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In the last 10 years, extended-spectrum B-lactamase-producing
enterobacteria (ESBL-E) have become one of the main challenges
for antibiotic treatment of enterobacterial infections, largely be-
cause of the current CTX-M enzyme pandemic. However, most
studies have focused on hospitalized patients, though today it ap-
pears that the community is strongly affected as well. We therefore
decided to devote our investigation to trends in ESBL-E fecal car-
riage rates and comprehensively reviewed data from studies con-
ducted on healthy populations in various parts of the world. We
show that (i) community ESBL-E fecal carriage, which was un-
known before the turn of the millennium, has since increased
significantly everywhere, with developing countries being the
most affected; (ii) intercontinental travel may have emphasized
and globalized the issue; and (iii) CTX-M enzymes, especially
CTX-M-15, are the dominant type of ESBL. Altogether, these re-
sults suggest that CTX-M carriage is evolving toward a global pan-
demic but is still insufficiently described. Only a better knowledge
of its dynamics and biology will lead to further development of
appropriate control measures.

INTRODUCTION

he first strains of extended-spectrum beta-lactamase-produc-

ing enterobacteria (ESBL-E) were reported at the beginning of
the 1980s (1), shortly after the release of broad-spectrum cepha-
losporins for clinical use (2). In the 1980s and -90s, ESBL were
produced mostly by Klebsiella spp. and Enterobacter spp. and were
encoded by genes derived through mutations of the ubiquitous
plasmid-borne bla gy, and blagy,, wild-type penicillinase genes (3,
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pitals, first in Europe and subsequently in other parts of the world
(5), especially in intensive care units (ICU), where they sometimes
generated large-scale outbreaks (6).

Twenty years later, in the late 1990s, soon after the patents of
extended-spectrum cephalosporins fell into the public domain
and generics were flourishing, community-acquired infections
due to ESBL-E emerged, mainly as urinary tract infections (UTI)
(7). Among the very wide variety of enzymes exhibiting ESBL
activity (8), class A beta-lactamases have had particular epidemi-
ological success. These enzymes hydrolyze penicillins, oxyimino-
cephalosporins, and aztreonam to various degrees, but they spare
carbapenems and cephamycins. The emergence of community-
acquired ESBL-E infections was associated with two major epide-
miological changes. First, unlike ESBL-E previously isolated in
hospitals, the strains responsible for community-acquired infec-
tions were mostly strains of Escherichia coli, a species which is both
a normal intestinal commensal in humans and a major pathogen
(9). Second, they produced CTX-M enzymes, a group of ESBL that
are highly divergent from TEM- and SHV-derived mutants, ini-
tially named because of their particular affinity for cefotaxime
(10). blacrx_y genes, most probably mobilized from the chromo-
somes of environmental bacteria belonging to various species of
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the Kluyvera genus (11), have repeatedly moved to plasmids well
adapted to E. coli (12). Currently, 136 CTX-M alleles have been
identified. They are divided into 5 groups according to their dif-
ferent progenitor species. This can be compared to the greater
diversity associated with the 208 and 173 mutants of TEM and
SHYV, respectively (http://www.lahey.org/Studies/; accessed 12
April 2013). Strikingly, CTX-M enzymes have rapidly supplanted
TEM- and SHV-derived ESBL, even in hospitals (13), although
what has endowed them with such an obvious epidemiological
advantage is not yet understood. What is also worrisome is that
ESBL-E often show multiple coresistance (13), complicating first-
line treatment of many frequent community infections, such as
UTI (14). For severe ESBL-E infections, carbapenems have be-
come the drugs of choice (15), which is cumbersome because
these antibiotics are for parenteral use only and thus are difficult
to administer and often unavailable in low-resource countries,
where the incidence of ESBL-E infections is particularly high (16).

The digestive tract is the main reservoir from which enterobac-
teria originate, whatever the type (community or hospital ac-
quired) of infection (17, 18). It is also a melting pot where ex-
changes of resistance genes occur and antibiotic treatments select
for the overgrowth of resistant bacteria (19). Fecal carriage of
ESBL-E in the community was first reported in Spain and Poland,
in 2001 and 2002, respectively (20, 21). Many other reports de-
scribing wide differences in carriage rates have since been pub-
lished, suggesting dissimilarities in the levels and dynamics of
ESBL-E epidemiology between geographic areas. However, as far
as we know, the literature on ESBL-E community carriage rates
has never been reviewed comprehensively, making it difficult to
compose a global picture.

