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The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential
adjuvant and alternative therapies derived from nature’s repertoire of bactericidal proteins and peptides. In humans, the airway
surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial
components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, acting
through several mechanisms, including catalytic degradation of cell wall peptidoglycan and subsequent bacterial lysis. In the
infected lung, however, lysozyme’s dense cationic character can result in sequestration and inhibition by polyanions associated
with airway inflammation. As a result, the efficacy of the native enzyme may be compromised in the infected and inflamed lung.
To address this limitation, we previously constructed a charge-engineered variant of human lysozyme that was less prone to elec-
trostatic-mediated inhibition in vitro. Here, we employ a murine model to show that this engineered enzyme is superior to wild-
type human lysozyme as a treatment for mucoid Pseudomonas aeruginosa lung infections. The engineered enzyme effectively
decreases the bacterial burden and reduces markers of inflammation and lung injury. Importantly, we found no evidence of
acute toxicity or allergic hypersensitivity upon repeated administration of the engineered biotherapeutic. Thus, the charge-engi-
neered lysozyme represents an interesting therapeutic candidate for P. aeruginosa lung infections.

The spread of antibiotic resistance among bacterial pathogens
represents a looming public health crisis (1). With a rise in

multidrug-resistant bacteria and few new antimicrobials in the
pipeline, there is a need to explore potential alternative and adju-
vant therapies (1). Human lysozyme (hLYS) is a naturally occur-
ring antimicrobial peptide found in a variety of tissues, cells, and
secretions involved in the pathophysiology of lung infection, e.g.,
the airway surface liquid and cytoplasmic granules of neutrophils
(2). It plays a key role in the innate immune response to infection,
with levels rising in response to microbial invaders (3, 4). hLYS
exerts its antimicrobial effect through catalytic hydrolysis of cell
wall peptidoglycan (5) and muramidase-independent processes
that have yet to be fully elucidated (6, 7). It has been shown to be
effective against both Gram-positive and Gram-negative organ-
isms, including Pseudomonas aeruginosa (8–10).

Several studies have examined lysozyme’s potential as an exog-
enously administered biotherapeutic. Recently, Bhavsar et al. ad-
ministered aerosolized recombinant hLYS as a treatment for P.
aeruginosa lung infection in hamsters (11). They found that 2 h of
treatment for 3 consecutive days decreased the bacterial burden in
both bronchoalveolar lavage fluid (BALF) and lung homogenate.
The enzyme treatment also decreased lung tissue inflammation,
reduced BALF leukocytes and neutrophils, and decreased alveolar
septal apoptosis (11). A follow-up study found that a single neb-
ulized dose of coadministered hLYS and tobramycin decreased
the lung and BALF bacterial burden and reduced markers of in-
flammation (12). They concluded that hLYS is an interesting ther-
apeutic candidate for treatment of lung infections in humans.

While there is precedent for using inhaled lysozyme as an ex-
ogenously administered antibacterial, experimental evidence sug-
gests that cationic antimicrobials such as lysozyme are sequestered
by anionic biopolymers associated with inflammation. Moreover,
it is thought that this electrostatic sequestration compromises an-

tibacterial efficacy in the infected and inflamed lung (4, 13). We
have previously shown that wild-type hLYS is inhibited in vitro by
anionic biopolymers, and we have employed biomolecular engi-
neering to remodel the enzyme’s electrostatic potential field to
mitigate this limitation. In brief, a library of charge-altered ly-
sozyme variants was constructed by combinatorial mutagenesis of
eight basic residues that possessed low-level evolutionary conser-
vation. The library was screened, under inhibitory conditions, for
lytic activity against Micrococcus luteus. The enzyme variant 2-3-7
retained wild-type levels of bactericidal activity toward M. luteus
and P. aeruginosa strain PAO1, but it was found to exhibit far
superior lytic activity in the presence of the inhibitory polyanions
alginate, DNA, mucin, and F-actin. The details of the construction
and in vitro characterization of 2-3-7 are reported elsewhere
(14, 15).

In the current study, we employed a murine model of mucoid
P. aeruginosa lung infection to assess the therapeutic potential of
variant 2-3-7. The presence of alginate and extracellular DNA is a
hallmark of chronic P. aeruginosa infection of the human airway
(16, 17), and we have previously shown that these biopolymers do
in fact accumulate in our mouse model of lung infection (14).
Here, we describe a series of systematic studies that evaluate the in
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vivo toxicity and allergenicity, the antibacterial efficacy, and the
anti-inflammatory properties of our engineered lysozyme. We
conclude that exogenous administration of variant 2-3-7, which
effectively evades inhibitory polyanions, provides a therapeutic
advantage relative to wild-type hLYS.

