments: the control
treatment as well as the three cultures that had resulted in the most
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substantial increases in average MCG 16S rRNA gene copy num-
bers relative to those of the control incubation (i.e., amino acid
mix, H2-CO2 headspace, and initial aerobic conditions). Surpris-
ingly, quite a large diversity of MCG archaea was found for all four
culture treatments (Fig. 1). Sequences clustered at �3% sequence
divergence as an approximation for species-level clustering (26)
formed 31 operational taxonomic units (OTUs). The two largest
OTUs were affiliated with the MCG-8 and the MCG-4 subgroups,
respectively, and contained sequences from all four of the culture
treatments (Fig. 1). Members of MCG-8 and MCG-4 have been
detected in a variety of sedimentary ecosystems (3, 8, 27, 28)
(sometimes also called PM-2 and PM-7); however, to date, there
are no indications about their potential metabolism or function. It
is clear from the present study that members within these two
MCG subgroups are amenable to in vitro growth in synthetic me-
dium (with residual sediment likely also providing additional es-
sential growth factors). Additionally, members of MCG-8 and
MCG-4 seem to tolerate oxygen to a certain extent, quite unlike
some other anaerobes, which can be killed by oxygen after very
short exposure times (e.g., �2 h in some cases [29]). Interestingly,

MCG 16S rRNA gene sequences were recovered from a short-term
aerobic culture previously (30), and MCG sequences from fer-
mented seafood (a fermentation process which is not strictly an-
aerobic) have been reported to coexist with sequences from
known aerobic archaea and bacteria (31), which also suggests that
some MCG archaea could be tolerant of oxygen. Quite possibly,
MCG archaea from the White Oak River basin exhibit oxygen
tolerance mechanisms similar to those employed by some sulfate-
reducing bacteria, which can remain viable after exposure to oxy-
gen (e.g., for a review, see reference 32). To further test the oxygen
tolerance or even oxygen metabolism of MCG archaea, com-
pletely oxic incubations (e.g., with shaking and vented head-
spaces) would be worthwhile in future studies. Attempts in our
laboratory to cultivate MCG archaea from White Oak River sedi-
ment under the conditions appropriate for the aerobic, marine
ammonia-oxidizing archaeon Nitrosopumilus maritimus (33),
which is placed in a phylogenetic sister group to the uncultured
MCG archaea, were unsuccessful in multiple incubations (our
unpublished data).

The overall MCG community structure between the four in-

TABLE 2 Average MCG 16S rRNA gene copy numbers from triplicate culture treatments incubated for 3 weeks with various additives or cultivation
conditions

Treatment Additive/culture conditiona

Avg no. of MCG 16S
rRNA gene copies per ml
of culturef

No. of MCG 16S rRNA
gene copies relative to
incubated control

Time zero None (2.34 � 2.04) � 104

Incubated control None (3.18 � 0.56) � 105 A*
Acetate Acetate (2 mM) (3.02 � 0.10) � 105 0.95
Glucose Glucose (2 mM) (2.33 � 0.39) � 105 A* 0.73
Amino acid mix Equal concn of 20 amino acidsb to final total

amino acid concn of 2 mM
(4.84 � 0.20) � 105 A*** 1.52

Methanol Methanol (2 mM) (3.46 � 0.20) � 105 A* 1.09
Protocatechuic acid Protocatechuic acid (2 mM) (3.55 � 0.07) � 105 A** 1.12
Pyruvate Pyruvate (2 mM) (2.07 � 0.59) � 105 0.65
SDOM Sediment dissolved organic matterc (1 ml) (1.95 � 0.17) � 105 A** 0.61
SDOM � acetate Sediment dissolved organic matterc (1 ml) �

acetate (2 mM)
(1.54 � 0.33) � 105 A* 0.48

Glycerol Glycerol (0.02%, vol/vol) (7.37 � 2.64) � 104 B* 0.23
Complex undefined Yeast extract (0.01%, wt/vol) and peptone and

Casamino Acids (each at 0.005%, wt/vol)
(2.65 � 0.45) � 105 A* 0.83

Citric acid cycle
intermediates

Malate, succinate, citrate, fumarate, and
oxaloacetate (1 mM each)

(1.94 � 0.41) � 105 A* 0.61

H2-CO2 H2-CO2 headspaced (3.72 � 0.38) � 105 A** 1.17
N2-CO2 N2-CO2 headspaced (5.22 � 3.02) � 105 1.64
Aerobic medium Medium prepared aerobically and reducing

agent and resazurin indicator omitted; air
headspacee

(6.22 � 1.62) � 105 1.96

Cysteine Cysteine hydrochloride monohydrate (1 g
liter�1) instead of Na2S · 3H2O as reducing
agent