In this work, studies published in the English and French literature
were grouped together according to World Health Organization
(WHO) geographical areas (http://www.who.int/healthinfo/global
_burden_disease/definition_regions/en/index.html; accessed 18 De-
cember 2012), and temporal trends were analyzed according to the
year of sampling.

GLOBAL DISSEMINATION AND DISTRIBUTION

In all areas, the reported rates of ESBL-E community carriage were
almost always under 10% before 2008 but often higher afterwards
(Fig. 1). In 2008, the carriage rate skyrocketed to over 60% for the
first time, in Thailand (22).

Although increasing over time everywhere, carriage of ESBL-E
did not evolve with the same dynamics (Fig. 1). Large intra- and
interregional variations have been observed. Reports from the
Western Pacific, Eastern Mediterranean, and Southeast Asia re-
gions showed the highest carriage rates and the most striking re-
cent ascending trends. In contrast, rates reported in Europe never
exceeded 10%, with the exception of a recent report of 11.6%
observed in 2011 among patients upon admission to a geriatric
unit in Belgium (23).

Because the countries where these data were obtained have
populations that differ considerably, the data do not adequately
reflect the magnitude of the problem, i.e., the number of carriers
worldwide. Figure 2 shows the number of ESBL-E carriers esti-
mated for 2010, according to the data analyzed in this review and
the WHO 2010 population census (http://www.who.int/research;
accessed 18 December 2012). Strikingly, over 1.1 billion ESBL-E
carriers appear to be present in the community populations of
Southeast Asia. The Western Pacific and Eastern Mediterranean
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FIG 1 ESBL carriage rates in the community, according to their geographical
and temporal distribution. Each bubble area is proportional to the size of the
corresponding study. The lines represent the evolution of ESBL-E carriage
rates over time for each geographical area, as established by a weighted linear
regression model using the values reported in the literature from 2002 to 2011.
Over this period, ESBL-E carriage increased significantly in all regions, with
differences within regions. In Europe, the ESBL-E carriage rate increased sig-
nificantly by 0.5% per year from 2002 to 2011 (95% confidence interval [95%
CI] = 0.04% to 0.90%; P = 0.03). Compared to the rise in Europe, the pro-
gression rate was not different in Africa (difference in annual progression
compared to that in Europe, +1.1% [95% CI = —0.4% to 2.7%]; P = 0.1) or
America (+0.1% [95% CI = —0.6% to 0.9%]; P = 0.7) but was significantly
higher in Southeast Asia (+7.2% [95% CI = 5.1% to 9.2%]; P < 107 7), the
Eastern Mediterranean region (+3.5% [95% CI = 2.0% to 4.9%]; P < 10~ %),
and the Western Pacific region (+1.5% [95% CI = 0.04% to 2.90%]; P =
0.04). The differences in rate increases between Southeast Asia, the Eastern
Mediterranean region, and the Western Pacific region were all significant.

regions rank second and third, with 280 and 180 million carriers,
respectively, ahead of Africa, where 110 million carriers are esti-
mated to be present. America and Europe appear to be far behind,
with 48 and 35 million carriers, respectively (Fig. 2). This ranking
suggests that poor access to drinking water, poverty, and a high
population density are extremely efficient driving forces for
ESBL-E dissemination, as is the case for any fecally-orally trans-
mitted diseases. Indeed, the role of water pollution as a major
reservoir for ESBL-E dissemination has been well documented.
This has been the case not only for wastewater in China (24), the
Czech Republic (25), Austria (26), India (27), Brazil (28), and
Congo (29) but also for many rivers or aquatic ecosystems.
ESBL-E have indeed been isolated from well water in Nicaragua
(30) and from diverse other aquatic environments in Switzerland
(31), the United Kingdom (32), China (33), South Korea (34),
Portugal (35), and Tunisia (36). Even seawater from beaches in
Algeria (37) and water from the Antarctic have been found to be
positive for ESBL-E (38), suggesting that the current reservoir of
these bacteria is in reality massive (Fig. 3). Human activities such
as those associated with farming and food chain production may
be at the root of ESBL-E dissemination, as recently reviewed (39)
(Fig. 3). Surprisingly, the rates of colonization in Switzerland in
2012 were as high as 15% in pigs and 63% in chickens (40), despite
the rather strict antibiotic policy in that country (41). E. coli was
the predominant colonizing species, and CTX-M enzymes
were the most frequent ESBL. The spread of ESBL strains from
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FIG 2 Number of ESBL carriers in the community in 2010, according to WHO region grouping. The 6 WHO regions are represented by different colors. WHO
estimates of the population of each geographic area in 2010 (http://www.who.int/research; accessed 18 December 2012) were used to compute the number of
ESBL-E carriers. ESBL carrier rates were established using the model presented in Fig. 1 for the year 2010. Stars represent countries with available data for
modeling. Each bubble area is proportional to the estimated number of ESBL carriers in that region.