MATERIALS AND METHODS
The protocol for animal infection and lysozyme administration was ap-
proved by the Institutional Animal Care and Use Committee of the Uni-
versity of Vermont (Burlington, VT), in accordance with the Association
for Assessment and Accreditation of Laboratory Animal Care guidelines.
All surgeries were performed under pentobarbital anesthesia, and all ef-
forts were made to minimize animal suffering. Wild-type hLYS and to-
bramycin were purchased from Sigma-Aldrich (St. Louis, MO), and the
genetically engineered enzyme 2-3-7 was produced and purified as previ-
ously described (14). We employed P. aeruginosa strain FRD1, a mucoid
clinical isolate (18) that exhibits antibiotic resistance under in vitro con-
ditions relevant to lung infections (19–21).

In vitro quantitative culture. For antipseudomonal assays, 25,000
CFU/ml of mid-log-phase P. aeruginosa strain FRD1 was mixed with 7.5
�g of purified enzyme in activity buffer (10% [vol/vol] Luria-Bertani
broth [LB] in 10 mM potassium phosphate, pH 7.0) in a total reaction
volume of 115 �l. Dilutions were plated after a 60-min incubation at 37°C,
colonies were enumerated following overnight outgrowth, and results
were compared to those for dilution plates sampled at time zero. Assays
were performed in triplicate on each of two different days to yield biolog-
ical replicates.

Pulmonary infection model and treatment regimen. Overnight LB
cultures of P. aeruginosa were pelleted, washed twice with phosphate-
buffered saline (PBS; 137 mM NaCl, 2.6 mM KCl, 10 mM Na2HPO4, 1.7
mM KH2PO4, pH 7.4), and resuspended to give 5 � 107 viable P. aerugi-
nosa bacteria in 40 �l of PBS. The actual inoculum was determined by
serial dilution of the input bacterial suspension on Pseudomonas isolation
agar (Difco), followed by incubation at 37°C for 24 h. Adult male
C57BL/6J mice (age, 8 to 12 weeks; Jackson Laboratories, Detroit, MI)
were anesthetized briefly with isoflurane and inoculated with 40 �l (5 �
107 CFU) of P. aeruginosa via oropharyngeal aspiration. At 1 h postinfec-
tion, a second inoculation with either hLYS or 2-3-7 in 40 �l of PBS was
administered in the same fashion. Enzyme doses were typically 100 �g,
with the exception of the doses in the 2-3-7 dose-response study (1 �g, 10
�g, and 100 �g). Tobramycin, when applicable, was administered at the
time of the second inoculation as an intraperitoneal injection of 75 �g in
200 �l PBS per mouse. Intraperitoneal injection is an accepted route for
systemic drug delivery in rodent models.

BALF collection, cell count, and cell differential. At 24 h postinfec-
tion, mice were anesthetized with intraperitoneal sodium pentobarbital,
tracheas were cannulated, and BALF was collected using an instillation of
1 ml of cold PBS. The BALF was centrifuged, and mouse immune cells
were enumerated using an Advia automated cell counter (Siemens, Berlin,
Germany). The cell-free protein content of BALF was determined by the
Bradford assay with bovine serum albumin as a standard. Cytokine levels
in BALF were determined using Bio-Plex Pro assays according to the
manufacturer’s instructions (Bio-Rad, Hercules, CA).

Quantification of P. aeruginosa bacterial burden. Once the BALF
had been obtained as described above, lungs were excised and placed into
1 ml of cold PBS, followed by homogenization. Viable bacterial counts in
the lung homogenate were determined by plating serial dilutions (100 �l)
onto Pseudomonas isolation agar, followed by incubation at 37°C for 24 h.

Liver histology. Livers were fixed in buffered formalin for 24 h, em-
bedded in paraffin, sectioned, and stained with hematoxylin-eosin. His-
tological sections were reviewed by two independent observers blinded to
treatment group. Representative images were obtained using an Olympus
BX50 light microscope with an Optronics MagnaFire digital camera.

Toxicology model. Adult male C57BL/6J mice (age, 8 to 12 weeks)
were given 100 �g of enzyme 2-3-7 by oropharyngeal aspiration on one,

two, or three consecutive days (for a total of one, two, or three doses).
Control animals were treated with PBS. Replicate groups were sacrificed
on day 4 and day 10. BALF was obtained as described above for determi-
nation of the white blood cell content. In addition, serum from anesthe-
tized mice was collected by right heart puncture. On day 10, total IgG1 and
IgE levels were determined by enzyme-linked immunosorbent assay using
capture and detection antibodies, according to the manufacturer’s in-
structions (BD Pharmingen, San Diego, CA).