(3.53 � 0.15) � 105 1.11

Autoclaved control None (1.30 � 0.58) � 102 B* 0.00
a Unless otherwise indicated, basal medium was anaerobically prepared in 1/2SMEbc, and initial headspaces were 200 kPa H2-N2-CO2 (15:65:20 [vol/vol]).
b Amino acids used were the L-forms of arginine, histidine, lysine, aspartic acid, glutamic acid, serine, threonine, asparagine, glutamine, cysteine, glycine, proline, alanine, valine,
isoleucine, leucine, methionine, phenylalanine, tyrosine, and tryptophan, each at a final concentration of 0.1 mM.
c Total organic carbon and total nitrogen concentrations of the SDOM stock were determined to be 7 mM and 0.5 mM, respectively, by using a Shimadzu TOC/TN 5000 analyzer,
calibrated with consensus reference materials for dissolved organic carbon provided by the NSF-CRM program (http://www.rsmas.miami.edu/groups/biogeochem/CRM.html).
d N2-CO2 was 80:20 (vol/vol), and H2-CO2 was 80:20 (vol/vol) at 200 kPa.
e Air headspace was not provided at overpressure.
f Error is represented as the standard error of the mean (n � 3). Significant differences in treatments compared to cultures at time zero or to the incubated control are indicated by
the letters A and B, respectively, and asterisks indicate the level of significance, where * indicates a P value of �0.05, ** indicates a P value of �0.01, and *** indicates a P value of
�0.001.

Combined Cultivation and Molecular Methods for the MCG

October 2013 Volume 79 Number 20 aem.asm.org 6403

http://www.rsmas.miami.edu/groups/biogeochem/CRM.html
http://aem.asm.org


vestigated culture treatments in the present study (basal medium,
addition of amino acids, H2-CO2 as the gas phase, or initial aero-
bic conditions) was not significantly different (significance of the
�CXY score, by LIBSHUFF, was 	0.05), suggesting that the basal
medium itself or components from the sediment and/or interspe-
cies metabolites were the more likely factors supporting and influ-
encing the viable MCG archaea in the present study, rather than
the tested additives or culture conditions. The low MCG copy
numbers achieved in cultures as well as the repeated loss of MCG

archaea in subsequent subcultures support the idea that compo-
nents from the initial sediment itself, or perhaps other microbes in
the sediment, were critical for growth and survival of MCG ar-
chaea.

While none of the tested substrates in this study positively in-
fluenced growth of MCG archaea in vitro, the medium used in this
study was clearly suitable for their growth. The methods described
here, particularly with a PMA step to remove background DNA
from nonviable cells, will be useful for further in vitro studies on

FIG 1 Neighbor-joining tree showing MCG sequences recovered from four different culture treatments, control (CON), amino acid mix (AA), H2-CO2

headspace (HY), or aerobic conditions (OX), in the present study. Sequences described previously by Kubo et al. (8) form the framework of the tree, and MCG
subgroup labels were determined as indicated by Kubo et al. (see supplemental material in reference 8). GenBank accession numbers for reference species are
shown after the species name. Branch nodes with �75% bootstrap support are marked with closed circles. The scale bar represents 10% sequence divergence.

Gagen et al.

6404 aem.asm.org Applied and Environmental Microbiology

http://aem.asm.org


the MCG and will allow confirmation of the growth of these or-
ganisms in culture, something that has not been confirmed for
MCG archaea in enrichment cultures previously (34). Addi-
tionally, the approach outlined here allows comparison of a
range of substrates or conditions in parallel, therefore making
it suitable for the testing of various hypotheses relatively rap-
idly without requiring expensive labeled compounds, which
have been used to understand uncultured archaea in vitro pre-
viously (10). Immediate future studies using this approach to
test a range of other possible substrates or substrate concentra-
tions for the MCG would be worthwhile. For example, based on
insights about the metabolism of MCG archaea revealed from
single-cell genomics (11) and metagenomics (12) studies, cul-
tivation attempts using genomically indicated potential sub-
strates at various concentrations could provide powerful sup-
port for genomic evidence about the MCG. Once metabolic
factors that select for the MCG have been determined and in-
creased cell densities of MCG archaea have been achieved,
other factors, such as temperature, salt, pH, and time of incu-
bation, should be investigated by using a similar approach.
Additionally, the relative abundance of MCG archaea in rela-
tion to the rest of the microbial population also could be mon-
itored by using qPCR primers for total bacteria and total ar-
chaea (e.g., see reference 35), for example, to evaluate whether
the presence or absence of other community members affects
the MCG. This particular approach in combination with the
testing of various microbial inhibitors (e.g., antibiotics and
bromoethane sulfonate) is likely to add valuable information
about the microbial interactions that affect the MCG archaea in
vitro.

Alternatively, more specific qPCR primers could be developed
to target specific subgroups within the MCG, for example,
MCG-4, MCG-8, or even OTUs within these groups, which have
been shown to grow in vitro in the present study. This would
provide a more focused approach to understanding the factors
that affect specific uncultivable archaea in sedimentary ecosys-
tems. Monitoring of these subgroups over time course incuba-
tions (e.g., using higher-volume cultures and subsampling peri-
odically) will be particularly important in future enrichment and
isolation attempts, particularly if a PMA step is included in anal-
yses to further reveal which subgroups of the MCG are viable at
which incubation time points. We anticipate that, ultimately, the
combination of cultivation and molecular methods such as those
outlined here will shed light on the factors that affect the MCG
archaea in vitro and will eventually facilitate the enrichment and
potential isolation of members of this group.
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