animals to humans via the food industry is now strongly suggested
by genetic comparisons of strains from both settings (42, 43).
Finally, pets are also involved, as suggested by reports from Por-
tugal on healthy animal carriers (44) and by reports on infected
animals in the United States (45), China (46), and Switzerland
(47). Transmission from pets to humans is suggested when the
genetic backgrounds of the strains and CTX-M alleles are com-
pared (48, 49), but a human-to-pet route of transmission has also
been proposed (50) (Fig. 3). In addition, the dissemination of
some strains may be restricted to pets, as suggested by a recent
study describing specific Klebsiella pneumoniae clones with their
own genetic ESBL plasmids that have been isolated exclusively
from companion animals (51).

REGIONAL SPECIFICITIES

Europe

As mentioned previously, Europe is the area where community
ESBL-E were first described, in 2001, in outpatients in Spain (21)
and a cohort of healthy children in Poland (20). Fine character-
ization of ESBL types was not performed, but an association with
E. coli was underlined in the Spanish study, which contrasted with
the predominance of ESBL-producing K. pneumoniae strains in
hospitals at that time. In the Polish study, MICs of cefotaxime for
the strains were higher than those of ceftazidime, suggesting that
the isolates were actually of the CTX-M type (52). Clearly, these
features forecasted those that were going to be described later.
Spanish teams were also the first to report the gradual rise in car-
riage rates in the community (53, 54) and to point out the role of
the community as a reservoir possibly maintained by transfer
from contaminated food (55, 56). In 2008, they reported the first
evidence of dissemination of carriage between household mem-
bers (57) and showed that contact with patients with ESBL-E UTI
was a risk factor for carriage (58). Elsewhere in Europe, carriage
rates were lower than those in Spain and remained below 5%
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(59—64). However, this may be changing, as suggested by recent
studies performed in Switzerland and France (65, 66). Aging pop-
ulations may also be at particular risk (23, 67). Differences in
carriage rates have been reported between residents of the United
Kingdom belonging to various ethnic groups (68), which might
reflect differences in contacts with subjects from countries of high
prevalence. The predominant allele appears to be CTX-M-15, as
documented in France (67, 69), the United Kingdom (63), and
Switzerland (65). However, the Spanish epidemiology seems to
have specific characteristics, with a predominance of CTX-M-9
and CTX-M-14 alleles (Table 1). This could be linked to different
migration trends.

Eastern Mediterranean

The first data from the Eastern Mediterranean region were pub-
lished in 2005. They reported an ESBL carriage rate of 2.4% in
young healthy students (70), pointing out the community nature
of the pandemic early. Since then, carriage rates have ranged from
7.3% in Tunisia in 2010 (71) to 63.3% in Egypt in 2011 (72),
reflecting the sharp increase and wide variations in carriage rates
in this area. The very scarce CTX-M enzymes identified were of
alleles 1 and 15 (Table 1).

Africa

Community carriage in Africa has been studied very poorly. Re-
ported rates appear to be quite high, from 10.0% in Senegal (73) to
30.9% in Niger (74). Poor populations were found to be particu-
larly affected in Madagascar in 2009 (75). Both there (76) and in
Niger (74), it was shown that children were often carrying ESBL-E
upon admission to hospital. Moreover, antibiotic use and hygiene
failures in hospitals further dramatically increased transmission
and dissemination among patients. In cases where they were iden-
tified, CTX-M enzymes were practically exclusively of allele 15
(Table 1).
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FIG 3 Representation of the main digestive or environmental reservoirs of ESBL-E to which the worldwide human community belongs and is also exposed. Each
independent reservoir is included in a dashed black outline, inside which cross-transmission may occur. Arrows show the flux of ESBL-E from one reservoir to
another. Environmental niches comprise mainly water, soils, and plants, where genetic material exchanges between bacteria of digestive and/or environmental

origin occur.