Statistical analysis. Results were analyzed using one-way analysis of
variance (ANOVA) with Dunnett’s post hoc comparison (22) to the PBS
control. In all cases, statistical significance was assessed at an � level of
0.05.

RESULTS
Lysozyme in vitro activity toward P. aeruginosa strain FRD1. In
prior reports, we detailed the in vitro activity of engineered
lysozyme 2-3-7, specifically highlighting its capacity to evade
electrostatic inhibition by anionic biopolymers (14, 15). As a com-
ponent of that work, we showed that 2-3-7 was equivalent to wild-
type hLYS in quantitative culture experiments assessing bacteri-
cidal activity toward the nonmucoid P. aeruginosa strain PAO1.
For the purpose of evaluating in vivo efficacy, we were primarily
interested in P. aeruginosa strain FRD1, as this bacterium’s mu-
coid phenotype has greater clinical relevance to chronic lung in-
fections (23). Surprisingly, quantitative culture experiments with
FRD1 showed the engineered enzyme to have reduced bactericidal
activity compared to that of wild-type hLYS (Fig. 1). Because,
however, the charge-engineered enzyme had been designed spe-
cifically for enhanced performance in the infected and inflamed
lung environment, we continued to pursue in vivo studies, despite
this unexpected preliminary result.

Repeated dosing of 2-3-7 is nontoxic and nonallergenic. To
assess the acute toxicity of the engineered enzyme 2-3-7, we exam-
ined lung and liver inflammation after repeated dosing (100 �g
once per day for one, two, or three consecutive days). Compared
to a PBS control, none of the dosing regimens caused significant
increases in BALF immune cells, as measured on day 4 or day 10
(Fig. 2A and B). Similarly, there was no evidence of liver toxicity,
as determined by histological sampling on day 4 or day 10 (Fig.
2C). To determine if 2-3-7 induced an allergic response, we quan-
tified serum immunoglobulins on day 10 of the repeat dosing
study. Again, none of the dosing regimens caused a significant
increase in serum IgE or IgG1 levels (Fig. 3). Thus, there is no

FIG 1 Lysozyme in vitro activity toward P. aeruginosa strain FRD1. Quantita-
tive culture was performed on bacterial suspensions incubated for 1 h with 65
�g/ml enzyme or a PBS sham treatment. Viability was normalized to that for
the PBS control. Mean values and SEMs are shown for triplicate measurements
from two independent experiments (ANOVA, P � 0.0001). *, P � 0.05 com-
pared with the PBS control group; ***, P � 0.001 compared with the PBS
control group.
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evidence that the engineered enzyme causes acute toxicity or al-
lergic hypersensitivity during short-term repeated dosing.

2-3-7 decreases P. aeruginosa burden and airway inflamma-
tion. A dose-response study of enzyme 2-3-7 was conducted to
assess the enzyme’s therapeutic performance. The lungs of mice
were infected with 5 � 107 P. aeruginosa FRD1 cells by oropha-
ryngeal aspiration, and at 1 h postinfection escalating doses of
2-3-7 were administered by the same route. The numbers of bac-
terial CFU were quantified at 23 h posttreatment, and a dose-
response effect showed that peak efficacy was approached between
10 and 100 �g (Fig. 4A). It bears noting that preliminary studies
with nonmucoid P. aeruginosa strain PAO1 found a similar dose-
response trend at lower enzyme concentrations (100 ng to 1 �g),
although the results were not statistically significant at these low
doses (one-way ANOVA, P � 0.188; data not shown).

Following the same protocol, the efficacy of variant 2-3-7 was
compared head-to-head with that of wild-type hLYS at a 100-�g
dosage. Mice treated with either enzyme showed a statistically
significant reduction in P. aeruginosa lung burden compared to
that achieved with a PBS sham treatment (Fig. 4B). While not

significant at � equal to 0.05, mice treated with 2-3-7 trended
toward lower bacterial burdens than mice treated with wild-type
hLYS (P � 0.132, two-tailed t test). We also sought to determine if
enzyme therapy reduced infection-associated lung inflammation
and injury. Compared to the results for a PBS control group, treat-
ment with 2-3-7 showed a strong trend toward fewer airway im-
mune cells (Fig. 5A) and significantly less leakage of protein into
the airway (Fig. 5B), whereas treatment with hLYS yielded no
significant difference. Additionally, we found that treatment with
2-3-7 resulted in significantly reduced BALF concentrations of
tumor necrosis factor alpha (TNF-�) (Fig. 5C) and keratinocyte-
derived cytokine (KC) (Fig. 5D). In contrast, wild-type hLYS did
not reduce lung cytokine levels to a statistically significant degree.
In aggregate, these results provide evidence that engineered vari-
ant 2-3-7 outperforms wild-type hLYS in combating airway infec-
tions by mucoid P. aeruginosa.