Southeast Asia

The first report from Southeast Asia—from Java in 2001 to
2002— detected no community carriage (77). However, this study
had technical limitations. Only predominant fecal enterobacteria
were studied, and the subjects included were from a single area.
Since then, data from rural Thailand have indicated very high
rates, reaching 69.3% in 2010 (78). Interestingly, in another study
from Thailand, there were significant variations in carriage rates
between subjects from three separate provinces. These differences
seemed to be linked to variations in overall antibiotic use between
these populations but not to individual risk factors (79). The great
majority of CTX-M alleles identified in Thailand belonged to
group 9. However, data from Indonesia reported the presence of
alleles 14 and 15 as early as 2001 to 2002 (Table 1). Data from other
countries in the region, including India, are lacking.

Western Pacific

The number of studies available from the Western Pacific region is
strikingly low considering the diversity and size of the populations
living in this region. Wide differences are reported in two studies
available from China, ranging from 7% in Shenyang in 2007 to
50% in Fujian in 2009 (80, 81). This underscores the magnitude of
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the variations that can be observed between areas and populations
in such a vast country. Available data clearly indicate the predom-
inance of the CTX-M-14 allele. Interestingly, CTX-M-15 ranks
second in two recent studies from China, from 2007 and 2009,
suggesting that this allele has now emerged there (Table 1).

The Americas

Carriage rates have been assessed repeatedly in poor children in
urban areas in Latin America, which is of great interest. The car-
riage rate was as low as 0.1% in 2002 but jumped to 1.7% in 2005
and reached 12.4% in 2011 (82-84). Just as in the Thai study
described above (79), no individual risk factor (including antibi-
otic intake) was associated with carriage (84). In contrast, this
seemed to correlate with the overall exposure of the population to
antibiotics, as observed in a remote community of Amerindians
from French Guiana (85). Although the CTX-M-2 allele was pre-
dominant in early studies from South America, longitudinal data
from Peru and Bolivia tend to demonstrate that CTX-M-15 is also
emerging there, as in other regions (Table 1). Data from North
America are virtually nonexistent, and to our knowledge, only the
24 U.S. cases explored in a study of travelers (86) could be consid-
ered community related, suggesting a 1.6% carriage rate (Table 1).
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This rate seems to be corroborated by the rather low hospital rates
of ESBL carriage observed in neighboring Canada (87).

Travelers

Carriage rates in Europe are lower overall than those in other parts
of the world, and carriage of resistant bacteria has been associated
in the past with international travel (88). The suspicion thus
emerged that travel of subjects from countries with low ESBL-E
carriage rates to places with high ESBL-E carriage rates might be a
source of colonization. Indeed, ESBL-E carriage rates in European
subjects with traveler’s diarrhea, upon return from diverse over-
seas areas, were 24% and 18% in 2006 and 2008, respectively (89,
90). These rates increased significantly after travel to Egypt, India,
Southeast Asia, Thailand, and the Middle East (90). A prospective
study of healthy subjects confirmed the high acquisition rates as-
sociated with travel to India, Asia, and the Middle East (91). Fi-
nally, in a prospective case-control study performed in 2008, Eu-
ropean travelers had a 23% ESBL-E carriage rate, which was
significantly more than the 4% found in nontravelers. Upon re-
turn from India, Africa, or Asia, the ESBL-E carriage rate reached
46% (92).

The duration of carriage after travel seems to be relatively short,
lasting only a few weeks (93). This contrasts with the mean car-
riage duration of 6.6 months in patients who were colonized dur-
ing hospitalization (94). However, carriage can be far more pro-
longed in travelers with diarrhea or exposed to antibiotics while
abroad (93, 95) and in native African children arriving in Europe
after adoption (96).

DISSEMINATION ROUTES, STRAIN DIVERSITY, AND
TRANSMISSION

As mentioned above, dissemination within households was first
demonstrated in a Spanish study, where carriage rates were found
to be significantly higher among relatives of patients with ESBL-
producing E. coli UTI than in nonrelative controls (23.8% versus
7.4%; P < 0.01) and possibly higher in household relatives than in
nonhousehold ones (27.4% versus 15.6%; P = 0.1) (57). How-
ever, molecular characterization of the isolates showed that al-
though there was a particular strain with a given ESBL allele dis-
seminated between subjects in nearly half of the families, strains
producing the same ESBL allele but with different genetic back-
grounds were also found. This suggested to the authors that di-
verse modes of transmission of resistance were involved, with a
possible major role of plasmids, as earlier suspected in hospital
settings (97). Similar results were reported in another study, again
from Spain, in which up to 66% of the isolates from patients with
community-acquired ESBL-producing E. coli infections were in-
distinguishable from those isolated from fecal samples from their
household members. Again, this suggested that patients with
community infections and members of their households were a
reservoir for ESBL-producing strains (58). In China, the carriage
rates were higher in families with at least one individual with a
history of out-of-town residence and were inversely correlated
with living space (98). Finally, transmission of ESBL-E within the
family does not seem to be limited to E. coli but may also occur for
other enterobacteria, such as Salmonella (96).

Studies describing the genetic relatedness of ESBL-E isolates
are limited, and different methods, including repetitive element
palindromic PCR (rep-PCR), random amplification of polymor-
phic DNA (RAPD), and pulsed-field gel electrophoresis (PFGE),
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were used. It is clear, however, that diverse ESBL-producing E. coli
clones are present in the community. No widely distributed clone
appears to have emerged, in contrast with what has been described
for infectious strains, where a pandemic clone, ST131, was pin-
pointed (66). The ST131 clone was, however, also sometimes
found in carriers from Madagascar, India, and Pakistan (75, 89),
and also in France (69) and Niger (74). Altogether, the general
picture seems to be that each carrier has his/her own strain that dis-
seminates exclusively in its immediate surroundings. This is in sharp
contrast to what was observed in the 1980s and -90s, when TEM and
SHV types of ESBL were prevalent and frequently caused clonal out-
breaks in hospitalized patients, in whom the forces underpinning the
dynamics of dissemination are different (6).

ENZYMES

In cases where they were analyzed, CTX-M alleles generally ac-
counted for more than 90% of the ESBL-producing strains from
community individuals (Table 1). Although there were some early
studies which suggested that there was some degree of CTX-M
allele specificity between regions, a trend toward the dominance of
the CTX-M-15 allele appeared afterwards, except in the Western
Pacific region, where CTX-M-14 continues to be the predominant
allele (Table 1). It may be that specific biological properties are
associated with this allele that could explain its propensity to dis-
seminate, but this still remains to be elucidated fully.

HOW TO DEAL WITH CARRIERS UPON ADMISSION TO
HOSPITAL

Despite the global extent of the pandemic, there are currently no
precise guidelines about how to screen for and deal with ESBL-E
carriers in hospitals (99). This is partially due to the paucity of
studies on the efficacy of ESBL-E screening to ascertain the spread
of hospital-acquired infections in nonoutbreak situations. Al-
though this may be changing rapidly (100), the current situation is
that recommendations regarding this issue are not homogeneous,
even within a single geographic area (101). In hospitals, clonal
outbreaks of CTX-M-producing E. coli have been described (102,
103) but are not frequent (104). This may be because the mode of
dissemination of the current CTX-M-type ESBL genes is due more
often to plasmids than to strain transmission and may go unno-
ticed and therefore underestimated (74). Currently, the type of
unit to which the patient is admitted, the presence of risk factors,
and/or the risk of environmental contamination is taken into ac-
count to define the best screening strategies.

In many hospitals, screening for ESBL-E carriage is systematic
for ICU patients, and carriers are often administered carbapenems
as empirical therapy for hospital-acquired infections. Another
reason for systematic screening of ICU patients is that the likeli-
hood of outbreaks is higher there than in other wards because of
the very large number of medical procedures performed which
promote indirect transmission of strains between patients (105).
Although it has clearly been demonstrated that recent hospitaliza-
tion or transfer, comorbidities, previous antibiotic treatment, uri-
nary catheterization, and age are independently associated with
ESBL-E carriage, the absence of any of these items does not guar-
antee the absence of ESBL-E carriage (106). Finally, patients likely
to disseminate high loads of ESBL-producing strains in the envi-
ronment (because of wounds, diarrhea, or secretions) should al-
ways be screened (107).