2-3-7 is as effective as tobramycin in treating mucoid P.
aeruginosa lung infection. To determine if there was an added
benefit to combining lysozyme treatment with standard antibac-
terial therapies, mice were infected with P. aeruginosa as described

FIG 2 Charge-engineered lysozyme is nontoxic during repeat dosing. Groups of eight mice received 100 �g of enzyme daily. Experimental groups received a total
of one, two, or three doses. Following treatment, four mice from each group were sacrificed for analysis on day 4 and four mice were sacrificed for analysis on day
10. (A) BALF immune cell concentration on day 4 (ANOVA, P � 0.377); (B) BALF immune cell concentration on day 10 (ANOVA, P � 0.192). The means �
SEMs are indicated, and there were no significant differences compared to the results for the PBS control. (C) Liver damage assessed by hematoxylin-eosin
staining. Representative images are shown, and no differential pathology was observed between experimental groups and the PBS control. Magnifications, �100.

FIG 3 Charge-engineered lysozyme causes no allergic hypersensitivity during repeated dosing. Groups of four mice received 100 �g of enzyme daily for a total
of one, two, or three doses. Serum antibody levels were quantified on day 10. (A) Total serum IgE (ANOVA, P � 0.535); (B) total serum IgG1 (ANOVA P �
0.810). The means � SEMs are indicated, and no statistically significant differences were observed.
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above and treated with either tobramycin, tobramycin combined
with hLYS, or tobramycin combined with 2-3-7. A 75-�g intra-
peritoneal dose of tobramycin resulted in a significantly reduced
P. aeruginosa burden compared to that achieved with a PBS sham
treatment (ANOVA, P � 0.005). Surprisingly, when tobramycin
was coadministered with hLYS, the combination therapy resulted
in slightly higher mean bacterial counts than the PBS sham treat-
ment (Fig. 6A). In contrast, the combination of variant 2-3-7 and
tobramycin yielded a slightly lower bacterial burden than that
achieved with tobramycin alone (average numbers of lung CFU �
90,636 versus 116,615, respectively). A similar pattern emerged in
quantitative measures of airway inflammatory cells (Fig. 6B). We
conclude that while 2-3-7 combined with tobramycin does not
completely eradicate the model infection, neither does the engi-
neered enzyme severely antagonize the aminoglycoside, as ob-
served with wild-type hLYS.

DISCUSSION

Colonization of the lower respiratory tract by various bacterial
pathogens leads to a wide spectrum of pulmonary diseases, and as
a whole, lung infections cause a greater global burden of disease
than any other category, including HIV/AIDS, cancer, heart at-

tacks, or malaria (24). Even in the United States, the evidence
suggests that mortality rates from lung infections have failed to
decline appreciably since the 1950s (25). One key contributor to
this lack of progress is the emergence and rapid spread of antibi-
otic resistance among pathogenic bacteria (26, 27). Indeed, anti-
biotic resistance is a widespread health concern that often compli-
cates ventilator-associated pneumonia (28, 29) and contributes to
patient morbidity and mortality in cases of underlying chronic
pulmonary disease, such as chronic obstructive pulmonary dis-
ease and cystic fibrosis (30–32). These observations are driving a
medical imperative to develop new antimicrobial agents for bac-
terial infections of the lung.

Fueled in part by advances in recombinant protein production
technologies (33, 34), endogenous antimicrobial proteins, such as
lysozyme, have emerged as prospective therapeutic candidates.
These agents are naturally occurring within humans, play impor-
tant roles in innate immunity, exert broad-spectrum antimicro-
bial activity, and function via mechanisms distinct from those of
traditional antibiotics. Additionally, relative to conventional che-
motherapeutics, they are thought to have a lower propensity to-
ward rapid induction of resistance phenotypes (35). While natural

FIG 4 Efficacy of lysozyme treatments (n � 5 mice per group). (A) Reduction in the numbers of P. aeruginosa CFU with escalating doses of charge-engineered
lysozyme 2-3-7 (ANOVA, P � 0.005); (B) numbers of lung P. aeruginosa CFU following treatment with PBS, 100 �g of wild-type hLYS, or 100 �g of variant 2-3-7
(ANOVA, P � 0.0002). The means � SEMs are indicated. *, P � 0.05 compared with the PBS control group; **, P � 0.01 compared with the PBS control group;
***, P � 0.001 compared with the PBS control group.