Once identified, ESBL-E carriers in most cases are isolated in
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single rooms, where contact precautions are recommended to
prevent cross-transmission. However, this is applied unevenly
(101), and its effectiveness is debated (108). Apart from when the
clone is particularly virulent or the surrounding patients are at
particular risk (109), cohorting does not appear to be applied any-
more.

At this time, systematic screening for ESBL-E carriage upon
admission to hospital is not recommended. Systematic screening
is costly, and its effectiveness and that of associated policies of
isolation have not been demonstrated (110). In addition, the
spread of ESBL-producing strains seems to be species dependent.
For example, Klebsiella pneumoniae tends to be cross-transmitted
more frequently than E. coli (111). In the context of a likely future
increase in ESBL-E carriage, it is a commonly accepted view that
strict adherence to standard contact precautions (107) by all med-
ical and nonmedical staff members will be the cornerstone of the
control of ESBL dissemination in hospitals. However, the topic is
the subject of intense debate (112) and research. Things might
change when rapid carriage detection methods that can be used on
a large scale become available.

HOW TO PREVENT AND REDUCE ESBL CARRIAGE IN
COMMUNITY POPULATIONS

We badly lack adequate recommendations to prevent the emer-
gence and spread of ESBL-E through fecal carriage in the commu-
nity. Interventions could be targeted at several levels. First, one
could try to reduce the circulation of resistant bacteria in the en-
vironment where they circulate. This would join with general ef-
forts for better water sanitation, which is far beyond the scope of
this review. It is notable that transmission of antimicrobial resis-
tance is not currently listed in the Water Quality and Health Strat-
egy 2013-2020 report from WHO (113). However, it has been
shown that urban wastewater treatment plants are hot spots for
antibiotic-resistant bacteria and genes spread into the environ-
ment (114). Hospital effluents may be a vehicle for ESBL-E (115).
Methods to reduce resistant bacterial loads in wastewater and the
amounts of antimicrobial agents, in most cases originated from
hospitals and farms, include optimization of disinfection proce-
dures and management of wastewater and manure. A policy for
preventing mixing of human-originated and animal-originated
bacteria with environmental organisms would certainly be advis-
able (116). However, no recommended method has yet proven
sufficiently efficient, safe, and cheap to use on a large scale, partic-
ularly in developing countries. Note that antibacterials are not
among the products currently listed by the EU Council directive
on environmental quality standards in the field of water policy
(117).

A second suggestion is to implement measures targeting pa-
tients. Since one of the major drivers of bacterial resistance is the
accumulation of antibiotic residues in the colonic microbiota
(118), the development of colon-targeted companion treatments
has been proposed to destroy (119) or inhibit (120) these residues
without exerting an impact on the systemic efficacy of antibiotic
therapies. However, as promising as these approaches might ap-
pear, they have not been tested to prevent the emergence of
ESBL-E and still have to prove their efficacy in large-scale clinical
trials.

Lastly, the question of decontamination of colonized patients
has been raised, mimicking what is done to prevent the dissemi-
nation of resistant bacteria and infection in intensive care patients
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by selective digestive decontamination (121). Although the initial
results for carbapenemase carriers appeared promising (122),
those obtained subsequently with ESBL-E carriers were disap-
pointing, with short-lived ESBL-E elimination after the end of the
procedure (123). Others have tried to use probiotics (124), but
this was also a failure. Overall, it seems that far more research is
warranted in the field before any practical solution can be pro-
posed. Indeed, there will be a need to clarify the regulatory proce-
dure before envisaging significant developments (125).

However, besides these promising current developments, the
simplest hygienic behaviors should not be forgotten. Indeed, in
many parts of the world, hand washing remains inadequate (126).
Although the effects of promoting hand washing on ESBL-E
spread have not been evaluated specifically, its benefits regarding
the control of fecally-orally transmitted diseases are unequivocal
(127-129). This is why hand washing appears to be a necessary
step for the control of ESBL-E in the community. Moreover, since
the costs associated with soap supplies are low, hand-washing ed-
ucation should be among public health priorities.

CONCLUSIONS

The main information gained by this review is that the ESBL en-
zyme pandemic emerged in the community in the early 2000s and
has since increased regularly in all regions in a significant manner,
sometimes dramatically, with carriage rates exceeding 50% after
2008 in part of Southeast Asia. Differences in the increases in
carriage rates were highly significant between Europe, where they
are currently around 10%, and less developed regions, where they
are higher, explaining why travelers are at risk of becoming colo-
nized while visiting countries abroad. From the beginning,
CTX-M alleles accounted for the majority of cases, very often ex-
ceeding 90% (Table 1).

The biological characteristics of the colonizing strains may
bring some light to bear on why and how resistance has dissemi-
nated so well. Although specific clones such as ST131 may play a
role in the pandemic (66), the usual lack of clonal relatedness
between strains from different carriers suggests that the predom-
inant CTX-M genes are carried by genetic elements that are highly
mobile between strains. In addition, CTX-M alleles, which were
first found to be different between regions, tend to homogenize.
Today, CTX-M-15 ranks first in most regions and is challenging
CTX-M-14 in Southeast Asia and CTX-M-2 in South America.
This review supports the contention that mobile genetic elements
are the cornerstone of the current CTX-M pandemic, as recently
reviewed (11). Plasmids have been involved in the intercontinen-
tal spread of CTX-M-15 (130), and community outbreaks may
also result from strain-to-strain transmission of plasmids. The
plausibility of this scenario is also supported by the reported asso-
ciation between CTX-M enzymes and E. coli IncF resident plas-
mids (12, 131), which have the ability to interchange between E.
coli strains, to which they are particularly well adapted (132). Full
sequencing of plasmids should shed further light on this matter in
the near future.

This history of CTX-M enzyme dissemination shows parallels
with the emergence of TEM-1, a well-known wild-type narrow-
spectrum penicillinase which was first isolated in 1965 in Greece
(133) and later spread through healthy populations worldwide
(134-137). The rapid and wide dissemination of this gene in cattle
as well as in food, pets, and environments (138—142) is also paral-
leled by recent observations made for CTX-M (143). The commu-
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nity certainly appears to be the major reservoir of CTX-M-type
ESBL (Fig. 3). The presence of this type of enzyme in hospitalized
patients is probably only a secondary consequence (144), but it
can, however, give rise to subsequent nosocomial outbreaks (103).

A limitation of this analysis is the fact that there was no study
for many areas, such as Eastern Europe, Australia, and North
America. Also, the question may be posed as to whether the data
analyzed are representative of the current trends in ESBL-E epide-
miology. Indeed, only studies focusing on community settings
were selected; therefore, some important information may have
been excluded. In addition, our data analysis may be biased as a
result of the diverse methods used by the authors who collected
them. Overall, the definition of the healthy community popula-
tion is not univocal, and medication, chronic diseases, and anti-
biotic exposure were sometimes considered exclusion criteria.
Heterogeneous screening methods (antibiotic agent and concen-
tration used in the selective media) and epidemiological designs
(mainly cross-sectional studies, but also case-control studies or
cohorts) were used as well. Nonetheless, our analysis probably
provides the most relevant conclusions that can be drawn from
current literature. They also show that apart from a reduction in
antibiotic usage and promotion of hand washing, our means of
action are very limited.

Altogether, our results show not only that CTX-M-type ESBL
have spread to communities but also that carriage rates are on the
rise. This is obviously a major public health concern, particularly
in the regions where the rates are very high. The drivers of this
catastrophic epidemiology are not fully understood. They may
include (i) the genetic material bearing these enzymes, which ap-
pears to be extremely well adapted to their bacterial hosts; (ii) the
predominance of E. coli, an intestinal commensal species widely
distributed in both humans and animals, as a bacterial host; (iii)
the vast dissemination of CTX-M-type ESBL strains in all kinds of
environments; and (iv) the increase in selective pressure due to the
multiple uses of extended-spectrum cephalosporins, which are
now cheap and widely available as generics. In addition to strong
policies to reduce antibiotic misuse in all parts of the world, de-
tailed studies and applied research are urgently needed to deter-
mine the best countermeasures which can be implemented.
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