FIG 5 Assessment of lung inflammation and injury following P. aeruginosa infection and treatment with 100 �g wild-type or engineered lysozyme. (A) BALF
immune cell concentration (n � 5 mice per group; ANOVA, P � 0.067); (B) BALF protein concentration as a surrogate of lung injury (n � 5 mice per group;
ANOVA, P � 0.008); (C) BALF cytokine KC concentration as a marker of inflammation (n � 6 mice per group; ANOVA, P � 0.040); (D) BALF TNF-�
concentration as a marker of inflammation (n � 6 mice per group; ANOVA, P � 0.039). The means � SEMs are indicated. *, P � 0.05 compared with the PBS
control group; **, P � 0.01 compared with the PBS control group.
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lysozymes advantageously possess bactericidal activity against
both Gram-positive and Gram-negative bacteria, there exists con-
siderable evidence that their efficacy within the infected and in-
flamed lung may be compromised by electrostatic interactions
with disease-associated, anionic biopolymers (4, 13).

We have successfully redesigned the electrostatic potential field
of hLYS, creating a charge-engineered variant that is less prone to
electrostatic inhibition (15). A previous in vitro analysis had
shown that variant 2-3-7 exerted wild-type or better bactericidal
activity toward both Micrococcus luteus and P. aeruginosa strain
PAO1 (14), but here, we found it to exhibit 2.6-fold lower in vitro
activity toward the P. aeruginosa clinical isolate FRD1. We empha-
size, however, that variant 2-3-7 was designed specifically for the
infected and inflamed lung environment, and consistent with this
objective, it outperformed wild-type hLYS in our murine model of
FRD1 lung infection. Compared to a PBS sham treatment, mice
treated with the engineered enzyme showed a significant reduc-
tion in measures of lung damage and inflammation, whereas
treatment with the wild-type enzyme did not yield statistically
significant results. In head-to-head comparisons of the engi-
neered and wild-type enzymes, the engineered variant showed a
strong trend toward a greater reduction in bacterial burden. Tox-
icology studies with the engineered enzyme showed no evidence of
acute toxicity or allergic hypersensitivity. These observations sug-
gest that the enhanced in vivo performance of the variant stems
from a direct effect of the enzyme itself rather than some second-
ary effect of an inflammatory response elicited by the exogenous
protein.

We also analyzed combination treatments of lysozyme and
tobramycin, a frontline chemotherapeutic for cystic fibrosis pa-
tients. During acute respiratory exacerbations, patients are com-
monly given systemic tobramycin via intravenous administration
(36), and as a single agent, tobramycin exhibits a 1-�g/ml in vitro
MIC toward P. aeruginosa strain FRD1 (37). In our in vivo model,
we found that a single 75-�g dose per mouse reduced the bacterial
burden by 87%. We were surprised to find that the combination of
wild-type hLYS and tobramycin failed to yield any reduction in
the mean bacterial burden compared to that achieved with the
PBS sham treatment. This suggests an antagonistic interaction in
vivo, since each agent individually produced a 4- to 7-fold reduc-
tion in the numbers of lung CFU. In contrast, the combination of
tobramycin with variant 2-3-7 yielded slightly greater efficacy
than tobramycin alone, although the differences were not statisti-

cally significant. Thus, while the engineered enzyme fails to com-
pletely clear infections when combined with tobramycin, it also
lacks the strong antagonistic effect observed with wild-type hLYS.
This could prove to be an important point should clinical trials be
pursued in the future. It bears noting that our results differ from
those of Bhavsar et al., who showed that wild-type hLYS enhanced
the efficacy of tobramycin in a hamster model of P. aeruginosa
lung infection (12). We believe, however, that the discrepancies
likely stem from differences in the two experimental systems:
mouse versus hamster model, mucoid versus nonmucoid P.
aeruginosa strain, and intraperitoneal versus inhalation routes of
tobramycin administration.

In aggregate, we show here that our charge-engineered ly-
sozyme variant decreases the infection-derived bacterial burden
and lung inflammation without associated toxicity or hypersensi-
tivity. These results suggest that the engineered enzyme is an in-
teresting therapeutic candidate for treating P. aeruginosa infec-
tions of the airway, although studies with additional clinical
isolates will be needed to rigorously assess the protein’s broader
therapeutic utility.
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